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ON DISK-HOMOGENEOUS SYMMETRIC SPACES

0LD§ICH KOWALSKI AND LIEVEN VANHECKE

We prove a classification theorem for disk-homogeneous locally symmetric
spaces.

1. INTRODUCTION

The major problem in the theory of harmonic spaces (see [1],{6]) is the
classification problem. To the present time, the following particular results

are known :

(A) Each harmonic space of dimension n < 4 is either locally Euclidean or

locally isometric to a rank one symmetric space (A. Lichnerowicz and A.G. Walker).

(B) Each locally symmetric harmonic space is either locally Euclidean or

locally isometric to a rank one symmetric space (A.J. Ledger).

In our previous joint article [5] we proved an analogous theorem to (A) for
the ball- and disk-homogeneous Riemannian manifolds, or for the strongly disk-

homogeneous Riemannian manifolds respectively.

In the present paper we consider the analogue of (B) for the disk-homoge-

neous locally symmetric spaces. In particular we prove

THEOREM 1. Let M be a connected locally symmetric space of dimension » 3. Then

M is disk-homogeneous up to order 6, i.e. the volume V:(r) of a disk satisfies
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6

V;(r) - Vg-l(r){l + ar2 + bra + cr 4+ 0(r8)}

with constant a,b and c, if and only if one of the following cases occurs :
i) M is locally flat;
ii) M is locally isometric to a rank one symmetric space;
iii) M is locally isometric to the Lie group Es, the symmetric space E8/D8,

the symmetric space Es(-za)’ or to some of their noncompact duals.
Further, we state the following

CONJECTURE. If a connected locally symmetric space is disk-homogeneous up to or-
der 8, then M is locally flat or locally isometric to a rank one symmetric

space.

This would prove the full analogue of (B). But such a program would

necessarily involve very long calculations.

Our theorem as well as the conjecture is based on a algebraic classifica-
tion theorem by P. Carpenter, A. Gray and T.J. Willmore [2], in which the authors
analyse in detail the meaning of the harmomicity conditions of small orders in the
class of all symmetric spaces. This theorem is in fact a deep extemnsion of

Ledger's theorem (B). (See the very end of this paper.)

2. DISK-HOMOGENEOUS MANIFOLDS

First, let us recall some basic concepts and formulas from [5]. Let (M,g)
be a connected analytic Riemannian manifold of dimension n > 3. A geodesic
digk with center m and radius r, perpendicular to a unit tangent vector x € TmM,

is defined as the set
D:(r) = {m' € M|d(n’,m) < T} N expm({x}l)
where exp ¢ TmM -+ M is the exponential map at m. We always suppose r < i(m)

where i(m) denotes the injectivity radius at m. Further, V:(r) will denote

the (n-1)-dimensional volume of D;(r).
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In [5] we derived a power series expansion up to order 6 for V:(r) in the

form
Vi) = BT + @+ Bort v cor® + 01w

where Vg—l(r) denotes the volume of a Euclidean ball of dimension n-1 and with

radius r. Here

M AG) = - g (1 - 20(x,%))

where p denotes the Ricci tensor and T the scalar curvature. The expression
for B(x) was 8also given in full, and the expression for C(x) was determined
in the case of an Einstein manifold. For our purposes, we shall need only
special cases of these complicated formulas, namely the formula for B(x) in
an Einstein manifold and the formula for C(x) in a locally symmetric Einstein

space.

From theorem 2.] in [5] we see easily that for an Einstein manifold we have

(2) B(x) = 3-6_0(1:1—11)(73) {“3|R|2 + 24|Rx|2 + 20|Rn|2} + constant
where
n
2 2
(3) IR1* = ) S
i,j,ket=l ikt
n
x,2 2
R*1°= } R...,
i’j,k'z 11jk
(4) '
n
T eal HETD) Rf“..
i,j=2 J

The summation in (3) is considered with respect to any orthonormal basis, and the
sumnations in (4) are counsidered with respect to any adapted orthonormal basis

{el - x,ez,...,en}.
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The formula for C(x) will be given later.

The manifold (M,g) is said to be disk-homogeneous (or strongly disk—homo-
geneous, respectively) if the volume V:(r) depends only on the point m and

radius r (or only on the radius r, respectively).

We see immediately that in a disk-homogeneous manifold the functions A(x),
B(x) and C(x) are constant on each unit sphere SmM C TmM, m € M, and in a strong-
ly disk-homogeneous manifold the functions A(x), B(x), C(x) are constant on the
whole unit sphere bundle SM C TM. For a homogeneous space (in particular, for
a symmetric space) "disk-homogeneous" is equivalent to "strongly disk-homo-

geneous”'.

