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ABSTRACT 

Heterocyst spacing in blue-green bacteria is widely assumed 
to be due to a diffusible inhibitor. The inhibitor, a 
nitrogen-rich compound, probably glutamine, is produced via 
the N2-fixing enzymes of the heterocyst and in turn serves to 
suppress the induction of these enzymes and of the differen- 
tiation of vegetative cells to heterocysts. This simple 
morphogenetic mechanism operating in growing cellular fila- 
ments of Anabuena species is investigated on the basis of a 
continuous and a discrete cellular model, as well as by cell- 
by-cell simulation of the inhibitor transport. The resulting 
distances between heterocysts and kinetics of their production 
are compared with observations, and the values of physical 
parameters are estimated from the models. 

I. INTRODUCTION 

The regular distribution pattern of heterocysts in fila- 

ments of Anabaena and other blue-green bacteria has been the 

subject of many experimental and theoretical investigations 

(recently reviewed by Both et al., 1984). This pattern is 

characterized by a well-defined average number of vegetative 

cells separating the heterocysts (e.g. in Anabaena catenula 

the average distance is 10 cells, cf. Mitchison et al., 1976). 

The development of such a pattern in these prokaryonts may 

be regulated by mechanisms which are basic to the morpho- 

genetic processes of higher organisms. Furthermore, there are 
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indications that the underlying mechanism in blue-green 

bacteria is based on the transport of small molecules from 

cell to cell, a process which can be easily described in 

physico-chemical terms and which lends itself to possible 

measurements and experiments. A time sequence of heterocyst 

development is shown in Figure I. 

Since the heterocysts are known to possess N2-fixing 

enzymes while the vegetative cells of the filament do not, it 

has been assumed for a long time that the movement of nitro- 

geneous compounds from heterocysts to vegetative cells is 

responsible for the regulation of heterocyst distances. 

? ~ 

Figure I. Heterocyst development in A n a b a e n a  c a t e n u L a  drawn 
after photographs of a filament by Mitchison & Wilcox (1972). 
The filament was photographed at 9, 6, 10, 15, and 21 hrs. 
Magnification is 800x. The arrows point from a smaller sister 
cell in the second row to stages of proheterocysts in the 
subsequent rows. 
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Fogg (1949) already referred to gradients of nitrogeneous 

substances. Wolk et al. (1976) suggested that glutamine is 

involved and Thomas et al. (1977) provided experimental 

evidence for the movement of glutamine from heterocysts to 

vegetative cells. It is also known that glutamine is produced 

in heterocysts from NH4 + and glutamate, which in turn comes 

very likely from glucose supplied by vegetative cells. But 

there is no general agreement on glutamine having a primary 

role in the induction of heterocysts. It is possible that 

another compound (e.g. thioredoxin) is responsible (Bothe et 

al., 1984). In any case it has been convincingly demonstrated 

by Wolk (1967) and Wilcox et al. (1973) that heterocysts are 

needed to regulate the differentiation of vegetative cells, 

and furthermore by Reddy & Talpasayi (1974) and Wolk & Quine 

(1975) that this regulation is not due to the destruction, by 

heterocysts, of an inducer produced by vegetative cells. The 

question remains whether a low level of glutamine or a low N/C 

ratio in a vegetative cell initiates the differentiation of 

the cell into a heterocyst. 

Why should a low concentration of glutamine or one of its 

derivatives result in the derepression of genes for the 

morphogenesis of heterocysts? It has been suggested that the 

genes controlling N2-fixation and the heterocyst morphogenesis 

are linked in a single operon (Singh et al., 1973) and that 

the transcription of this operon is induced by glutamine 

synthetase (Streicher et al., 1974) although the latter 

evidence does not come from work on blue-green bacteria. 

Only vegetative cells can divide. At each division, two 

daughter cells are produced which are unequal in size. The 

cell cycle lengths are different, in A. cylindrica the pro- 

portion of cycle lengths of small to large sister cells is 

about 4 to 5 (Mitchison & Wilcox, 1972). Heterocysts arise 

only from small sister cells presumably when the concentration 

of an inhibitor (glutamine or another nitrogen compound pro- 

duced in the heterocysts) falls below a threshold value. This 

compound is assumed to be transported, actively or passively, 

from cell to cell along the filament and consequently a 
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concentration gradient arises on either side of a heterocyst. 

