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Abstract. We extend the neural concepts of topological 
feature maps towards self-organization of auto-associa- 
tive memory and hierarchical pattern classification. As 
is well-known, topological maps for statistical data sets 
store information on the associated probability densi- 
ties. To extract that information we introduce a recur- 
rent dynamics of signal processing. We show that the 
dynamics converts a topological map into an auto-asso- 
ciative memory for real-valued feature vectors which is 
capable to perform a cluster analysis. The neural net- 
work scheme thus developed represents a generalization 
of non-linear matrix-type associative memories. The 
results naturally lead to the concept of a feature atlas 
and an associated scheme of self-organized, hierarchical 
pattern classification. 

1 Introduction 

Topological feature maps are ubiquitous in the brain 
(Knudsen et al. 1987). Such maps show up in a local- 
ization of cortical activity by sensory stimuli and are 
characterized by the fact that excitations on nearby 
positions of the cortical plane are caused by similar 
sensory signals. Examples are the tonotopic and 
retinotopic maps in the auditory and visual cortices, 
respectively. Detailed structures and contents of these 
maps cannot be genetically prespecified but evolve after 
birth and are structured by experiences. 

The basic principles for the self-organization of 
topological feature maps from sensory input have been 
detected by v.d. Malsburg and WiUshaw (1977); Will- 
shaw and v.d. Malsburg (1976). They involve (i) com- 
petition of synaptic projections from a sensory part of 
the cortex onto the cortex area forming the map, (ii) 
competition among the neurons of the map for maxi- 
mal response to a given signal and (iiO cooperation of 
neurons which are neighbours on the mapping cortex. 
To demonstrate the validity of these principles the 
authors quoted above have suggested a corresponding 

algorithm which, as an example, was capable to explain 
the self-organization of a retinotopic map. 

A very simple algorithm for the adaptive formation 
of feature maps implementing these principles has been 
developed by Kohonen (Kohonen 1982a,b; 1984). Be- 
cause of its simplicity, that algorithm not only allowed 
the derivation of valuable analytical results on the 
character of the evolving map but also has proven to be 
useful for a variety of applications as motor control in 
robotics, solution of complicated optimization prob- 
lems or'semantics (see e.g. Ritter and Schulten 1988a, 
b; Ritter and Kohonen 1989). 

Topological feature maps are internal representa- 
tions of the outside world as experienced by a sensory 
apparatus. The latter encodes events, objects or rela- 
tions into feature combinations which are represented 
as spatio-temporal activity patterns of neurons on a 
sensory cortex (SC). Neural fibers connecting the SC to 
the mapping cortex (MC) evoke an initial activity on 
the MC which, due to competition of the MC neurons, 
localized itself in the region around the MC neuron of 
maximal initial response (cf. Fig. 1 for the network 
topology). Hence, an incoming feature combination is 
associated with the single MC neuron which exhibits 
maximal response and all feature combinations which 
evoke maximal response at that neuron define a class. 
Each class is characterized by a prototype feature com- 
bination. That is the one to which the classifying neu- 
ron is optimally tuned. Given some kind of metric, 
which allows to express similarity of feature combina- 
tions in terms of distances, the feature space is, thus, 
decomposed into as many small volumina centered at 
the prototype combinations as there are classifying MC 
neurons. Thus, a topological feature map provides a 
discretization of feature space. 

Although one might be tempted to conclude from 
the above discussion, that topological feature maps 
could also be conceived as associative memories and 
statistical classifiers, that is actually not the case. First, 
since the number of MC neurons determines the size 
of the classes discretizing the feature space, both, 
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Fig. 1. Scheme of  a network for self-organization of  a topological 
feature map; the dimension n of  the feature space is given by the 
number of  sensory neurons 

classification of feature combinations and their associa- 
tion to prototypes, strongly depend on discretization. 
Second, association and classification essentially pro- 
ceed in terms of  'grandmother'  neurons contrary to the 
well-known physiological evidence of  distributed stor- 
age and of  distributed neural activity in associative 
memories. Finally and most importantly, the type of 
association and classification characterized above does 
not exhibit any of  the propeties generally required for 
unbiased statistical data analysis; these properties may 
be summarized as follows: 

- For a set of  n-dimensional statistical data x char- 
acterized by a probability density P(x) a classification 
without a priori bias has to be derived from the proper- 
ties of P(x). As is common in multi-variate analysis, 
classes have to be defined in terms of clusters of  data, 
i.e., in terms of surroundings of local maxima of P(x), 
and prototypes of  classes in terms of averages over such 
clusters. 

- Distance between clusters should enable a hierar- 
chical classification. Thus, clusters of closely neighbor- 
ing clusters which are well-separated from other clusters 
should combine to form superclasses and, only by 
closer inspection, decompose into subclasses. 

In this article we show that feature maps become 
self-organizing statistical classifiers and auto-associative 
memories for n-dimensional feature vectors x, which 
have all the desired properties sketched above, if an 
additional recurrent dynamics of signal processing be- 
tween SC and MC is introduced. 

After a short review of properties of topological 
feature maps in Sect. 2 we sketch in Sect. 3 the self-or- 
ganization of neural connections which enable a regu- 
lated recurrent signal processing between SC and MC 
and introduce a corresponding algorithm. By methods 
of mathematical analysis we show in Sect. 4 that our 
recurrent dynamics converts topological feature maps 
into auto-associative memories and tools for cluster 
analysis. Results of simulations, which are presented in 
Sects. 5-8, illustrate the analytically derived properties 
and discuss effects of finite size and dimension of neural 
maps. Combining the results we develop in Sect. 9 the 

concept of a hierarchically organized feature atlas 
which consists of sequences of maps representing suc- 
cessively smaller portions of a feature space at a succes- 
sively higher resolution. A short summary and 
discussion concludes the paper. 