Finally, let us recall that in a homogeneous space all the (scalar)

Riemannian invariants are constants.

3. FOURTH ORDER GEOMETRY

The following is immediate from formulas (1) and (2).

PROPOSITION 1. Let (M,g) be a Riemannian manifold of dimension > 3. We have :
a) A(x) is constant on the unit sphere bundle SM if and only if (M,g) is
Einsteinian.
b) If (M,g) is Einsteinian, then B(x) is constant on SM if and only if
2% IR*1% + 20|Rxxl2 - 3IRI2 is constant on SM.

We shall now prove the following

LEMMA 1. Let (M,g) be an n~dimensional Einstein space and let a,b,c be real
numbers such that (n-2)a + 3b # 0 and 2n(n+2)c + 3b + 2(n-1)a # 0. If the

relation

aIlel2 + blex[I2 + cﬂRﬂ2 = constant

holds on the unit sphere bundle SM C TM, then the symmetric bilinear form
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. n
R(x,y) = Z
i,3,k=1

inijyijk
2 s ps
on ®°TM satisfies

. 1 2
R ; lRl g.

. Xxx,2 .
Moreover, IRI2 is constant and IRxI2 + 2IR"1” is constant.

REMARK. This generalizes proposition 6.57 from [1] which appears here as a

special case for a = 0, b= 1, ¢ = 0,
Proof. Suppose that

2

aIRxI2 + bIR®¥p< + clRﬂ2 = d , d constant,

holds on SM. We can rewrite this as the identity

‘2‘ 2 ‘Z‘ 2 2
a RC... g(x,x) +b R, .= vglx,x)",
i,j,k=2 xijk i,j=2 xX1x]

valid for all x € TmM, m € M, where vy = d - cIRHZ. Using once more an adapted

X . . . .
orthonormal frame {e1 = T;F’e2""’en}’ we obtain a tensorial identity :

s 2 T2 2
a .z injk g(x,x) + (b-2a) ) z inxj = yeg(x,x)°.
lsJ!k-l 1,]'1
Now we use the linearization procedure. We get
n 2 n n 2
a ) RC... g(y,y) + 4a ) R...R .. g(x,y) +a 7 R™. .. g(x,x)
1,5 k=1 x1ijk i,5,k=1 xijk yijk i, k=1 yijk
n n 2 n
+ (b-2a) {2} R Rogoe + 2 ¥ R oo+ 2 3 R R b=
i,j=1 3 y1iyl i,j=1 y3 i,j=1 Yl ¥ix)

= 2 yg(x,x)g(y,y) + 4Yg(x,y)2-
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Next we put y = e, i=],...,n, and sum up. Hence

na b 2 + 4a E R2 + aIRI2 g(x,x) + (b-2a) {2 Ii g(x,x)
. - ’ ,
i3, k=1 xijk i,j,k=1 xijk n2
E 2 E 2
+ 2 R°.., + RO, 1= 2(n+2)y g(x,x)
TR IS Rt LI RS
and
n 2 2 2
(n-2)a + 3b) §  RI. = {2(n+2)y - alRI® - 2(b-2a) S5} g(x,x).
. s xijk 2
i, j, k=1 n

This can be rewritten in the form
((n-2)8 + 3bIR(x,x) = {B - [a + 2(n+2)c JIRI }g(x,%)

where g is a constant. Hence R(x,x) = a(m)g(x,x) at each point m € M, and by

a new linearization we get
R(x,y) = A(m)g(x,y).

On the other hand, putting above x = e,, £ =1,...,n, and summing up we

2
get
((n-2)a + 3b}IRIZ = n(g - [a + 2(n+2)c]IRI?}
and
IRIZ = na(m).
Hence

{(2n(n+2)c + 3b + 2(n-1)a}IR1® = ng, A(m) = % IRIZ,

Thus IRI2 is constant and R = % IRIZg.
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Finally, we see easily that

R(x,x) = IR¥1Z + 21792

on SM, and hence IRX1Z + 2R™)2

-1 IRI2 = constant.

n
PROPOSITION 2. Let (M,g) be an Einstein space and n > 3. Then B(x) is constant
on SM if and only if IRxxI2 (or IRxlz, respectively) is constant on SM.

Proof. (a) Let B(x) be a constant on SM. Putting a = 24, b = 20 and ¢ = -3

2 xx, 2

in lemma l. we obtain that IRI" and leI2 + 2IR"71° are constant functions.

Because 24|Rxl2 + 20|R.xxl2 - 3IRI2 is also constant, we have proved that IRxI2

and lexl2 are constants.