As the distance between two existing heterocysts increases as 

a result of cell divisions, in the region between them a 

concentration minimum becomes lower than the threshold and the 

differentiation of a new heterocyst begins. 

The simplest assumption for the transport process is that 

it takes place by diffusion according to Fick's law. This 

assumption has been compared with other possible mechanisms 

(such as an undamped domino effect) by Wolk & Quine (1975) and 

has been found to be the most likely one. 

A morphogenetic mechanism for these organisms has been 

modelled on the basis of a simple diffusion process in a 

homogeneous medium contained in a cylinder (Wilcox et al., 

1973). If the cylinder is not expanding in length, then an 

analytical solution can be found for the concentration as 

function of position and time of the inhibitor. For an 

expanding cylinder one has to use numerical methods. The basic 

weakness of this approach is that it is difficult to bring it 

into direct connection with the underlying molecular 

mechanism, namely with the derepression of genes in certain 

cells. A model based on diffusion taking place between 

discrete cells appears therefore preferable to us. 

In this paper we investigate and compare both formulations 

of the problem, and carry out a computer simulation of this 

morphogenetic process with the help of a cellular array 

generating program. While in this work the concentration of 

only a single compound is calculated by the continuous and 

discrete models, it is possible to extend our method to a 

number of different compounds present in each cell as it 

becomes necessary by further biochemical data on the molecular 

basis of heterocyst induction (Golden et al., 1985). 

2. THE CONTINUOUS MODEL 

We assume that the inhibitor is present at a constant 

concentration in the heterocysts (Ch). The kinetics of the 

inhibitor movement in the filament is assumed to be a 
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diffusion process with the modified Fick's law as the basic 

equation: 

8c(x,t) = D ~2c(x't) - k.c(x,t) 
~t ~x 2 

The last term in this equation is a linear decay term. The 

decay of the inhibitor corresponds to the metabolic degrada- 

tion of glutamine as the major nitrogen source in vegetative 

cells. In this model the diffusion constant is construed as an 

average value for diffusion taking place partly through cell 

walls and partly through the cytoplasm. 

In addition, this pattern generating process depends also 

on the cycle lengths of vegetative cells. We assume a Gaussian 

distribution of cycle lengths with a given average value and 

standard deviation. 

We consider first the steady state situation for the 

inhibitor concentration between two heterocysts. 

A steady state can occur only temporarily while the 

distance between heterocysts remains constant, i.e., while no 

cell divisions are taking place in this region. Thus a 

prerequisite of the occurrence of a steady state is that 

diffusion is fast with respect to the growth of the filament. 

In steady state 

~c(x,t) = 0, and therefore D ~2c(x't) - k.c(x,t) = 0 (I) 
~t ~x 2 

This differential equation is 

solved as follows. Assume that 

independent of time and can be 

e(x) = e Ax (2) 

is a solution. Then by substitution into (1) we obtain 

D.A 2 . e lx - k.e Ax = 0 (3) 

Ax A2 e (D - k) = 0 (4) 

The roots of (4) are 
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~I = //kD and ~2 = - /~ 

The general solution of (2) is a linear combination of 

c(x) = ekl x and c(x) = el2 x, namely 

k~qD.x -~k/D.x 
c(x) = R.e + S.e (5) 

The variable x stands for the value of the distance between 

points, and is measured in metric units. 

One of the constraints is that the concentration curve 

between two identical sources should be symmetric around a 

certain x value: c(x+a) = c(x-a). We assign the value x=0 to 

the point around which the steady state curve is symmetric. 

This yields that R=S, from which we obtain 

/~75. x -/~75.x 
c(x) = R(e + e ) (6) 

Define the concentration at x=0 as c O . Then R = c0/2 and 

c(x) = ½ c0(e + e ) (7) 

We see that c(x) is the sum of two functions: 

/~75.x -/~75.x 
C1(X) = ½ c0.e and c2(x) =½ c0e 

This is shown in Figure 2. 