2 Topological f e a t u r e  m a p s  

Topological feature maps resulting from Kohonen's 
algorithm form the basis of our construction. For a 
thorough understanding a short presentation and dis- 
cussion of that algorithm is necessary. 

In Kohonen's algorithm a feature combination is 
represented as an n-dimensional vector x composed of 
real numbers. A component xj of that vector is inter- 
preted as the activity of SC neuron j. Thus, as sketched 
in Fig. 1, the feature vectors x provide the input to a 
two-layered neural net consisting of the SC as input 
layer and of the MC as output layer. The MC neurons 
are labelled by a position vector r indicating their 
physical position within the cortical net. The two layers 
are fully interconnected by links of strengths wrj which 
are combined to form n-dimensional weight vectors w r. 

A weight vector w r determines the response of MC 
neuron r to a signal x from the SC. Unlike in most 
neural network models the size of  that response if not 
determined by the dot product wr" x corresponding to a 
Hamming metric, but rather is given by the Euclidean 
distance d,(x) between weight vector wr and feature 
vector x 

d~(x) = l lw,-  xll. (1) 

Note, that Kohonen's algorithm is not confined to that 
simple Euclidean metric but is compatible also with 
more general metrics. Note, furthermore, that the use 
of such metrics instead of a Hamming metric is the first 
central point on which the new developments of  this 
paper are based. An MC neuron is argued to exhibit 
strong response to a signal x if dr(x) is small. Hence, 
the weight vector wr directly points to that position in 
the n-dimensional feature space to which MC neuron r 
is optimally tuned. Therefore, we call wr the virtual 
position of MC neuron r in feature space. 

To formally express the initial response a~(x) of  an 
MC neuron r to a feature vector x one may choose any 
positive function of  dr(x) peaked at d~(x)=0  and 
decaying to zero over a characteristic distance p. For 
our simulations we have chosen a Gaussian 

a~(x) = exp(-d2,(x)/2p2), (2) 

although a linearly decaying or a step=like function, 
e .g . ,  

a~(x)={10 i f d r ( x ) < P '  
else, (3) 

should serve the same purposes and should be compu- 
tationally much more efficient in large scale calcula- 
tions. We call the characteristic distance p the selectivity 
parameter as it determines the degree of  fine tuning of  
MC neurons to incoming signals. 
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The initial response of  MC neurons, which will be 
of  central importance for our developments, plays a 
minor role in Kohonen's  algorithm. Here, in order to 
achieve formation of  a topological map, it is assumed to 
rapidly decay by a 'winner-takes-all' dynamics towards 
a final standard activity on the MC. Such dynamics can 
arise from long-range competition and short-range co- 
operation among MC neurons. The final activity a f ( r  ')  
is centered around the MC neuron r' of  largest initial 
response and decays on the MC over a characteristic 
distance tr. That  distance measures the range of cooper- 
ativity among the MC neurons and is assumed to 
decrease during the formation of  the feature map. 
Despite its computational inefficiency we have chosen a 
Gaussian for the final activity, too 

a f ( r  ')  = exp[ -- (r  -- r')2/2tr 2] . (4) 

It is important  to note that the width a determining the 
final activity refers to distances between physical posi- 
tions r of  MC neurons within the cortical net whereas 
the width p determining the initial activity refers to 
distances between virtual positions w, of  MC neurons 
and feature vectors x within feature space. 

The final activity enters a Hebbian learning rule for 
the update of  weight vectors after presentation of  a 
feature vector x chosen according to its corresponding 
a priori probability density P(x) 

Wr new = W ~  "~ Eaf(r ')[x -- w~ (5) 

Learning of weight vectors w, representing the map 
proceeds in discrete time steps t = 0, 1 . . . . .  tmax. In our 
simulations we have chosen tmax = 100" N ~ where 6 is 
the MC dimension and N is the number of  MC neurons 
per cortex dimension. With increasing t the learning 
parameter E and the range of  cooperatively tr are 
decreased according to the formula ~t(t) = gmax 
(~tmin/tXmax) tltmax with ~te{E,a}. Useful values are 
em~x = .9, Emin = .05, trma x = N/2 and trmin = 1 (see Ritter 
and Schulten 1988a,b). 

As a result of  the self-organization process sketched 
above, the MC neurons span a topologically ordered, 
smooth, virtual net W = {%} in feature space such that 
neighboring MC neurons r occupy also neighboring 
virtual positions w, within that virtual net. Thus, the 
mapping cortex has become a topological feature map. 
As shown by Ritter (1989) the point density D(w,) of  
the virtual net W in feature space is a polynomial 
function of  the probability density P(x)  of  the feature 
vectors 

h ( w r )  ,~ P ( x )  ~ , (6)  

with an exponent ~ depending on cortex dimension 6 
and cooperativity range a (for 6 = 1 the exponent T is 
about 2/3). Therefore, the point density D(w,) of the 
virtual net W is a discretized, slightly deformed version of 
the probability density of feature combinations x. This is 
the second important property of  topological feature 
maps on which our further arguments are based. No 
reference to the topological character of  feature maps 
will be made. Kohonen's  algorithm can render non- 

topological virtual nets obeying (6) if the requirement 
of  cooperation among MC neurons is dropped, i.e., if 
the Gaussian in (4) is replaced by a 6-distribution 
(Ritter 1989). But a corresponding conventional scheme 
of  vector quantization (Linde et al. 1980) exhibits much 
slower convergence, lacks biological relevance and 
those nice features of  topological maps which enable 
simple graphical representations. 

