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ON DISK-HOMOGENEOUS SYMMETRIC SPACES 

V 
OLDRICH KOWALSKI AND LIEVEN VANHECKE 

We prove a classification theorem for disk-homogeneous locally symmetric 
s p a c e s .  

I. INTRODUCTION 

The major problem in the theory of harmonic spaces (see [I],[6]) is the 

classification problem. To the present time, the following particular results 

are k~own : 

(A) Each harmonic space of dimension n ~ 4 is either locally Euclidean or 

locally isometric to a rank one synxnetric space (A. Lichnerowicz and A.G. Walker). 

(B) Each locally symmetric harmonic space is either locally Euclidean or 

locally isometric to a rank one symmetric space (A.J. Ledger). 

In our previous joint article [5] we proved an analogous theorem to (A) for 

the ball- and disk-homogeneous Riemannian manifolds, or for the strongly disk- 

homogeneous Riemannian manifolds respectively. 

In the present paper we consider the analogue of (B) for the disk-homoge- 

neous locally symmetric spaces. In particular we prove 

THEOREM I. Let M be a connected locally symmetric space of dimension > 3. Then 

H is disk-homogeneous up to order 6, i.e. the volume vX(r) of a disk satisfies 
m 
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~m(r) - ~0 -l(r){l + ar 2 ÷ br 4 + cr 6 + O(r 8)} 

with constant a,b and c, if and only if one of the following cases occurs : 

i) M is locally flat; 

ii) M is locally isometric to a rank one symmetric space; 

iii) M is locally isometric to the Lie group E8, the symmetric space E8/D8, 

the symmetric space E8(_24) , or to some of their noncompact duals. 

Further, we state the following 

CONJECTURE. If a connected locally symmetric space is disk-homogeneous up to or- 

der 8, then M is locally flat or locally isometric to a rank one symmetric 

space. 

This would prove the full analogue of (B). But such a program would 

necessarily involve very long calculations. 

Our theorem as well as the conjecture is based on a algebraic classifica- 

tion theorem by P. Carpenter, A. Gray and T.J. Willmore [2], in which the authors 

analyse in detail the meaning of the harmonicity conditions of small orders in the 

class of all synmmtric spaces. This theorem is in fact a deep extension of 

Ledger's theorem (B). (See the very end of this paper.) 

2. DISK-HOMOGENEOUS MANIFOLDS 

First, let us recall some basic concepts and formulas from [5]. Let (M,g) 

be a connected analytic Riemannian manifold of dimension n • 3. A geoclesic 

disk with center m and radius r, perpendicular to a unit tangent vector x E TmM, 

is defined as the set 

D_X(r) - {m' • M]d(m',m) • r} N eXPm({X}l) 

where eXPm : TmM ~ M is the exponential map a t  m. We always suppose r < i(m) 

where i(m) denotes the injectivity radius at m. Further, ~m(r) will denote 

the (n-l)-dimensfonal volume of DX(r). 
m 



form 

where  ~0 -1  

r a d i u s  r .  

(I) 
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In [5] we derived a power series expansion up to order 6 for vX(r) in the 
m 

V:(r) = ~o-l(r){l + A(x)r 2 + B(x)r 4 + C(x)r 6 + O(r8)}(m) 

(r) denotes the volume of a Euclidean ball of dimension n-l and with 

Here 

1 
A(x) - 6(n+l) (T - 20(x,x)) 

where p denotes the Ricci tensor and T the scalar curvature. The expression 

for B(x) was also given in full, and the expression for C(x) was determined 

in the case of an Einstein manifold. For our purposes, we shall need only 

special cases of these complicated formulas, namely the formula for B(x) in 

an Einstein manifold and the formula for C(x) in a locally symmetric Einstein 

space. 

(2) 

From theorem 2.1 in [5] we see easily that for an Einstein manifold we have 

I {-31RI 2 + 241RXl 2 + 201RXXl2} + constant 
B(x) = 360(n+l)(n+3) 

where  

(3) 
n 

2 
IRI 2 = ~ Rijk¢' " 

i,j,k,~=l 

(4) 

n 
IR x 12 = ~ R 2 

i,j.k=2 lijk' 

n 
2 

IRXXl2 = X Rlilj" 
i,j=2 

The summation in (3) is considered with respect to any orthonormal basis, and" the 

s.mmations in (4) are considered with respect to any adapted orthonormal basis 

{e I = x , e  2 . . . . .  en} .  
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The formula for C(x) will be given later. 