(b) Suppose 'Rxx|2 = constant, or |Rx|2 = constant, respectively. Using
lemma 1 for the case a = 0, b= 1, ¢ = 0, or for the case a =1, b =0, c =0
respectively, we always deduce that the second quantity is constant, and also
IRI2 is constant. Hence B(x) is constant according to proposition 1. (In the

second case we used the inequality n # 2.)

PROPOSITION 3. Let (M,g) be an Einstein manifold with n » 3 and such that

IRxxl2 = constant, or B(x) = constant on SM. Then (M,g) is either irreducible

or locally Euclidean.

Proof. For the case |Rxx|2 = constant, an easy proof is given in [3,theorem 6.22]
for a general Riemannian manifold. In the Einstein case, B(x) = constant yields
lele = constant, and hence the result follows.

In accordance with [2], an analytic Riemannian manifold (M,g) will be called
a 2-gtein space if (M,g) is Einsteinian and IRxxl2 = constant on SM. We then

have the following

THEOREM 2. An analytic Riewannian manifold (M,g) of dimension n > 3 is strougly
disk~homogeneous up to order 4 if and only if it is a 2-stein space. If this is

the case, then (M,g) is irreducible or locally Euclidean.
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4. SIXTH ORDER GEOMETRY

We continue with the "sixth order geometry" of the geodesic disks.

PROPOSITION 4. Let (M,g) be a locally symmetric Einstein space of dimension
n > 3. Then _
I L% 2 XX 2
C(x) = z aici(x) + RIS + IR + ¢,
i=]

where al,...,a7,u,v,e are absolute constants such that (al + 2a3 + 4a4 -

- 2&5) ¥ 0, lS(al + Za3 + 434 - Zas) - (8 + n)(a2 + 433 5 a6) ¥ 0,

and the quantities C](x),...,C7(x) are given with respect to any adapted

+ 8a4 ~ 2a

orthonormal basis {e1 = x,e ..,en} by the following formulas (with the

2"
summations ranging over the index set {2,3,...,n})

€10 = L Ryg15R 5 iRk

Co) = T Rys1iRie Rinj g
C3(x) = Z RliljRipququr’
€ = I RyjicoRuapatiipg?

C5() = I Ry51 R 1nqRoql

C6(x) -1 lejlkkpzqkplqj'

€30 = I Ryyi1Rep1qRp1qit

Proof. This is a special case of theorem 2.2 in [5]. (In the original theorem,
the coefficients 8 58y5000580 havenot been specified numerically, but the

necessary calculation is only a tedious routine.)
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PROPOSITION 5. Let Ei(x), i=1,.,.,7 denote the functions defined by the same
formulas as ci(x) but with the summations extended over the set {1,2,...,n}.
Then

C,(x) = C,(x),

Cy(x) = C,y(x),

Cy(x) = C5(x) + 2C, (x) + 2Cg(x) - 2C,(x),

Ea(x) - CA(X) + 4CI(X) + 4C(x),

Es(x) = Co(x) + 2¢, (x),

Ce(x) = Co(x) + Cy(x) + 2C,(x),

C,(x) = Ch(x).

Proof. The relations are obtained by direct calculation, using the first

Bianchi identity in the case of 53(x).

PROPOSITION 6. Let M be an irreducible locally symmetric manifold. Then the

following identities hold :

63(x) = constant,
éa(x) = constant,

Eb(x) = constant,

(@]
~
~
¥
~
(]

o,
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Proof. Because M is irreducible, any covariantly constant and symmetric bilinear
form B(x,y) on TM is a multiple of the metric tensor g at each point, and hence
a constant multiple of g on M. In particular, we see that the quadratic forms
53(x), Ea(x), Ea(x) are constant functions on SM.

Because (M,g) is locally symmetric, we have the following general iden-
tity as a consequence of the Ricci identity :
n

(5) I (®r

c=1

} - 0'

R + R R + R R + R R
abrc csuv absc rcuv abuc rscv abve rsuc

a,b,r,s,u,v = 1,2,...,n. Making the substitutions a+j, b+1, c+k, r~1,

s +p, u+1, v+q and contracting (to the right) with the tensor R]qu from

1 to n, we obtain (using also the first Bianchi identity) the relation

57(x) = 0. If we make in (5) the substitutions a-+1, b+2, c+k, r+1, s+i,
u+2, v+j and contract the new expression (to the left) with the term Rlilj’
we obtain the last formula.

PROPOSITION 7. 1f M is a locally symmetric 2-stein space with n > 3, then the
following holds on SM :

C3(x) - ZCl(x) + 4C2(x) + constant,
CA(X) = Acl(x) + BCz(x) + constant,
Cs(x) = —ZCl(x) - 2C2(x) + constant,

C6(X) - -Cz(x) + constant,

C7(x) 0.