3 Recurrent  s ignal  process ing  

As exhibited by (6), the point density D(w,) of  the 
virtual net W attached to the feature map contains 
information on the structure of  the probability density 
P(x). We will now introduce a very simple algorithm 
which serves to extract that information from the map. 
The algorithm is based on the concept of  regulated, 
recurrent signal processing between sensory and map- 
ping cortex. 

To enable recurrent signal processing we assume 
that after growth and self-organization of  synaptic con- 
nections w,j from SC neurons j towards MC neurons r 
the reverse process also occurs. We suggest that reverse 
synaptic connections %,  from MC neurons towards SC 
neurons are formed according to the same Hebbian 
learning principle, el. (5). As a result the connectivity 
between the two layers will become completely symmet- 
rical, i.e., %,  = w,j. Due to the reverse connections, 
activities of  MC neurons evoked by primary sensory 
signals will induce a secondary activity of  SC neurons. 
We imagine that this recurrent signalling proceeds on a 
fast time scale. Correspondingly, we employ the initial 
MC activity expressed by (2) or (3) for a description of  
that process instead of  the final activity Eq. (4) relevant 
for the formation of  the map. 

For  regulation of  the reverse signals we assume that 
a few additional neurons become linked to all MC 
neurons and to all reverse connections. The additional 
neurons are supposed to sum up the initial MC activity 
a~ caused by an incoming signal x(t). Depending on the 
size of  the initial MC activity they are suggested to 
influence the weights of  the reverse connections. A fast 
strengthening of  the reverse connections is assumed if 
the activity evoked on the map is small and a fast 
weakening if it is large. Such regulation of  synaptic 
weights could be achieved, e.g., by shunting inhibition. 
Figure 2 shows a scheme of  a corresponding network. 

Mathematically, the suggested regulation of  the 
overall strength of  the reverse signal corresponds to a 
normalization. Thus, the secondary activity x(t + 1) of  
the SC neurons evoked by their primary activity x(t), 
mediated by the initial activity of  the map and transmit- 
ted through the regulated reverse connections may be 
expressed 

x(t + 1) X,a~[x(t)]w, 
- 5z a~[x(t)] (7) 

This equation defines a recurrent dynamics of  signal 
processing between SC and MC. As we will demonstrate, 
that dynamics extends the range of  applications of  
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Fig. 2. Scheme of  a network for recurrent signal processing on a 
topological feature map; for a most simple graphical representation of  
the network structure the sensory cortex has been duplicated; the 
large arrow indicates the identity of  top and bottom layer 

topological feature maps towards construction of self- 
organizing statistical classifiers and of auto-associative 
memories. 

Note, that the network structure depicted in Fig. 2 
resembles that of 'bidirectional associative memories' 
introduced by Kosko (1988). Upon closer analysis one 
may convince oneself, that our recurrent dynamics on 
topological feature maps represents a generalization of 
Kosko's concept since our similarity measure in feature 
space, which determines a~[x(t)], is based on more 
general metrics than just the usual Hamming metric. 

Note, furthermore, that the neural interpretation of 
the mechanism for regulation of the reverse signal is by 
no means unique. Instead of influencing the efficiency 
of the reverse connections, as formally suggested by 
Fig. 2, the regulating neurons also could be assumed to 
appropriately scale the neural activity on the mapping 
cortex. Both interpretations are compatible with (7). 
Our arguments are independent of a detailed neural 
interpretation; they solely rely on the validity of (7). 

4 Properties of the recurrent dynamics 

To explain the dynamics defined by (7) we first want to 
demonstrate that it is stable. Here, stability means that 
each initial activity pattern x(0) on the sensory cortex 
converges to a stable attractor x p = lim,~ o~x(t). When 
regarded in terms of information processing such a 
process is an auto-association of a trial pattern x(0) to 
a prototype pattern x p. 

The stability of our recurrent algorithm is most 

easily seen if one employs a step-like function as given 
by (3) to describe the initial activity of MC neurons and 
if one assumes the number of MC neurons to be large. 
In the corresponding continuum limit, the sums in (7) 
may be replaced by integrals and, using (6), the point 
density of the virtual net by the probability density of 
feature vectors. One obtains 

n / ~ / �9 

x(t + 1) - SS[x(t)] d x e (x)x  
- fs,x,,---,; ' ( 8 )  

where the volume S[x(t)] is an n-dimensional sphere of 
radius p centered at the primary feature vector x(t). 
According to (8) the updated SC activity x(t + 1) is 
given in terms of a local average of the feature space 
weighted by the probability density. In comparison with 
the center x(t) of the sphere, the local average x(t + 1) 
will be shifted towards regions of higher density. Such 
shifting will occur as long as there is a direction of 
larger probability density within the volume S(x). 
Therefore, the recurrent dynamics entails a gradient 
ascent on a bounded, positive function Pp(x) which is 
obtained by taking local averages of Pr(x) over vol- 
umes S(x). In general Pp(x) is a convolution of Pr(x) 
with the initial MC activity at(x). The maxima ~;(p), 
i = 1 . . . . .  v(p), of Pp(x) are the stable fixed points 
x,e(p) of the auto-associative dynamics x(0)---,xf(p). 
We call Pp(x) the effective potential of the auto-associa- 
tive process. Note, that the number v(p) of different 
prototypes xf(p) identified by the dynamics should 
monotonously increase with decreasing p. 

To further elaborate these concepts, consider the 
extreme cases of very large and very small values of the 
selectivity parameter p. For very large values of p the 
spheres S(x) will cover the complete feature space and, 
therefore, local averages will correspond to global aver- 
ages. Then (8) renders the total average ( x ) =  

d"xPr(x)x/~ d"xPr(x) as a fixed point for any initial 
pattern x(0) after the first step. Hence, at very large 
values of p the auto-associative dynamics 
x(0) ---, x~(p) = (x)  identifies all feature combinations. 

