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by J.W. Dally and R.J. Sanford 

ABSTRACT--Measurements of strain near a crack tip with 
electrical-resistance strain gages do not usually provide a 
reliable measure of Kx because of local yielding, three- 
dimensional effects and limited regions for strain-gage place- 
ment. This paper develops expressions for the strains in a 
valid region removed from the crack tip, and indicates 
procedures for locating and orienting the gages to accurately 
determine Kz from one or more strain-gage readings. 

Introduction 
Although Irwin ~ first suggested the use of strain gages 

to determine the stress-intensity factor near the tip of a 
crack in 1957, little progress has been made in imple- 
menting this suggestion. The primary reason for the delay 
in the development of a suitable method involves the 
finite size of the strain gage. Questions arise regarding the 
effects of the strain gradients on the gage output, the 
magnitude of the strains to be measured if the gage is 
placed in close proximity to the crack tip, and the relative 
size of the gage compared to the size of the near-field 
region. A secondary reason for the delay is the availability 
of other experimental methods for determining the stress- 
intensity factor. Kobayashi 2 has described methods based 
on compliance measurements and photoelasticity. In 
addition Mannog 3 and Theocaris' have demonstrated the 
application of the method of caustics in a wide range of 
plane bodies containing cracks. Finally, Barker et al. 5 

have shown an accurate numerical technique for deter- 
mining the stress-intensity factor from full-field displace- 
ment data which can be obtained with either moire or 
speckle photography. 

This paper demonstrates that strain gages can be 
effectively employed to measure the stress-intensity factor. 
The application considered here is the determination of 
the opening-mode stress-intensity factor Kx in a plane 
body with a through crack. 

The area adjacent to the crack tip is divided into three 
regions as shown in Fig. 1. The innermost region close to 
the crack tip, region I, is not a valid region for data 
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acquisition because of nonlinearities caused by yielding or 
ambiguities concerning whether the stress state is plane 
stress or plane strain. The intermediate region, region II, 
is a valid area where the strain field can be represented 
within a specified accuracy by a multiparameter theory 
containing K~ and coefficients of higher order terms as 
unknowns. Region III, the outermost region, represents 
the far field where the truncated series describing the 
strain field is not sufficiently accurate. The boundary 
between region II and region II! will depend upon the 
accuracy specified and the number of terms retained in 
the multiparameter theory. The area of region II is 
sufficiently large to accommodate common electrical- 
resistance strain gages. 

The error due to strain gradient is first minimized by 
placing the strain gages sufficiently far from the crack 
tip, and is then eliminated by a simple integration procedure. 
The influence of the strain gradient in the 0 direction is 
not treated because it is no larger than that normally 
encountered in strain-gage applications where the strain 
field varies as a trigonometric function of 0. 

Multiparameter Representation of the 
Strain Field 

Sanford 6 has shown that the Westergaard 7 equations 
should be generalized to solve fracture-mechanics prob- 
lems where the stress field in the local neighborhood of 
the crack tip is influenced by the proximity of boundaries 
and points of  load application. The stresses expressed in 
this generalized form are given by 

trx~ = R e Z -  y l m Z '  - y l m Y '  + 2 R e Y  

ayy = R e Z +  y l m Z '  + y l m Y '  (1) 

rxy = - y R e Z  ' - y R e Y '  - I m Y  

where, for a single-ended crack, the stress functions Z and 
Y can be represented by 

N 
Z ( Z )  = ~ A , Z  "-1/2 (2) 

n=O 

M 
Y ( Z )  = E Bmz m 

m = O  
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where 

z = x + i y  (3) 

with the coordinate system defined in Fig. 2. By substituting 
eqs (1) into the plane stress-strain relations: 

1 ~= = ~- [ ~ = -  .a,,.] 

1 eyy = ~ -  [ ~yy - v a==] (4) 

1 
"Yxy : - '~ "l"xy 

one obtains the following generalized equations for the 
strain field. 