The manifold (M,g) is said to be disk-homogeneous (or strongly disk-homo- 

geneousj respectively) if the volume VX(r) depends only on the point m and 
m 

radius r (or only on the radius r, respectively). 

We see immediately that in a disk-homogeneous manifold the functions A(x), 

B(x) and C(x) are constant on each unit sphere SmM C TmM , m E M, and in a strong- 

ly disk-homogeneous manifold the functions A(x), B(x), C(x) are constant on the 

whole unit sphere bundle SM C TM. For a homogeneous space (in particular, for 

a symmetric space) "disk-homogeneous" is equivalent to "strongly disk-homo- 

geneous". 

Finally, let us recall that in a homogeneous space all the (scalar) 

Riemannian invariants are constants. 

3. FOURTH ORDER GEOMETRY 

The following is immediate from formulas (1) and (2). 

PROPOSITION I. Let (M,g) be a Riemannian manifold of dimension ~ 3. We have : 

a) A(x) is constant on the unit sphere bundle SM if and only if (M,g) is 

Einsteinian. 

b) If (M,g) is Einsteinian, then B(x) is constant on SM if and only if 

241RX| 2 + 20|RXXl2 - 3|RI 2 is constant on SM. 

We shall now prove the following 

LEMMA ]. Let (M,g) be an n-dimensional Einstein space and let a,b,c be real 

numbers such that (n-2)a + 3b ~ 0 and 2n(n+2)c + 3b + 2(n-l)a # 0. If the 

relation 

a0RXl 2 + blRXXD 2 + c0Rg 2 = constant 

holds on the unit sphere bundle SM c TM, then the symmetric bilinear form 
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n 

R(x,y) - [ RxijkRyij k 
i,j,k-I 

on ~2TM satisfies 

- _] lR|2g. 
n 

Moreover, IRI 2 is constant and |RX| 2 + 2|RX'Xl 2 is constant. 

REMARK. This generalizes proposition 6.57 from [l] which appears here as a 

special case for a - 0, b - I, c = 0. 

Proof. Suppose that 

a]RXl 2 + blRXX[ 2 + cflRfl 2 = d , d constant, 

holds on SM. We can rewrite this as the identity 

n n 
[ R 2 

i,j,k-2 xijk g(x,x) + b ~ R 2. - i,j. 2 xlxj yg(x'x)2' 

valid for all x E TmM , m E M, where y - d - c|RD 2. Using once more an adapted 
X 

orthonormal f r a m e  {e  I = i - ~ - , e 2  . . . .  , e n } ,  we o b t a i n  a t e n s o r i a l  i d e n t i t y  : 

n n 

R 2 ~(x,x) + (b-2a) Z R 2. 
i,j,k=l xijk " = 7g(x,x) 2. i,j-I x l x 3  

Now we use the linearization procedure. We get 

n n n 

a ~ R 2 
i,j,k-I xijk g(Y'Y) + 4a ~ RxijkRyijk g(x,y) + a ~ , R 2 i,j,k-l i,j,k 1 yijk g(x,x) 

+ (b-2a) i n } 2 ; R..R.. ÷2 z2 . ÷ 2 ~ R .R ,. 

i,j=l xlxj yly3 i,'=l xiy3 i,j=l xiy3 yixj 

= 2yg(x,x)g(y,y) + 4yg(x,y) 2. 
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Next we p u t  y - el, £-l,...,n, and sum up. Hence 

n n 
na ~ R 2 !k  R2 

i,j,k-I xijk + 4a i,j -I xfjk 
+ aiR12 g(x,x) + (b-2a) 

2 
T 2 ~ g(x,x) 

n 
+ 2 ~ R 2 

£ , j , k - I  x i j k  + L R2xi k - 
i , j , k - I  

2(n+2)y g(x,x) 

and 

R 2 = / 2 ( n + 2 )  
i,j,k=l xijk ! 

y - alRl 2 - 2(b-2a) g(x,x). 

This can be rewritten in the form 

{ ( n - 2 ) a  + 3b}R(x ,x )  - {B - [a + 2 ( n + 2 ) c ] l R I  
2 )g(x,x) 

where 8 is a constant. Hence R(x,x) = ~(m)g(x,x) at each point m E H, and by 

a new linearization we get 

R(x,y) - X(m)g(x,y). 

get 

On t h e  o t h e r  h a n d ,  p u t t i n g  a b o v e  x - eR, ~ = l , . . . , n ,  and  sununing up we 

{(n-2)a + 3b}IRl 2 - n{B - [a + 2(n+2)c]IRl 2) 

and  

IRI 2 = nX(m). 