For very small values of p the effective potential 
Pp(x) becomes identical with Pr(x), its maxima xi(P) 
become identical with the maxima ~; of P(x) and, 
hence, the dynamics corresponds to a gradient ascent 
on P(x). For a most simple proof assume the feature 
space to be one-dimensional and P(x) to be analytic. 
Expanding P(x) into a Taylor series at x(t) the integrals 
in (8) can be evaluated. Retaining terms up to first 
order one obtains 

~p 2 e ' [x ( t ) ]  
x(t + 1) = x(t) -I- 3 P[x(t)] ' (9) 

where P'(x) is the derivative of P(x). Equation (9) 
proves that the dynamics actually is a gradient ascent 
on P(x). Thus, for very small values of the selectivity 
parameter p the prototype xf Co) associated to an initial 
feature x(0) is the local maximum 2i of P(x) which is 
closest to x(0) in the direction selected by the gradient 
P'[x(0)]; at small values of p the auto-associative dy- 
namics most selectively differentiates the various feature 
combinations. 



As a consequence of  the fact, that the recurrent 
dynamics represents gradient ascent on the effective 
potential Pp(x), also minima of  Pp(x) are fixed points 
of  the dynamics. However, these fixed points are un- 
stable and, correspondingly, their basins of  attraction 
are of  measure zero. In our extended simulations we 
never happened to hit one of  these spurious states as an 
initial point of  the associative process. Therefore, these 
points are neglected in future discussions. 

Summarizing we may state that (7) defines a se- 
quence of  auto-associative dynamics x ( 0 ) ~ x f ( p )  for 
the various scales of  distance in feature space which are 
given by the respective values of  the selectivity parame- 
ter p. For  small p the prototypes are given by the local 
maxima of  P(x), at intermediate p sets of  local maxima 
clustering within a distance p define prototypes at a 
coarser scale of  differentiation, whereas at large p even- 
tually all patterns are identified. Hence, when consid- 
ered as a function of p, (7) provides a scheme for 
hierarchical pattern classification. 

The properties, which we have just derived, apply to 
the case of  a very fine discretization of  the feature space 
by the virtual net. In the remainder of  the paper we will 
present the results of  simple simulations which aim at 
an illustration of  these properties. However, simula- 
tions have to rely on a limited number of  MC neurons 
such that some of  the properties will be modified by 
discretization effects. Furthermore, in numerical calcula- 
tions convergence of  a pattern x(t) towards its proto- 
type x p has to be judged employing a threshold 
criterion. In our simulations we have used a small 
number 01 = 10 -4 to define prototypes according to 

xf - x(t) if IIx(0 - x(t + 1)II < 01. (10) 

In case of  a shallow effective potential Pp(x) the speed 
of  convergence may become very small and a threshold 
criterion like the one given above may mimic stability 
and, therefore, may generate numerical artifacts. As a 
result meta-stable points or points close to a locally 
shallow maximum of  the effective potential may be- 
come erroneously identified as fixed points of  the dy- 
namics. To exclude to some extent the latter type of  
artifacts we have identified closely spaced prototypes in 
our calculations 

x{~_x~ if IIxr ( l l )  
As an estimate for the threshold 0 2 we have employed 
the optimal size of  the discretization of  the feature 
space provided by the virtual net, i.e., the minimum of  
the distances llw,-w, ll between neighboring virtual 
positions of  MC neurons r and r'. 

5 Hierarchical classification 

Figure 3 provides a first example for the capability of  
our algorithm to perform a hierarchical classification of  
features. We have selected a one-dimensional feature 
space and a one-dimensional mapping cortex consisting 
of  a chain of  100 neurons. For  the self-organization of  
the map the features x were chosen at random from the 
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Fig. 3. Hierarchical pattern classification by recurrent signal process- 
ing for a one-dimensional feature space; top: probability density P(x); 
center: virtual net W for a one-dimensional mapping cortex o f  100 
neurons; bottom: location of  prototypes xe(p)  in feature space as a 
function of  the selectivity parameter p; for discussion see text 

interval [0, 1] according to the probability density P(x) 
depicted at the top of  Fig. 3. P(x) is composed of  four 
identical Gaussian distributions g~(x), i = 1 . . . . .  4, 
characterized by a standard deviation a of  0.05. Gaus- 
sians g~ and g2 as well as g3 and g4 form two identical 
local clusters. The distances of  maxima within the clus- 
ters measure 3a and are smaller by a factor of  two than 
the distance between the maxima of  Gaussians g2 and 
g3 which belong to different clusters. 

The virtual net W resulting after l04 learning steps 
is shown in Fig. 3 below the graph of  P(x). The virtual 
positions wr of  the MC neurons are marked by vertical 
bars at the respective positions within the feature space 
[0, 1]. By inspection one may convince oneself, that the 
point density D(wr) of  virtual positions in feature space 
actually provides a mapping of  P(x). 

The particular form of  P(x) has been chosen so as to 
encode four prototype features x f  by the locations 2~ of  
the maxima of  P(x) and a hierarchical class structure of  
features and prototypes by the selected distances be- 
tween the maxima. When viewed on a coarse scale, the 
structure of  P(x) suggests a combination of  the four 
feature classes ~ defined by the g~ into two superciasses 
5e] = ~ u ~ 2  and ~2  = ~3 ucg4 �9 The prototypes of  the 
superclasses are then the averages of  the prototypes of  
the respective subclasses from which they are composed. 