Ee= = (1 - g ) R e Z -  (1 + v ) y l m Z ' -  (1 + v ) y l m Y '  

+ 2R e Y 

Eeyy = (1 - v ) R e Z +  (1 + v ) y l m Z '  + (1 + v ) y l m Y '  

- 2 v R e Y  (5) 

t~7~y = - y R e Z  ' - y R e  Y '  - I m  Y 

y ~  

Fig. 1 - -Schemat i c  i l lustrat ion of the 
three regions associated wi th  the near 
f ield for a compact - tens ion specimen at 
a/W = 0.5 

F 

,.J 

Fig. 2 - -De f in i t i on  of coord inate  systems Oxy and 
P x ' y '  

The strain field can be expressed exactly by using the 
infinite series representation of the stress functions Z and 
Y given in eq (2). This exact approach cannot, however, 
be utilized in practice due to the infinite number of un- 
known coefficients A ,  and Bin. It is necessary to truncate 
the series and to accept a specified error in the representa- 
tion of the strain field. In this paper, a four-term repre- 
sentation is described where the first two terms of each 
of the series for Z and Y have been retained. Of course, 
a higher-order theory could be developed, but the number 
of strain gages required to determine A .  and Bm would 
become prohitibively large. 

Setting n = 0,1 and m = 0,1 gives 

Z = Aor-1/2[cos (0/2) - i sin (0/2)] + 

A~rl/2[cos (0/2) + i sin (0/2)] (6) 

Y = Bo + B,r[cos 0 + i sin 0] 

Substituting eqs (6) into eqs (5) gives 

Eexx = Aor-~/2cos(O/2) [(1 - v) - 

(1 + v)sin(O/2)sin(30/2)]  + 2Bo + A,r~/2cos(O/2)[(1 - v) 

+ (I + v) sin2(0/2)] + 2B,  rcosO 

EEyy = Aor-~/~cos( O/2)[(1 - v) + 

(1 + v)s in(O/2)s in(30 /2)]  - 2 vBo + 

A i r ' 2 c o s ( O / 2 )  [(1 - v) - (1 + v)sin2(O/2)] - 2 vB~rcos 0 

iZ3,xy = ( A o / 2 ) r  - '~  sin 0 cos(30/2) - 

( A , / 2 ) r  "2 sin 0 cos(0/2) - 2 B , r  sin 0 (7) 

This representation of the strain field could be employed 
with data from strain gages positioned at arbitrary points 
[P~(rl, 0,), P~(r2,02), P3(r3,03) and P4(r4,04)] all located 
in region II and oriented in either the x or y directions 
to obtain a solution for Ao which is related to Kz by 

K, = x/2--~Ao (8) 

However, it is advantageous to consider orientation of the 
strain gages at an arbitrary angle a ,  as illustrated in Fig. 
2, to explore the possibility of eliminating some of the 
terms in the strain-field representation by gage positioning 
and orientation. 

Four.Parameter Strain Field Relative to a 
Rotated Coordinate System 

The strains relative to a rotated coordinate system 
(x ' ,  y ' )  with its origin at an arbitrary point P (r ,O)  as 
defined in Fig. 2 are determined from the first invariant 
of strain, 

Ext x'  + ~yt y t  : EX x "~ ~yy (9) 

and the complex form of the strain-transformation 
equations, 

e y t y  ' - - e x ' x '  4- i"[x '  y '  "= ( e y y - - e x x +  i T x y ) e  2ic~ (10) 

Substituting eq (5) into eq (10) leads to 
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2 ~ e ~ , x , -  1 - v  ( R e Z + R e Y ) -  
l + v  

( y l m Z '  + y l m Y '  - Re IOcos 2c~ - 

( y R e Z  ' + R e  Y ' + 1 m Y )  sin 2c~ 

1 m l /  
2 1 Z e ' Y ' Y '  - -  1 + v - -  ( R e Z  + R e Y ) +  

( y l m Z '  + y l m Y '  - R e Y )  cos 2c~+ 

( y R e Z '  + y R e  Y '  + I m  Y)  sin 2a  (11) 