Figure 2. Concentration curves c I and c 2 as calculated on the 
basis of the continuous model. 
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If x is negative and large enough then e/~7~'x can be 

neglected with respect to e -~K/u'x , and vice versa. By 

changing the coordinate system in such a way that x=0 at a 

heterocyst, where the concentration of the inhibitor is Ch, we 

obtain the solution of (6) for x>0 as 

-/k-TD.x 
c(x) = ch.e (8) 

and the solution for x<0 

/~TD.x 
c(x) = ch.e (9) 

The distance of a heterocyst from the minimum point follows 

then from (8) 

I Ch 
x - In-- (10) 
s ~k/D Co 

Thus there is a logarithmic relationship of the distance 

between the place of minimum concentration and the source on 

one hand, and Ch/C O on the other hand. 

Equation (10) is important because it enables us to 

determine the initial parameters in simulations of growing 

filaments. 

If the concentration at the minimum equals the threshold 

concentration, so that c0=ct, then the distance Xs=X' where x' 

is the critical distance associated with the induction of the 

next heterocyst. 

Let us assume that the filament is growing exponentially 

everywhere at the same rate. This kind of growth can be 

characterized by letting the differential equation 

dx 
d--t = rx (11) 

apply to the entire length of the filament. 

The movement of a point on the filament as function of time 

is then 

x(t) = x(Q) e rt (12) 
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If diffusion takes place faster than the expansion of the 

filament, an assumption which we discuss below, then steady 

state concentration can be reached in the filament while it is 

growing in length. 

If x' is the distance between two adjacent heterocysts at 

the time when one of the heterocysts has just been formed, 

then when at a later time t' a new heterocyst arises between 

these two, its distance to each of the previous ones will 

again be x'. Thus a new heterocyst arises when the distance 

between two existing heterocysts doubles. This can be incorpo- 

rated in the formula by stating that 

rt' 
2x" = x'.e 

It follows that 

t' = In 2 
r 

We see that t" is actually the doubling time for filament 

length, and it is in our model identical to the average length 

of time necessary for a cell to double (t d or cell cycle time) 

for which it also holds that 

in 2 (13) 
td = r 

The average distance x' between heterocysts is obtained from 

equation (10) by substituting in it the threshold concentra- 

tion c t . 

c h 
I in -- (14) 

xt - /k-7~ ct 

and observing that x' = 2x t. 

We see that in (14) the distance x t is independent of the 

cell cycle time under the condition that diffusion is faster 

than expansion. Furthermore x t is a function of two parameters 

only: /~]5 and Ch/C t. 

We can give an estimate of the lower boundary for the cell 

cycle time t d above which steady state conditions prevail (see 

the last section). This estimate comes from the expression 
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for reaching a certain concentration c in the case of one- 

dimensional diffusion and decay in a semi-infinite medium with 

a single source (Crank, 1970, p.130): 

c 
_~x = ½ exp (-x ~7D) erfc ( x k~t) + 
Ch 2~ 

+ ½ exp (x ~7D) erfc ( x + k~t) 
2~-6 

(15) 

The limit for t÷~ of equation (15) is our previous expression 

(9). 

From (15) we can calculate the time necessary to reach 99% 

of the equilibrium concentration everywhere in a semi-infinite 

medium and verify this calculation with simulation experi- 

ments. Such a calculation is similar to the one presented by 

Crick (1970) in which the time is estimated which is needed to 

come within I% of equilibrium concentrations in source-sink 

diffusion systems without decay for embryonic gradient 

mechanisms. His formula is derivable from the following 

equation of Crank (1970, p.19). 

c 
x x 

= erfc 
Ch 2/Dt 

which holds for diffusion in semi-infinite medium with source 

kept at constant concentration and the initial concentration 

being zero throughout the medium. 