Proof. M is irreducible or locally flat according to theorem 2, and IRxxl2 -

constant on SM. The assertion now follows from propositions 5 and 6.

We shall now prove a sixth order analogue of lemma 1.



OLDi/(ICH KOWALSKI - LIEVEN VANHECKE 101

LEMMA 2. Let M be an n-dimensional locally symmetric 2-stein space (n > 3), and
let a,B be real numbers such that 15a - (8+n)8 ¢ 0. If acl(x) + Bcz(x) is con-

stant on SM, then Cz(x) is also constant on SM.

Proof. Suppose M to be irreducible (the flat case is trivial). For any vectors

u,v,x,y,w,z2 € T M, m € M, put

R

Puvxywz uavaxbchwcza'

—t1

1k iukvRixey’

n
T = IR
uvxy 1

where the summation is taken with respect to any orthonormal basis. Then, for
any x € SM,

C (x) =C
Cz(x) =C (x) =T .
Further, put
n .
Syxxx ® % Rkikjnxilijkxl'
n
xXXxXx § injkkxjizkxkxz'

Then we have on SM (taking into account the Bianchi identity) :
(6)

By proposition 6 we obtain

- - IR 2
(n Uxxxx 0, Txxxx * sxxxx n IR

Now, we can write our assumption in the form
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quxxxxx * BTxxxx =v (onsM,

or, equivalently, in the form

3
P xoonx ¥ BTxxxxg(x,x) vg(x,x)” (on TM).

Next, we apply the linearization procedure and contraction as in the proof of

lemma 1. We obtain

n

u-z P

.. + P, . + ... +P ..) + B(8 + n)T
1-1 11IXXXX 1X1XXX XXXX11 XX

XX

n
+8 L (T, +T

2
1=l ax ¥ Tixix o ¥ Texii)806%) = Y12+ 3n)g(x,x)%
Here T(x,x) = } (Tiig ¥ oo ¥ Txxii) is a covariantly constant quadratic form

on TM, and since M is irreducible, T(x,x) is a constant multiple of g(x,x).

By a lengthy but routine calculation we get that

a {% anlz + 9sxxxx + 6Umx + 365()() + g(8 + n)Txxxx = constant

on SM. M is 2-stein and thus lexI2 is constant. From (6), (7) it follows

that [ ~15a + (8+n)B ] T is constant on SM, which completes the proof.

PROPOSITION 8. Let (M,g) be an irreducible locally symmetric space with n > 3
and satisfying the condition B(x) = constant. Then C(x) = constant if and only

if Cl(x) = constant.

Proof. According to propositions 2,4 and 7, C(x) is constant on SM if and only

if aC](x) + Bcz(x) is constant on SM, where

a=a, + 2a, + 4a, - 2a

1 3 4 5°

B=a, 6 + 4a, + 8a, - 2a, -

2 3 4 5~ 3

Also, we have o ¥ 0O, 150 -(8+n)8 # O. Due to lemma 2, this implies Cz(x) =

constant, and hence C](x) = constant.
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Conversely, using lemma 2 once more, we see that C‘(x) = constant implies

Cz(x) constant, and hence C(x) = constant.

5. PROOF OF THEOREM 1

Let us denote by Rx the endomorphism u — R(x,u)x, x € SmM, ue€ TmH.
In this denotation we have

trace Rx = p(x,x), trace Ri = IRxxlz, x € SM.

Following [2] again, a locally symmetric space is called a k-stein space if
trace R: = constant on SM for £ = 1,...,k. (Let us recall that the condition
trace Ri = constant is nothing but Ledger's harmonicity condition of order 2%

for a locally symmetric space [6].) 1In particular we have trace Ri = Cl(x).
We have the following N

PROPOSITION 9. For a locally symmetric space (M,g) of dimension > 3, the follo-
wing two conditions are equivalent :
i) All functions A(x), B(x), C(x) are constant on SM;

ii) (M,g) is a 3-stein space.

Proof. The result follows immediately from theorem 2 and proposition 8.

Now, our theorem 1 as well as the justification of our conjecture will fol-
low from the following result by Carpenter, Gray and Willmore, which is a part
of theorem 1.1 in [2] : Let M be a nonflat locally symmetric space. If M is
4-gtein, then it is locally isometric to a rank one symmetric space. Further,
M is 3-stein but not 4-stein if and only if it is locally isometric to one of
the following symmetric spaces : the Lie group E8’ the symmetric space E8/D8,

the symmetric space E8(-24)’ or the noncompact dual of one of these spaces.
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