Again letting n = 0,1 and m = 0,1 in eq (2) and sub- 
stituting the results for the truncated series into eq (11) 
yields 

2#~=,~, = Aor- ' /2[k  cos(0/2) - (1/2)sin0sin(30/2)cos2c~ 

+ (1/2)sin0cos(3 0/2)sin 2c~] + Bo(k  + cos2c0 + 

A~r~/2cos(O/2) [k  + sin2(0/2) cos2 ct - (1/2) sin 0sin2 cd 

+ B~r[(k  + cos2c0cos 0 - 2sin0sin2c~] (12) 

#( ey, y, - ex' x, ) = (Ao/2)r-1/~sinO[sin(3 0/2)cos2a  - 

cos(3 0/2) sin2a] - 

Bocos2 ol + ( A , / 2 ) r ' Z s i n O [ c o s ( O / 2 ) s i n 2 a  - 

sin(0/2)cos2a] + B , r [ 2 s i n O s i n 2 a -  cos0cos2o~] (13) 

where 

k = ( l - u ) / ( 1  + v) (14) 

Equation (12) gives the relations between Kz and the 
strain ex,x, measured with a single-element strain gage 
oriented at an angle ~ with respect to the P ( x ' y  ') co- 
ordinate system. Equation (13) gives the relation between 
K~ and the output of a rectangular rosette with the two 
elements connected to adjacent arms of a Wheatstone 
bridge. There are many options regarding gage positioning 
and orientation to simplify eqs (7), (12) and (13). However, 
before considering these options it is necessary to more 
closely examine region II and to determine its bounds, 
since it is essential that the gage position P ( r , O )  be 
located within this region to avoid excessive errors. 

Crack.Tip Regions 
The size and shape of region II can be determined for 

say ex,x, by comparing the results of eq (12) with an 
exact solution of a representative fracture-mechanics 
problem. To illustrate this procedure, consider the 
compact-tension specimen with a / W  = 0.5 subjected to 
pin loading. Chona et al. 8 have determined fhe coefficients 
Ao, As, A2, Bo, B1 and B2 to obtain a six-parameter 
solution for the stress field which is considered to represent 
an exact solution over a region of some extent around the 
crack tip. Approximate values of the strains Ex,x, for 
ct = 60 deg were determined from eq (12) over the field 
by using one or more of these coefficients. For example, 
a one-parameter representation of Ex,x, utilizes Ao with 

As = A2 = Bo = B~ = B2 = 0; a two-parameter solution 
utilizes Ao and Bo; a three-parameter solution utilizes 
Ao, Bo, and As; and finally a four-parameter solution 
contains Ao, Bo, As, and B,. 

A point by point comparison was made over the field 
to determine the difference between the exact (six co- 
efficient) and approximate values of ex,x,. A plotting 
routine was then used to provide maps of the area around 
the crack tip where the differences were within +2, _+ 5, 
and _+ 10 percent. The results obtained for the compact- 
tension specimen over a +0.25 W sized zone about the 
crack tip are shown in Fig. 3. An examination of these 
results shows two very clear trends. Firstly, the size of 
region II increases markedly as additional terms are 
added to the series representation of ex'x'. Note that the 
second term (i.e., Bo) does not affect the size or shape of 
region II because of the choice of c~ = 60 deg (for v = 
�89 which eliminates this term in eq (12) for all values of r 
and 0. Secondly, the size of region II depends strongly 
on the accuracy required. However, in all cases considered, 
+2, +5 and +_ 10-percent accuracies, the size of region II 
is large enough to accommodate several strain gages. 

Region II has been divided into two parts in Fig. 3, 
namely IIa and lib. Region IIb is a valid region from an 
accuracy viewpoint; however, the strain ~x,x, in l ib  will 
be quite low and is not a suitable area for strain-gage 
placement. The magnitude of the strain in IIa is much 
larger; gage placement should be restricted to this area. 