Hence  

) a } l R i  2 1 IRI 2 {2n(n+2)c + 35 + 2 ( n - I  = nS,  t (m)  = n  " 

Thus IRI 2 i s  cons tan t  and P, = -] IRI2g.  
n 
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Finally, we see easily that 

R(x,x) - IRXl 2 + 2lRXXl2 

• 1 
on SM, and  h e n c e  lRXl 2 + 2lRXXl2 = n IRI2 " c o n s t a n t .  

PROPOSITION 2. Let (M,E) be an Einstein space and n ~ 3. Then B(x) is constant 

on SM if and only if |RXX| 2 (or |RX| 2, respectively) is constant on SM. 

P r o o f .  ( a )  L e t  B (x )  b e  a c o n s t a n t  on  SM. P u t t i n g  a - 24 ,  b - 20 a n d  c - - 3  

in lemma I. we obtain that IRI 2 and lRXl 2 + 2lRXXl2 are constant functions. 

Because 241RXl 2 + 20|HXXl2 - 3IRI 2 is also constant, we have proved that |Rx| 2 

and |EXX| 2 are constants. 

(b) Suppose [Rxx| 2 - constant, or |RXl 2 - constant, respectively. Using 

le~na ] for the case a - 0, h - I, c - 0, or for the case a - I, b - 0, c - 0 

respectively, we always deduce that the second quantity is constant, and also 

|RI 2 is constant. Hence B(x) is constant according to proposition I. (In the 

second case we used the inequality n ~ 2.) 

PROPOSITION 3. Let (M,E) be an Einstein manifold with n ~ 3 and such that 

[Hxx[ 2 - constantm or B(x) - constant on SM. Then (M,g) is either irreducible 

or locally Euclidean. 

P r o o f .  F o r  t h e  c a s e  IRXX| 2 = c o n s t a n t ,  a n  e a s y  p r o o f  i s  g i v e n  i n  | 3 , t h e o r e m  6 . 2 2 ]  

f o r  a gene l~z l  R i e m a n n l a n  m a n i f o l d .  I n  t h e  E i n s t e i n  c a s e ,  B ( x )  = c o n s t a n t  y i e l d s  

|RXX| 2 - c o n s t a n t ,  and  h e n c e  t h e  r e s u l t  f o l l o w s .  

I n  a c c o r d a n c e  w i t h  [ 2 ] ,  an  a n a l y t i c  R i e m a n n l a n  m a n i f o l d  (M,E) w i l l  b e  c a l l e d  

a 2-8te~n 8pu~e if (M,g) is Einsteinian and |RXX| 2 = constant on SM. We then 

h a v e  t h e  following 

THEOREM 2.  An a n a l y t i c  R i e m a n n l a n  m a n i f o l d  (M,g)  o f  d i m e n s i o n  n ~ 3 i s  s t r o n g l y  

d i s k - h o m o g e n e o u s  up t o  o r d e r  4 i f  and  o n l y  i f  i t  i s  a 2 - s t e i n  s p a c e .  I f  t h i s  i s  

t h e  c a s e ,  t h e n  (M,g) i s  i r r e d u c i b l e  o r  l o c a l l y  E u c l i d e a n .  
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4. SIXTH ORDER GEOMETRY 

We continue with the "sixth order geometry" of the geodesic disks. 

PROPOSITION 4. Let (M,g) be a locally symmetric Einstein space of dimension 

n ~ 3. Then 

7 
C(x) " [ aiCi(x) + ~|RX| 2 + ~nRXX| 2 + E, 

i=l 

where al,...,a7,v,~,e are absolute constants such that (a I + 2a 3 + &a 4 - 

- 2 a 5 )  # O, 1 5 ( a  1 + 2a  3 + 4 a  4 - 2a  5 )  - (8  + n ) ( a  2 + 4 a  3 + 8a  4 - 2 a  5 - a 6 )  # O, 

and the  q u a n t i t i e s  C l ( X ) , . . . , C T ( X )  a r e  g i v e n  w i t h  r e s p e c t  t o  any adapted 
orthonormal basis {e I = x,e2,...,e n} by the following formulas (with the 

summations ranging over the index set {2,3 .... ,n}) : 