According to the analysis presented in Sect. 3, the 
auto-associative dynamics given by (7) should be per- 
fectly capable to reveal the hierarchical structure of  
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feature classes encoded by P(x). The bottom part of 
Fig. 3 proves that this is actually the case. That part of 
the figure depicts the locations x~ (p), i = 1 . . . . .  v(p), of 
the prototypes within feature space as a function of the 
selectivity parameter p. The locations of the prototypes 
have been determined according to the prescriptions 
given in (10) and (11) using 21 different trial features 
x~(0) regularly distributed onto the feature space for 
each value of p. For comparison the locations ~7 i of the 
maxima of P(x) are indicated by dashed-dotted lines. 
To the extent at which the continuum limit provides a 
valid approximation for the 100 neurons case consid- 
ered here, the locations of the prototypes should ap- 
proach the ~ at small p. 

At values p > 0.184 the auto-associative dynamics 
renders only one fixed point located at about the mean 
value ( x )  = 0.5 of the whole distribution. In the range 
0.044 < p < 0.184" the dynamics identifies two proto- 
types labeling the two superclasses S~ and 6a2 intro- 
duced above. Four prototypes x~ are identified in the 
range 0.016 < p < 0.044 and, as expected, these proto- 
types are located close to the respective maxima :~; of 
P(x). At the borders between the ranges the classifica- 
tion scheme exhibits bifurcations. Hence, as claimed 
further above, the recurrent dynamics given by (7) is 
able to provide a hierarchical classification of features if 
the selectivity p of the initial response of the MC 
neurons is taken as parameter for tuning classification. 

The values Pb at which the classification exhibits 
bifurcations provide a measure for the proximity of the 
feature classes. At the chosen parameters the algorithm 
can resolve two Gaussian peaks of equal height and 
standard deviation tr only if the distance 6 between the 
respective maxima approximately exceeds 3p. That esti- 
mate for the bifurcation value Pb of the selectivity 
parameter has been derived analytically evaluating the 
convolution of Pr(x) with the initial MC activity a~,(x) 
given by (2). Differentiating Pp(x) one finds the bifurca- 
tion value Pb = x / ( t~ /2 )  2 -  0"2/] ). This analytical result 
for Pb is in perfect agreement with the values deter- 
mined from the simulations. 

For two Gaussians of different height or standard 
deviation one can derive implicit equations for Pb. As 
compared to Pb for Gaussians of equal height and 
standard deviation one finds that Pb becomes smaller if 
one of the heights is reduced or one of the widths is 
increased (see next section for examples). 

Increase of the selectivity of the MC neurons be- 
yond a critical lower bound Pc, which is about 0.016 in 
the case considered here, leads to a rapidly increasing 
number of predicted classes. These classes are spurious 
and due to the fact that at Pc the selectivity parameter 
becomes smaller than the discretization of the feature 
space by the virtual net. Under these conditions the 
initial activity of the mappig cortex essentially involves 
a single neuron [cf. (2)] and the virtual position of that 
neuron becomes an attractor of the auto-associative 
dynamics. An upper bound for the discretization limit 
Pc is provided by the maximum of the distances 
IIw. - w,. 11 between the virtual positions of MC neurons 
r and r" which are neighbours in the virtual net. 
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Fig. 4. Classification graph for the example presented in Fig. 3; the 
number of  different prototypes identified by the auto-associative 
dynamics is plotted as a function of  the selectivity parameter p 

At selectivity parameters p close to the bifurcation 
values Pb, a critical slowing down of the speed of 
convergence towards the fixed points was observed in 
the simulations. This observation indicates that the 
maxima of the effective potential Pp(x) become very flat 
at these values of p. Correspondingly, the prescriptions 
given by (10) and (11) for determination of fixed points 
render artifacts near Pb. That effect is illustrated in Fig. 
4 which shows a classification graph. A classification 
graph represents the number v(p) of prototypes as a 
function of p. The graph clearly identifies the two large 
ranges of p in which the algorithm, as shown in Fig. 3, 
identifies two and four prototypes, respectively. At the 
two bifurcation points the graph exhibits small spikes 
caused by misclassifications upon critical slowing down. 
The rapid increase of v(p) for p smaller than 0.016 
marks the discretization limit Pc. 

For high-dimensional feature spaces a direct visual- 
ization of the bifurcation pattern of prototypes is im- 
possible. In these cases classification graphs like the one 
shown in Fig. 4 provide a most important t0ol to judge 
classification and its hierarchical structure stored in a 
given feature map. 

6 D i s c r e t i z a t i o n  e f f e c t s  

To illustrate further properties of our classification 
scheme we have chosen a two-dimensional feature space 
as a second example. Feature vectors x are chosen from 
the rectangle [0, 1] x [0, 0.5] according to the probabil- 
ity distribution P(x) shown in Fig. 5. P(x) consists of 
four bivariate Gaussians of different shape and height. 
Therefore, that distribution encodes four prototype fea- 
tures associated with classes of features differing in 
frequency and variance. Two of the classes represent 
highly frequent features. These classes correspond to 
the Gaussian peaks depicted in the upper left and right 
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Fig. 5. Sample probability density P(x) within the two-dimensional 
feature space [0, 1] x [0, 0.5] 

comers. Two classes of  less frequent features are 
located in the lower corners. Like in the first example, 
the selected choice of  distances between maxima groups 
the four classes into two superclasses with a corre- 
sponding partition perpendicular to the long axis of  the 
feature space. 