The inner boundary of region II is determined by a 
circle of radius: 

r = h / 2  (15) 

where h is the thickness of the plane body. Rosakis and 
Ravi-Chandra 9 have shown experimentally that the state 
of stress at the crack tip is three dimensional in region I 
and is not represented by either plane stress or plane 
strain. Plane-stress conditions exist only when r > h /2 .  

Strain.Gage Position and Orientation 
There are many possible approaches to determining 

Kz by employing eqs (7), (12) and (13). Only three approaches 
will be described here to illustrate some of the procedures 
to be followed in reducing the theory to practice. These 
approaches include: (1)the single gage--three-parameter 
solution, (2) the two gage-four-parameter solution and (3) 
the rectangular rosette--two- or three-parameter solution 
with temperature compensation. Each of these three 
approaches is covered as individual cases below. 

Case I: Single Gage--Three-Parameter Solution 

Consider first eq (12) for ~x,x, and note that the Bo 
term can be eliminated if 

cos 2c~ = - k  = - (1 - v ) / ( l  + v) 

Next, set the coefficient of the A, term to zero. 

k + sin2(0/2)cos2c~ - ( �89  = 0 

which can be satisfied if 

(16) 

tan(0/2)  = - cot 2c~ (17) 

These results show that a single-element gage can be used 
to provide the data necessary for a three-parameter solu- 
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tion for K~ providing the angles c~ and 0 are selected to 
satisfy eqs (16) and (17). These angles depend only on a 
Poisson's ratio, v, of the specimen material as indicated 
in Table 1. 

Take, for example, an aluminum specimen with v = 
�89 Then c~ = 0 = 60 deg, and the gage is placed at any 
point in region II along a 60-deg radial line drawn from 
the crack tip. For this example (i.e., v = �89 eq (12) 
reduces to 

2#E~,x, = A o r - m 3 x [ 3 / 8  (18) 

Substituting eq (8) into eq (18) and solving for Kz gives 

K~ = Ex/(87~)Trr ex,x, (19) 

Measuring the gage position r and recording the strain 
e~,~, from the single gage gives the data necessary to 
determine Kt with an accuracy consistent with the differences 
associated with region II. 

Case Ih Two G a g e s - - F o u r - P a r a m e t e r  Solut ion 

It is possible to obtain the data necessary to determine 
Kr from a four-parameter representation by using two 
strain gages, providing these gages are both placed in 
region II with the same value of 0 and a as specified in 
Table 1. It is clear then that eq (12) subjected to the 
restrictions of eqs (16) and (17) reduces to 

21~ex,x, = Aor- ' /2[kcos(O/2)  + (k/2)sinOsin(3 0/2) + 

(�89 0 /2)s in2a]  - 2Blrs inOsin2a (20) 

The two strain-gage readings (ex'x')A and (ex,~,)8 and 
their respective positions rA, r8 and OA = 08 can be used 
to solve eq (20) for A0 and B1. To demonstrate this fact 
and to show the simplicity of this approach, consider 
again the aluminum specimen with v --= �89 and C~A = 
C~8 = OA = 08 = 60 deg. With these substitutions, eq (20) 
reduces to 

Eex,x,  = ( x /3 /2 )Aor  - ' 2 -  2B~r (21) 

Solving eq (21) for Ao or /(i  using data from gages A 
and B gives 

K1 = Ex/(8/3)TrrAr8 [(ex,x,)Ars--  (e~,~,)Br~] (22) 
r 8 3 / z  _ r A  3 /z  

I f  r8 = qrA, then eq (22) becomes 

= Ex/(87-3)TrrA [q(ex'x ')A -- (extx ' )S]  ( a 3 / 2 ~ q  1 ) Kz 

(23) 
The four-parameter solution should be employed with 
bodies where the crack tip is relatively close to the 
boundaries and/or loading points, and the strain field 
requires the fourth term in the series for a more accurate 
representation. 