Cl(X ) = [ RliljRljlkRlkl i, 

C2(x ) = [ RliljRlkl£Rikj~, 

C3(x ) - ~ R l i l j R i p q r R j p q r  ' 

c4(x) - ~. Sljk~RkzpqRljpq' 

C5(x) " [ Rljl£RlgpqRpqlj' 

C6(x) - [ RlkjgRkp£qRplqj, 

C7(x) = [ RlkjlRkplqRplqj " 

Proof. This is a special case of theorem 2.2 in [5]. (In the original theorem, 

the coefficients al,a2,...,a 6 have not been specified numerically, but the 

necessary calculation is only a tedious routine.) 
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PROPOSITION 5. Let Ci(x), i=l, .... 7 denote the functions defined by the same 

formulas as Ci(x) but with the sur~nations extended over the set {l,2,...,n}. 

Then 

~l(x)  - c ] (x ) ,  

~2(x) - C2(x), 

C3(x) = C3(x) + 2C1(x) + 2C5(x) - 2C7(x) ,  

C~(x) - C4(x) + 4CI(X) + 4C5(x), 

Cs(x) - C5(x)+ 2Cl(X), 

C6(x) - Ca(x) + C2(x) + 2C7(x), 

~7(x) - C7(x). 

Proof. The relations are obtained by direct calculation, using the first 

Bianchi identity in the case of C3(x). 

PROPOSITION 6. Let M be an irreducible locally syuxnetric manifold. Then the 

following identities hold : 

C3(x) = constant, 

C4(x) = constant, 

C6(x) - constant, 

~7(x) - 0, 

l ~5(x ) - ~ |RXXl 2 = 0. C2(x) + CT(X) + ~ 
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Proof. Because M is irreducible, any covariant~y constant and sylm,etric bilinear 

form B(x,y) on TM is a multiple of the metric tensor g at each point, and hence 

a constant multiple of g on M. In particular, we see that the quadratic forms 

C3(x), C4(x), C6(x) are constant functions on SM. 

Because (M,g) is locally sy~=netric, we have the following general iden- 

tity as a consequence of the Ricci identity : 

n 

(5) ~ {RabrcRcsuv + RabscRrcuv + RabucRrscv 
c=l 

+ RabvcRrsuc } = 0, 

s,b,r,s,u,v - 1,2,...,n. Making the substitutions a÷j, b÷l, c÷k, r÷l, 

s ÷p, u ÷ l, v ÷q and contracting (to the right) with the tensor Rlpjq from 

l to n, we obtain (using also the first Bianchi identity) the relation 

C7(x) - O. If we make in (5) the substitutions a÷l, b÷£, c÷k, r÷l, s÷i, 

u ÷~, v ÷j and contract the new expression (to the left) with the term Rlilj, 

we obtain the last formula. 

PROPOSITION 7. If M is a locally symmetric 2-stein space with n > 3, then the 

following holds on SM : 

C3(x ) , 2CI(X ) + 4C2(x ) + constant, 

C4(x ) , 4Cl(X ) + 8C2(x) + constant, 

Cs(x ) , -2Cl(X ) - 2C2(x) + constant, 

C6(x ) - -C2(x ) + constant, 

CT(X) - 0. 

Proof. M is irreducible or locally flat according to theorem 2, and |RXX| 2 - 

constant on SM. The assertion now follows from propositions 5 and 6. 

We shall now prove a sixth order analogue of 1emma I. 
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LEMMA 2. Let M be an n-d imens iona l  l o c a l l y  s y u ~ e t r i c  2 - s t e i n  space (n ~ 3) ,  and 

l e t  Q,B be r e a l  numbers such t h a t  15a - (8+n)B ~ O. I f  aCl(X) + BC2(x ) i s  con-  

s t a n t  on SM, then C2(x) i s  a l s o  c o n s t a n t  on SM. 