We present results for two different neural maps of  
P(x) in order to discuss how the size of  cortical maps 
influences their classification properties. Figure 6 shows 
the virtual nets of  a very coarse map comprising 18 MC 
neurons (top) and of  a finer map constructed from 200 
MC neurons (bottom). For  each of  the two cases, we 
have considered a one-dimensional cortex topology in 
order to provide a simple example for a mapping of  a 
higher-dimensional feature space onto a lower-dimen- 
sional cortex. Similar simulations with two-dimensional 
cortices have shown, that cortex topology actually is 
irrelevant for classification. In addition to the virtual 
nets, Fig. 6 exhibits as patterns of  black pixels the sets 
of  feature vectors employed for training of  the respec- 
tive maps. The probability density shown in Fig. 5 is 
reflected in the density of black pixels. 

Figure 7 shows the classification graphs obtained 
for the two feature maps. To determine the number v(p) 
of  prototypes at a given value of  the selectivity para- 
meter p, convergence of  the auto-associative dynamics 
given by (7) has been monitored for 231 different trial 
feature vectors x~(0). The trial vectors were chosen 
from a regular 21 x 11 grid covering the feature space. 

At large values of  the selectivity parameter (p > 0.1) 
the classification graphs of  the two maps are very 
similar. Therefore, as far as the statistical analysis of  
the coarse structure of  P(x) is concerned, coarse and 
fine discretizations are equivalent. For  both maps a first 
bifurcation of  prototype identification occurs at 
Pb "~ 0.25 which is the value expected from our analy- 
tical estimate of  pb introduced in Sect. 5. That  bifurca- 
tion corresponds to a partition of  the feature space into 
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Fig. 6. Virtual nets W constructed in the two-dimensional feature 
space [0,1] x [0, 0.5] for one-dimensional mapping cortices; fines be- 
tween virtual nodes (fat dots) indicate nearest neighbour relations on 
the mapping cortices; black pixels indicate the feature vectors used for 
training of  the maps; top: 18 MC neurons; bottom: 200 MC n e u r o n s  
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Fig. 7. Classification graphs for the maps shown in Fig. 6; top: coarse 
diseretization based on 18 MC neurons; bottom: finer discretization 
with 200 MC neurons; see text and caption to Fig. 4 for further 
explanations 
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two parts perpendicular to its long axis. Thus, the two 
superclasses encoded by P(x) are detected first. 

However, upon approach to the discretization limit 
of the coarse map, classifications by the two maps 
become markedly different. As demonstrated by the 
graph at the top of Fig. 7, the small map immediately 
switches from identification of the two superclasses to 
identification of all four classes. The corresponding 
bifurcations occur at a value Pb of about 0.08 which is 
approximately a third of the distance between the max- 
ima of the subclasses. Due to the coarse discretization 
that value somewhat deviates from the analytical esti- 
mate for Pb which applies to the continuum limit. 
According to the estimate the bifurcation pattern of the 
subclasses should proceed for the given P(x) (Fig. 5) in 
two steps with a larger Pb at about 0.089 and a smaller 
Pb at 0.065. The larger Pb corresponds to the distinction 
of the subclasses in the left half of feature space and the 
smaller Pb to that in the right half. 

Because of the proximity of the discretization limit 
p~ at 0.072, identification of four prototypes is highly 
unstable for the coarse map. Generally, classification 
becomes unreliable if the value of p is of the same order 
of magnitude as Pc. Therefore, inference on the number 
of prototypes actually encoded by P(x) upon inspection 
of a classification graph is limited to a scale provided by 
,Oc. 

Correspondingly, the classification graphs of the 
finer map at the bottom of Fig. 7 renders an improved 
inference on the structure of P(x) possible. That graph 
exhibits a wide range of the parameter p above the 
corresponding discretization Pc at 0.054 which indicates 
the existence of the three prototypes expected in that 
range and, hence, allows the safe conclusion that the 
corresonding classes actually do exist. However, also 
for the larger map the range at which all four existing 
classes are identified is too close to p~ as to allow their 
inference merely from consideration of the graph. As 
argued in Sect. 3, improvement of classification towards 
safe identification of all existing classes requires a re- 
duction of the discretization limit by further increase of 
the size of the map. 

7 Basins of  attraction 

According to Sect. 4 the associative dynamics entails a 
gradient ascent on the effective potential Pp(x). There- 
fore, a graphical representation of many different trajec- 
tories of the dynamics can reveal the structure of Pa(x), 
the location of its maxima and the basins of attraction. 

To provide an example we consider the auto- 
associative dynamics on a moderately sized, two- 
dimensional map for the two-dimensional P(x) shown 
in Fig. 5. The map comprises 20 x 10 MC-neurons and 
the corresponding virtual net is shown in Fig. 8. 

Figure 9 shows 231 trajectories x~(t) of the auto- 
associative dynamics for a value p = 0.08 of the selec- 
tivity parameter. A regular grid of 21 x 11 trial feature 
vectors has been chosen for the starting points x~(0) of 
the dynamics. 
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Fig. 8. Virtual net W constructed in the two-dimensional feature 
space [0, 1] • [0, 0.5] for a two-dimensional MC comprising 20 x 10 
neurons; for further explanation see caption to Fig. 6 
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Fig. 9. Feature space trajectories x(t) of  the auto-associative dynam- 
ics for a value p = 0.08 of  the selectivity parameter employing the 
two-dimensional virtual net shown in Fig. 8; see text for further 
explanations 

At the chosen value of p three different prototypes 
are identified by the dynamics. Thus, the two-dimen- 
sional map of 200 MC neurons considered here pro- 
vides a similar classification as the one-dimensional 
map of the same size (cf. bottom of Fig. 7), which 
illustrates the independence of classification from cortex 
topology. Figure 9 reveals the three prototypes as end 
points of bundles of trajectories. All three prototypes 
are located near one of the maxima of P(x) which in 
the figure are marked by large circles. Each prototype is 
surrounded by a basin of attraction forming a con- 
nected region in feature space. The size of the respective 
basin of attraction is determined by the frequency of 
features in the corresponding class or superclass. At the 
chosen value of p the shallow and broad maximum of 
P(x), which is located in the lower right comer of the 
feature space, does not give rise to a separate maximum 
of the effective potential Pp(x). Instead, as exhibited by 
the shape of the trajectories, that maximum of P(x) 
generates a ridge in the effective potential Pp(x) which 
funnels the trajectories towards the much higher and 
much more strongly peaked maximum of P(x) in the 
upper right comer. In contrast, the two close maxima 
of P(x) in the other part of the feature space, one being 
broad but intense, the other being weak but strongly 
peaked, both give rise to separate maxima of Pp(x). 