Fig. 3- -Size of the valid region for ex,x, wi th cz = 60 
deg and ~ = 1/3 as a funct ion of the number of 
terms used in the series representat ion for a 
compact- tension specimen with h = 0.250 in. (6.3 
mm). (a) Two-percent accuracy, (b) f ive-percent 
accuracy, (c) ten-percent accuracy 

TABLE 1--ANGLES ~ AND 0 AS A FUNCTION OF 
POISSON'S RATIO, v 

v 0 (deg) ~ (deg) 

0.250 73.74 63.43 
0.300 65.16 61.29 
0.333 60.00 60.00 
0.400 50.76 57.69 
0.500 38.97 54.74 

384 �9 December 1987 



Case II1: Rec tangu la r  Roset te  

In some applications in materials testing, the fracture 
specimen is subjected to a temperature gradient and 
temperature compensation is important. In these instances 
it is advisable to employ a stacked rectangular rosette and 
to place the two gages in adjacent arms of a Wheatstone 
bridge to achieve temperature compensation. The output 
from the bridge gives the measurement of e / y , - e ~ , x ,  
which is shown in eq (13). It is evident from this equation 
that the coefficient of the Bo term will vanish if 

cos 2c~ = 0 or ~x = 7r/4 (24) 

With this restriction eq (13) reduces to 

~ ( Eyt y' -- Ext x ' ) = -- ( A o / 2 )  r- ' /=sin Ocos (3 0 / 2) + 

( A , / 2 ) r ~ / 2 s i n O c o s ( O / 2 )  + 2 B , r s i n O  (25) 

Examination of eq (25) shows that 0 cannot be selected 
to eliminate the coefficients of A, or B1 without eliminating 
the coefficient of Ao. This fact indicates that a single two- 
element rectangular rosette can only be employed in a 
two-parameter solution for Kx. 

To obtain the two-parameter solution, let 0 = 7r/2 and 
let A, = B, = 0. Equation (25) then gives 

2E 
K ,  - 1 +----~ (ey'y '  - ex,x, ) ~ (26) 

It is possible to obtain a three-parameter solution for 
Kz if the value of A , / A o  is known or can be estimated. 

71" 7r 
Again, for 0 =-~-  with c~ =-~-  and B~ = 0, eq (25) 

becomes 

IZ(ey, y, - ex' =' ) = ( x / 2 /  4)Aor- ' /2[1  + ( A 1 /  Ao) r ]  

(27) 

which can be rewritten as 

K t  = Kz=pp/[ l  + ( A , / A o ) r ]  (28) 

where Kz,pp is obtained from eq (26). 
An estimate of ( A , / A o )  can be obtained if two or more 

rosettes are positioned along the line O = 7r/2. For small 
values of r, eq (28) can be approximated by 

Kr = Kr:pp [1 - ( A , / A o ) r  + . . . .  ] (29) 

From the measured strain readings a plot of Kz.pp versus 
position is constructed and the limiting value of the slope 
taken, as illustrated in Fig. 4. From the plotted data, 
Kz = intercept, and ( A , / A o ) K z  = limiting slope. 

Strain-Gradient Effects 

The error due to strain-gradient effects can be shown 
by considering a single-element strain-gage positioned in 
region IIa with c~ = 0 = 60 deg. The gage senses the 
strain cx,x, given in eq (18). Its signal represents the 
average strain over its length which is given by 

~='~' I _ k~_~(~ Ir '~r- ' /2dr = 2 k i / (  ro'/~ + r Y 2 )  
ave r o  - -  ri 

(30) 

where k~ = K z / E ~ / ( 8 / 3 ) 7 r  and ro and ri are positions of 
the active gage element as shown in Fig. 5. The gage 
output 

~-xt xl  [ ave 

corresponds to the true strain ex,x, at a specific point r, 
along the gage length. It is evident from eqs (18) and (30) 
that 

r, = (ro 1'2 + rY2)~/4 (31) 