3. DISCRETE MODEL 

In a cellular filament we are dealing with two transport 

processes: the transport in the cell itself, and the diffusion 

through the cell walls and membranes. The concentration 

gradients are therefore primarily present over the cell walls 

and membranes. 

We discretize the previous continuous diffusion-decay model 

in the following way. Let us consider 3 neighbourlng cells 

with concentration Cx_1, c x and Cx+ I. Here x is an integer 

variable standing for the number of cell lengths. 
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The concentration gradients between them are (if the length 

of each cell is equal to AI): 

Cx_ I - c x c x - Cx+ I 

g(x-1 ,x) = A1 ' g(x,x+1 ) = Al 

The derivative of the gradient at cell x is then 

gx g(x-l,x) -g(x,x+1) 
x Al 

By discretizing the modified Fick's equation we obtain the 

difference equation: 

At (Cx_ 1 - Cx-C x + Cx+ 1) - k.c x At A c x = D . (16) 

In our simulation obviously A1 = 1 and A t = I. When we 

wish to compare the simulation parameters with physical ones, 

then physical values have to be found for dl and d t. Thus 

the simulation values for diffusion and decay constants are: 
* t * 

D = D and k = k A t, and the physical values of these 
(All 2- . . 

constants are D and k 

In the case of steady state, c x does not change in time, 

thus A c x = 0, and 

D Cx_ I - 2Dc x + DCx+ I - kc x = 0 (17) 

For each term c a solution 
Y 

substitution in (17) we obtain 

exists of the form I Y. Then by 

D I x-1 - 2DX x + DX x+l - kl x = 0 (18) 

This yields 

X x-1 (D - (2D+k) X + DX 2) = 0 

which is satisfied only if 

D-(2D+k)X + D12 = 12 - (2+k/D)l + I = 0. (19) 
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This quadratic equation has two roots: 

k + / k / D ,  k 2 I (2+k/D) _+ 2÷k/D) 2 4 = 1 + 2-D (~-~) (20) 
1,2 = 2 

Since the first and third coefficients 
I 

equation are equal, we know that 11 = I-- 
2 

of this quadratic 

The general solution for c x in equilibrium is 

x 12x  c x = p .11  + Q. = p 11 x + Q 1 1 - x  ( 2 1 )  

In our problem we have two identical constant sources of the 

inhibitor. Thus the solution has to be a symmetric function 

with respect to the center point between the sources. Let us 

choose our coordinate system for x with origin at the center 

point. 

If the distance of the sources are a and -a from the 

origin, then 

c a = C_a 

and 

a -a -a a 

pl I + QI I - pl I - QI I = 0. 

Thus 

(P-Q) (11 a - 11 -a) = 0. 

This can only be true if P=Q. 

Our solution is then 

c x = p (llX + 11 -x) (22) 

If the concentration at x=0 is ci, then since 110=I we obtain 

P=c0/2 , and therefore 

c x = ½ c o (11 x + 11 -x) (23) 

This equation is analogous to (7) for the continuous case, and 
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like in that case one of the two terms becomes dominant for 

x>0 or x<0. 

We can also calculate the distance x t from a source 

(heterocyst) where the threshold value c t is found (for x>0). 

-x t 
c t = c h • 11 

From this we obtain 

In (Ch/C t) = x t . in 11 

in (Ch/Ct) 

xt = In 11 (24) 

There is thus a logarithmic relationship between x t and the 

parameter Ch/C t -  
If we compare the discrete result (24) with that 

of the continuous model (equation 14) we see that the 

value of the coefficient in the discrete case is 
I 1 

and in the continuous case it is - -  
in 11 

The relationship between the two coefficients can be better 

understood by observing that from (20) 

k / k/D + ~--~ 11 = 1 + "2"D + ( ) 2  

and that by Taylor series expansion 

e = 1 + ~ + 2-D + 6 + "'" 

Thus the 3 largest terms in the series are present in the 

expression~ for 11, and thereby in 11 is an approximation of 

in e v~lu = /'k-/-D. This approximation is valid in the interval 

below a k/D ratio of 100, i.e. a ~-~ value of 10. When this 

value is exceeded then the discrete coefficient begins to rise 

above the continuous one. As an example, let us take the case 

of D=k. Note that the assumption that the simulation value K 
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and D are equal does not imply that their physical values are 

equal (see last section). Then from equation (19) we can 

derive the characteristic equation 

~2 - 3~ + I = 0 

which has the roots 

3 + / g  3 -~ 
X I - and 12 - 

2 2 

Thus for x t we obtain the function 

I 
x t = in(~_~ ) " in(ch/c t) 

and the value of its coefficient is 

I 

in (~) = 1.039043. 