P r o o f .  Suppose M to  be i r r e d u c i b l e  ( the f l a t  case  i s  t r i v i a l ) .  

u , v , x , y , w , z  E TmM , m E M, put  

n 

" ~R .R.  R , Puvxywz uavD XDyC wcza 

n 

Tuvx7 " ~ Ri jk tRiukvRjx ty  ' 

where the  summation i s  taken wi th  r e s p e c t  to  any or thonormal  b a s i s .  

any x E SM, 

For any v e c t o r s  

Then, for 

Cl(x) = c l  (x) = Pxxxxxx' 

C2(x) - C2(x) - Txxxx 

F u r t h e r ,  put  

n 

Sxxxx = ~ a x l k j R x i t j  Rxkxt '  

n 

U ~ . ~  = - ~ Rxl jkRxj i tRxkxt .  

Then we have on SM ( t ak ing  i n t o  account  the Bianchi  i d e n t i t y )  : 

(6) 

C7(x) - Uzx:~j, 

~5(x) = 2(S u 4- Uxxxx ) .  

By p r o p o s i t i o n  6 we o b t a i n  

(7) U - O, T + S 
~ X X X X  X X X X  

Now, we can write our assumption in the form 

= ! IRXXl  2. 
I1 
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aP + 8T " 7 (on SM), 
XXXXXX XXXX 

or, equivalently, in the f o r m  

aPxxxxxx + 8Txxxxg(X,X) = 7g(x,x)3 (on TM) 

Next, we apply t h e  linearizatlon procedure and contraction as in the proof of 

lenm~a I. We obtain 

n 

~ (Piixxxx + Pixixxx 
i=l 

+ . . .  + Pxxxxli ) + B ( 8  + n ) T x x x x  

n 
+ B I (T.. + T. . 

i-I 11xx ixlx 
+ ... + Txxii)g(x,x) = Y(12 + 3n)g(x,x) 2. 

Here T(x,x) - Z (Tiixx + "'" + Txxii) is a covariantly constant quadratic form 

on TM, and since M is irreducible, T(x,x) is a constant multiple of g(x,x). 

By a lengthy but routine calculation we get that 

a I-~ |RXXD2 + 9 S x x x x  x x x x  5(x) I n)Txxxx --" + 6U + 3C + B(8 + " constant 

on SM. M is 2-stein and thus IRXXl2 is constant. From (6), (7) it follows 

that [-15a + (g+n)g ]T is constant on SM, which completes the proof. 
xxxx 

PROPOSITION 8. Let (M,g) be an irreducible locally syn,netric space with n ~ 3 

and satisfying the condition B(x) = constant. Then C(x) = constant if and only 

if Cl(X) = constant. 

Proof. According to propositions 2,4 and 7, C(x) is constant on SM if and only 

if aCl(X) + 8C2(x) is constant on SM, where 

a = a I + 2a 3 + 4a 4 - 2a 5, 

B " a 2 + 4 a  3 + 8 a  4 - 2 a  5 - a 6 .  

Also, we have a ~ 0, ]5a -(8+n)B ~ 0. Due to lena 2, this implies C2(x ) - 

constant, and hence Cl(X) = constant. 
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Conversely, using lemma 2 once more, we see that Cl(X) - constant implies 

C2(x ) constant, and hence C(x) - constant. 

5.  PROOF OF THEOREM I 

Let us denote by R x the endomorphism u ~R(x,u)x, x E SmM , u e TmM. 

In this denotation we have 

trace R - 0(x,x), trace R 2 - lRXXl 2, x E SM. 
x x 

Following [2] again, a locally symmetric space is called a k-a~in 8pace if 

trace R £ = constant on SM for £ - l,...,k. (Let us recall that the condition 
x 

trace R £ - constant is nothing but Ledger's harmonicity condition of order 2£ 
x 

for a locally symmetric space [6].) In particular we have trace R3x = Cl(x)" 

We have the following 

PROPOSITION 9. For a locally symmetric space (M,g) of dimension > 3, the follo- 

wing two Conditions are equivalent : 

i) All functions A(x), B(x), C(x) are constant on SM ; 

ii) (M,E) is a 3-stein space. 

Proof. The result follows immediately from theorem 2 and proposition 8. 

Now, our theorem l as well as the justification of our conjecture will fol- 

low from the following result by Carpenter, Gray and Willmore, which is a part 

of theorem l.l in [2] : Let M be a nonflat locally symmetric space. If M is 

4-stein, then it is locally isometric to a rank one synnetric space. Further, 

M is 3-stein but not 4-stein if and only if it is locally isometric to one of 

the following symmetric spaces : the Lie group E8, the symmetric space E8/D8, 

the symmetric space E8(_24) , or the noncompact dual of one of these spaces. 
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