The position of the geometric center rc of the gage is 

r, = (ro + r i ) / 2  (32) 

Defining Ar as the distance between the geometric center 
of the gage, re, and the true strain point, .rt, gives 

A r  = r e - r ,  = ( r o - - 2 r o ' / ~ r / / 2 + r z ) / 4  (33) 

Noting that the gage length L is 

L = ro - ri (34) 

and combining eqs (32), (33) and (34), it is evident that 

( A r / r c )  = [ 1 - ~ / 1 - ( L / 2 r ~ ) ~ ] / 2  (35) 

where r~ > (L/2)  to avoid placing the gage over the crack 
tip. The results from eq (35) which s h o w ( A r / r c )  as a 

K I 

Q. 
g 

~ limiting slope 

r 

Fig. 4 - -Rose t te  data for Kzapp as a 
funct ion of posi t ion r showing the 
l imi t ing slope, and intercept Kz 

Y [ ~r /E)=== 60~ 

Fig. 5--Definition of radii associated wi th gage 
placement near a crack tip 
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function of ( r J L )  are presented in Fig. 6. The strain- 
gradient effect is a maximum (~r/r~ = 0.5) when the 
gage is placed as close as possible to the crack tip with 
r~ = - L / 2 .  This placement should be avoided in any 
event since all or part of the gage is in region I where the 
plane stress analysis presented here is not valid. For gages 
placed in region IIa, r J L  will probably exceed two and 
the effect of the strain gradient is much smaller. If a 
correction is required, r~ is determined from eq (31). This 
value is used in eq (19) to determine/(i.  In many applica- 
tions a correction may not be required, For example 
consider a gage with L = 0.030 in. (0.76 mm) positioned 
at r~ = 5L, and note from Fig. 6 that Ar/r~ = 0.0025. 
The correction Ar = 0.000375 in. (0.0095 mm) is much 
less than the accuracy which can be achieved in measuring 
r~. 

Experimental Verification 
A compact-tension specimen with W = 12 in. (305 mm) 

was fabricated from a 0.250-in. (6.35-mm) thick plate of 
aluminum 6061T6 with a machined crack of length 
a / W  = 0.5 to verify the theory. Three single-element 
strain gages with an active grid 0.030 x 0.030 in. (0.76 x 
0.76 ram) were positioned along the line c~ = 0 = 60 deg 
at r = 0.192, 0.483 and 0.783 in. (4.88, 12.27 and 19.89 
ram). Three two-element rectangular rosettes were positioned 
along the line 0 = 90 deg, all with c~ = 45 deg and r = 
0.233, 0.500 and 0.767 in. (5.92, 12.70, 19.48 ram). The 
specimen was loaded in 200-1b (890-N) increments. The 
strains were measured at each load increment. The strains 
ex,=, and ~,ytyt --text x, for the single element and rosettes 
are given in Table 2 for a load of 2000 lb (8900 N). 

The strains were then substituted into eq (19) or eq 
(28) and the experimental values of Kz determined. For 
the rosette calculations a value of ( A , / A o )  = - 1/~ was 
used? These experimental values were compared to a 
theoretical value of Kx which was computed from the 
ASTM formula. '~ Comparisons of the experimental and 
theoretical results shown in Table 2 indicate that the 
values of/s determined with single-element strain gages 
were consistently less than the theoretical value with 
differences ranging from 4.7 percent to 12.0 percent. It 

should also be noted that the largest difference occurred 
with data from gages close to the tip of the machined 
crack. 

There are two reasons which lead to this difference. 
Firstly, the crack geometry (its width and sharpness) 
deviated from the theoretical model and these differences 
affected the strain field with the largest differences 
occurring at gage positions close to the crack tip. Secondly, 
the very large strains predicted by fracture-mechanics 
theory as r approaches zero cannot be achieved; the 
material very near the crack tip yields and the stress is 
redistributed to maintain equilibrium. 