For high-dimensional feature spaces a direct visual- 
ization of the basins of attraction is impossible. 
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Fig. 10. View on the physical positions of the 20 x 10 neurons of the 
MC; the neurons are classified by the auto-associative dynamics at 
p = 0.08 using the virtual positions w~ as starting points and are 
labeled by the classifying prototypes employing the symbols of Fig. 9 

However, the topological character of the feature map 
entails the possibility to draw a map for the probability 
weighted sizes of these basins. For that purpose one 
may choose, instead of a regular grid, the virtual posi- 
tions wr of the MC neurons r as starting points x~(0) of 
the auto-associative dynamics (cf. Fig. 8). The dynam- 
ics will classify each MC neuron r by that prototype 
whose basin of attraction contains wr. Simple labeling 
of MC neurons by the associated prototypes will then 
reveal the relative frequencies of features in the corre- 
sponding classes by inspection of the labeled cortex 
since the point density of the virtual net is a measure 
for P(x). 

To provide an example, Fig. 10 shows a view on the 
regular 20 • 10 grid of the MC with its neurons labeled 
by their associated prototype features. Although 
parameter values and symbols coding prototypes are 
identical to those of Fig. 9, note that the two figures 
display different spaces. For understanding consider the 
difference between virtual positions of neurons in fea- 
ture space (Fig. 8) and physical positions of neurons on 
the MC (Fig. 10). According to the figure 100 MC 
neurons are associated with each of the two super- 
classes encoded by P(x). That partition of neural re- 
sources is the expected result since the total 
probabilities of the two superclasses had been chosen 
identical. 

8 High-dimensional feature spaces 

In the examples discussed above one- and two-dimen- 
sional feature spaces have been employed since they 
allow simple graphical representations. However, realis- 
tic problems of pattern recognition usually involve 
feature spaces of very high dimension. To demonstrate 
that our hierarchical scheme of pattern classification 
can also cope with somewhat more realistic problems 
we have selected a mapping of a five-dimensional 
feature space onto a one-dimensional cortex for our last 
example. As feature space we have chosen the five- 
dimensional hypercube [0, 1] s and as mapping cortex a 
chain of 120 neurons. In order to encode six different 
prototypes into the sample probability density P(x) we 
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have centered six Gaussian distributions gi of standard 
deviation a = 0.05 at the corners of a regular simplex. 
The distance between the corners of the simplex was 
0.7. The choice of such a regular simplex ensures that 
the six clusters of probability density completely span 
the five-dimensional space. 

Figure 11 shows the classification graph obtained 
by monitoring convergence of the auto-associative dy- 
namics for 59,049 trajectories x~(t). For each value of p 
the trial feature Vectors x(0) have been located on a 
regular grid of 95 starting points covering the hyper- 
cube. Figure 11 allows a clearcut inference on the 
existence of six prototypes. The six existing prototypes 
are safely identified over a wide range of the selectivity 
parameter p extending from pb~0.25 down to 
Pc ~ 0.10. Instead of stepwise bifurcations in prototype 
detection expected for non-symmetric probability densi- 
ties, the high symmetry of the sample distribution en- 
tails a simultaneous onset of identification of all six 
prototypes at the "bifurcation" value Pb- In that 
parameter range the usual critical slowing down of the 
auto-associative dynamics and the corresponding nu- 
merical artifacts by misclassifications show up in the 
spikes of the classification graph. Since the 'bifurcation' 
actually is a 'hexfurcation', the critical slowing down is 
strongly enhanced. The discretization limit Pc of the 
auto-associative dynamics is clearly indicated by the 
rapid increase of calculated fixed points at values of p 
smaller than Pc. 

These results indicate that our algorithm should be 
well-suited to analyze unknown distributions of high-di- 
mensional patterns using low-dimensional topological 
maps. In the case considered here, each class of features 
has been described by about 20 MC neurons. We have 
checked that even a much poorer discretization involv- 
ing only 5 MC neurons per class on a one-dimensional 
cortex still renders a satisfactory classification and auto- 
association of the five-dimensional patterns. Success of 
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Fig. 11. Classification graph for a one-dimensional MC of  120 neu- 
rons which map a probability density P(x) in a five-dimensional 
feature space; P(x)  encodes six prototypes located at  the corners of  a 
regular simplex 
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such poor  discretization depends on the existence of  
sharp and well-separated maxima of  P(x). 

9 Feature atlas 

In a statistical data set prototypes may occur at 
strongly different distances. Our auto-associative dy- 
namics can safely identify and discriminate classes only 
if the selectivity parameter p is smaller than the distance 
between corresponding prototypes and larger than the 
discretization limit Pc below which classification breaks 
down. Pc is determined by the size of  the map. There- 
fore, if one wants to identify all existing classes, one 
must choose a very large number of  MC neurons. 
Variation of  p then renders the desired hierarchical 
classification. 