To account for the effects of the redistribution of the 
stress on the strain near the crack tip, Irwin's method of 
shifting the elastic field by the plastic-zone radius, ry, to 
account for the finite stress at the crack tip was used. The 
ry correction has two effects on the calculation of KI from 
strain-gage data. First, the angle, O, no longer has the 
required value to satisfy eq (17). Second, the radius 
changes. Both of these effects are illustrated in Fig. 7. 
From the figure it can be shown that 

f y  2 1/2 
r '  : r [1  - 2 (r_~_y)r cos0 + (-~) ] (36a) 

TABLE 2- -STRAIN-GAGE POSITIONS, STRAIN 
MEASUREMENT, Kx RESULTS AND THE DIFFERENCE 
BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS 
FOR 2000-1b (8900-N) LOAD 

Gage r Kz Difference* 
No. in.(mrn) e=,=, (x 10 -6) ks i~/ in . (MPa-~)  percent 

1 0.192 (4.88) 1533 19.8 (21.8) -12.0 
2 0.483 (12.27) 1038 21.3 (23.4) - 4.7 
3 0.783 (19.89) 813 21.2 (23.3) -5.0 

Rosette eyo, - ~=,x, Kz 
No. (x 10 -6) ksi~]J-~. (MPa~/m-) 

4 0.233 (5.92) 1555 22.1 (24.3) - 0.9 
5 0.500 (12.70) 1015 23.4 (25.7) 4.9 
6 0.767 (19.48) 727 23.2 (25.5) 4.0 

*Kx = 22.3 ksi-,/Tn. (24.5 MPa . ~ )  ASTM formula 

0,12 

0,10 

0 .08  

~-- 0 .06  

8 

0 0 4  

o 
N 

0,02 

o 

0 �84 

, (er �9 0,5 

O 2 3 4 5 

NORMALIZED GAGE POSITION ( r c / L )  

Fig. 6 - -No rma l i zed  shif t  of t rue gage pos i t ion 
Ar/rc as a funct ion of normal ized pos i t ion rolL 

Y 

~-~ gage 

t 

r I 

"~0' 

r,=a:K 
2rr/OysJ [ 

Fig. 7- -E f fec t  of the plast ic-zone correct ion on 
the coord inates of a s ingle-e lement  strain gage 
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and 

O' = tan- '  [. Sin 0 ] 

(cos 0 - r , )  
f 

(36b) 

For single-element gages initially satisfying eqs (16) and 
(17), eq (12) can be expressed in the form 

Ao 
2g~x,x, = (r),,--------Tf(O) (37) 

where f(O) is obtained from the leading term in eq (12). 
When the plastic-zone corrected coordinates r ' ,  0 '  are 
used, eq (12) becomes 

_ A o ~  ,) 
2/zex,x, (r ') ' 'if(O (38) 

where Ao c is the plastic-zone corrected estimate of Ao. 
Equating eqs (37) and (38) yields 

Ao, = Ao (~) t ,=  f(O) 
f(O ') (39) 

The combined effects of these errors can, to the first 
order, be expressed as a function of r / r  as shown in 
Fig. 8 for various values of Poisson's ratio. There is an 
additional correction due to the A,  term in eq (12); 
however, for single-element gages approximately satisfying 
eq (17), the contribution due to this term is less than 

TABLE 3--SINGLE-GAGE RESULTS CORRECTED FOR 
FINITE CRACK-TIP STRESSES 

Gage K,-Uncorrected K,-Corrected Error* 
No. ksi~m. (MPa-~-)  ksi i~fim. (MPa~m-) percent 

1 19.8 (21.7) 23.8 (26.1) 6.5 
2 21.3 (23.4) 22.7 (24.9) 1.8 
3 21.2 (23.3) 22.0 (24.2) - 1.5 

*Based on a theoretical value of K~ = 22.3 ksi ~/~.. (24.5 MPa x/m-), 
compared to Kz corrected, as determined from strain.gage 
measurements 

one percent even for the closest gage. The experimental 
results for single-element gages, corrected for finite-stress 
effects, are given in Table 3. 

For the case of rosette gages the correction for finite 
stresses at the crack tip cannot be expressed solely in 
terms of the ratio ry/r. Since there is no angle for which 
the A,  contribution to the K measurement can be neglected, 
the influence of  this term must be included in the finite 
stress corrections. An analysis of  eq (13) reveals that the 
correction factor is highly sensitive to estimates of A,  and 
r/r .  As a result, the correction of rosette results is not 
practical. 

Summary 
A general method for determining Kz with common 

commercially available strain gages has been developed in 
terms of the generalized Westergaard stress functions. A 
four-parameter solution for K~ was derived from these 
stress functions to give an experimental approach for 
measuring Kz with a small number of  strain gages. 

The area adjacent to the crack tip was divided into 
three regions. Region I very near the crack tip is invalid 
because of three-dimensional effects. Region III far from 
the crack tip is invalid because the truncated series solu- 
tion does not adequately describe the strain field. Region 
II located between regions I and III is a valid area where 
the truncated-series solution represents the strain field to a 
specified accuracy. The size and shape of  region II is 
presented for the compact-tension geometry. Region II 
was subdivided into regions IIa and IIb. Region l ib  was 
discarded because the strains in this area are too low for 
accurate measurement. 

Three specific cases are considered in reducing the four- 
parameter theory to a simple and practical-approach. It is 
shown that a single gage element with proper placement 
and orientation can be used to provide measurement of 
Kz while accounting for the effect of the first two non- 
singular terms. Two in-line single-element gages provide 
the data necessary to measure Kg with a four-parameter 
theory. The use of rosettes for the measurement of Kt is 
inherently less efficient since more gages are required; 
however, temperature compensation can be achieved on 
fracture specimens where thermal gradients are required 
on the specimen. The use of a single rosette gives the 

Fig. 8--Fini te crack-tip stress correction for 
single-element gages as a function of r y / r  for 
various values of Poisson's ratio 
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data necessary for a two-parameter determination of Kz. 
The use of two or more rosettes permits a three-parameter 
determination. A graphical technique is introduced for the 
rosette approach which permits the experimentalist to 
determine the need for a higher-order theory. This tech- 
nique is also applicable for single-element gages if they are 
placed along a radial line with 0 constant. 

The effect of  strain gradients is considered. A method is 
showr~ to locate the true position of the gage, eliminating 
error due to the strain gradient in the radial direction. It 
is also shown that the difference between the geometric 
center of the gage and the true strain position becomes 
small as r c / L  increases. 

Finally, experiments conducted to verify the theory 
show that Kz determined with single-element strain gages 
consistently underestimates the theoretical value, with the 
gages located close to the crack tip exhibiting the largest 
difference (12 percent). It is believed that these differences 
are due mainly to the crack-tip geometry of the model and 
localized yielding at the crack tip. A correction method 
has been developed to adjust the results for the effects of 
finite stresses at the crack tip. The results for Kz after 
correction show differences ranging from - 1 . 5  to 6.5 
percent between the theoretical and experimental values. 
Similarly, the results obtained with rosette gages show 
acceptable agreement with the theory, i.e., within five 
percent. 
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An Experimental Investigation of How Accurate 
Simply Supported Boundary Conditions Can Be 
Achieved in Compression Testing Panels 
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Discussion 
by Fok Wing Chau 

The paper discusses the design and construction of a 
test rig with the aim of simulating a simply supported 
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boundary condition for a panel under edge compression 
for both loaded and unloaded edges. Results of the 
experiments are interpreted by Southwell plot to verify the 
critical load of the plate when compared with the theoretical 
prediction. It is concluded that the theoretical simply 
supported boundary condition has probably not been 
fully achieved. 
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