However, the mapping strategy sketched above 
closely resembles the attempt to draw a single map of  
the complete surface of  the earth. For  a sufficiently high 
resolution such map would have to be of  enormous 
size. Furthermore, to its largest part the map would be 
completely uninteresting since it covers oceans, deserts 
and so on. Therefore, geographic mapping commonly is 
provided by an atlas which contains a set of  maps 
hierarchically ordered according to the employed scales. 
Large scale maps provide gross overviews whereas 
small scale maps reveal the details of 'interesting' 
regions. 

We now want to show that our scheme for pattern 
recognition and classification naturally leads to the 
mapping strategy of  an atlas. For  that purpose we 
imagine that in a first step a primary feature map for 
the probability density P(x) of  a statistical data set is 
formed which comprises just enough MC neurons of  
low selectivity (large p) as to safely identify some of  the 
coarse prototypes. As an example consider the virtual 
W spanned by a two-dimensional MC of  5 • 10 neu- 
rons which is depicted at the top of  Fig. 12 and maps 
the probability density shown in Fig. 5. At a low 
selectivity of  the MC neurons characterized by a value 
0.15 of  p the auto-associative dynamics discriminates 
the two superclasses encoded by P(x). 

In a second step we imagine that the coarse classifi- 
cation of  feature vectors x by the primary map selec- 
tively can steer formation of  additional maps. Each of  
these secondary maps will then be confined to the basin 
of  attraction of  the respective coarse prototype. There- 
fore, the basic resolution of  these maps will exceed that 
of  the primary map even without expansion of  size. As 
a result, prototype recognition at a coarse scale can 
initialize classification at a finer scale if the MC neurons 
of  the secondary maps respond with an increased selec- 
tivity to a presented pattern x. Iteration of  that proce- 
dure will render a hierarchical tree of  maps, a feature 
atlas, which can discriminate patterns up to any desired 
resolution. It is not very difficult to devise neural cir- 
cuits and self-organized learning schemes which imple- 
ment such a hierarchical mapping strategy. 

The two secondary virtual nets shown at the bottom 
of  Fig. 12 illustrate the concepts developed above. For  
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Fig. 12. Three virtual nets representing a simple example for a feature 
atlas; feature space and probability density are shown in Fig. 5; top: 
primary virtual net constructed from 5 x 10 MC neurons for identifi- 
cation of two superelasses at a value Ps =0.15; bottom: secondary 
virtual nets mapping the basins of attraction of the two superclasses; 
each of the nets comprises 10 x 10 MC neurons 

self-organization of  these nets feature vectors x were 
first partitioned into two superclasses by auto-associa- 
tive dynamics on the primary map shown at the top of  
the figure. Depending on the result of  that primary 
classification each of  the secondary nets has been 
trained only with members of  its associated superclass. 
Therefore, the basins of  attraction of  the superclasses 
are selectively mapped by the two virtual nets. The 
secondary maps shown are of  sufficiently high resolu- 
tion as to safely identify all existing subclasses by the 
associative dynamics. 

10 Summary and discussion 

We have developed a general neural network scheme for 
self-organization of  auto-associative memories and of  
classifiers for real valued patterns. The scheme employs 
topological feature maps as its building blocks. Such 
maps consist of  a sensory cortex (SC) feeding its activity 
patterns into a mapping cortex (MC). For  our scheme 
we have extended that concept by self-organizing feed- 
back connections from MC to SC and by mechanisms 
for regulation of  neural activity. As a result we have 
obtained a recurrent dynamics of  signal processing 
which converts topological feature maps into auto-asso- 
ciative memories. We have shown that these networks 
become tools for hierarchical cluster analysis in feature 
space upon variation of  the selectivity parameter p. 
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The selectivity parameter  measures the response 
characteristics o f  M C  neurons  to an activity pat tern on 
the SC. At  large values o f  p many  M C  neurons  respond 
to a given SC activity whereas at small values o f  p only 
the few M C  neurons  become active which are well- 
tuned to the part icular  signal. Therefore,  other  cortical 
areas by sending non-specific signals to the M C  could 
change its background  activity and, thereby, steer the 
value o f  p. 

U p o n  adjustment  o f  p an  activity pat tern repeatedly 
presented to an  SC can become hierarchically classified. 
Increase o f  p corresponds  to an inductive sequence o f  
associations which starts at a highly specific classifica- 
t ion and leads towards  increasingly general notions,  
whereas decrease o f  p entails deduct ive associations. In  
contras t  to  these capabilities o f  large single maps,  clas- 
sification by the feature atlas in t roduced above is re- 
stricted to deduction.  

The most  p rominent  features o f  the algori thms em- 
ployed in our  scheme are computa t iona l  simplicity and 
stability. Concerning their funct ion as associative mem-  
ories, our  networks represent a generalization o f  
K o s k o ' s  'bidirectional associative memories '  which in 
turn  have been a generalization o f  Hopfield networks 
(see K o s k o  1988, for discussion and further reference). 
Problems with spurious states o f  the kind occurr ing in 
such non-l inear matr ix- type associative memories  are 
absent since our  algori thms do  not  rely on the conven-  
tional H a m m i n g  metric but  rather are based on  Eu- 
clidean and even more  general metrics in feature space. 
It  has been the use o f  these metrics which has enabled 
our  extension towards  hierarchical clustering. 

Finally we would like to note,  that, upon  presenta- 
t ion o f  time series on the SC and by Hebbian  learning 
o f  non-symmetr ic  connect ions  between SC and MC,  
our  scheme may  easily be extended towards  associative 
recall o f  limit cycles and towards  autoregression (Kiih- 
nel 1990). 
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