This value is thus 4% higher than that of the coefficient of 

the continuous equation 

1 

v~TD --I • 

4. SIMULATION METHODS AND RESULTS 

We have carried out simulation experiments based on the 

above discrete model. The parameters of these simulations are: 

Ch/Ct, k/D and t d the average cell cycle length. The last of 

these parameters represents the mean value of the number of 

simulation steps which are needed for a vegetative cell to 

undergo a complete cell cycle (from division to division). 

This was programmed by adopting a certain value for the mean 

length of cell cycle, and by allowing random variation around 

this value within a spread of ± 10% (This variability is not a 

Gaussian distribution since all values within the allowed 

spread are equally probable to occur). 

The simulations were carried out with the help of the 

program CELIA (an acronym for "cellular linear array 
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simulator") which was originally written by Baker & Herman 

(1972) and variously extended and modified in Buffalo by 

Herman & Liu (1973) and in Utrecht by Frijters (1976). This 

program (written in FORTRAN) simulates the growth of cellular 

filaments in the sense that it allows the insertion or 

deletion of new cells in an existing filament. Each cell can 

be present in various states with respect to a number of 

attributes. The states can be expressed either as integer or 

as real numbers. Transition rules must be provided for each 

possible combination of attribute values and CELIA applies 

these rules in a parallel way to all cells in the filament. 

Thus changes of cellular states occur synchronously at 

discrete time steps. The state of a cell at the next time step 

is determined by its present state (with respect to all its 

attributes), and the states of k neighbour cells to the left 

and I neighbour cells to the right. The main program of CELIA 

keeps a double administration: the administration of the old 

string and the administration of the string which is being 

processed. There are subprograms for the calculations of the 

new values of various attributes. 

For our simulation we defined the following attributes: 

cell type: "V" for vegetative cells and "H" for heterocyst 

inhibitor concentration: between 0 and 922.5 

cell cycle length: mean between 0 and 132, spread + 10%. 

The new inhibitor concentration c ' of a given cell is 
x 

calculated on the basis of equation (16), with the provision 

that D=k: 

P 

c x = C x + ~C x = D (Cx_ I + Cx+ I - 3c x) + c x (25) 

A vegetative cell becomes a heterocyst when its concentration 

is equal to or less than the threshold concentration c t. Each 

heterocyst has a constant concentration c h- 

A cell divides when its cell cycle attribute equals 0. In 

each time step this attribute is diminished by one in all 

vegetative cells. The sister cells resulting from a division 

receive cell cycle values assigned to them by a random number 

generator within the allowed spread around the mean value. 
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The initial concentrations of the filament are obtained 

from an equilibrium calculation for a string of 9 cells 

between two heterocysts. The cell cycle values of these cells 

are assigned at random. The end cells of the filament have 

neighbours with 0 concentration. Computations are usually 

carried out for 300 time steps. 

A sample calculation sequence is shown in Table I. The 

following values are used for this simulation: 

c h -- 922.5, c t = 0,48, D = 0.25, k = 0.25, 

mean cycle length = 80. 

There are 6 cell divisions taking place and one new heterocyst 

is formed in this sequence. The average distance between 

heterocysts in the whole simulation (300 steps) is 11.0. 

Before we discuss our computations concerning the estima- 

tion of the parameters of these models, we want to consider 

the observed heterocyst distances and their relationship to 

the predicted x t values. Let us designate the observed average 

heterocyst distance as d. In fact, we have observed in the 

simulations the ratio of total cell number to number of 

heterocysts and take this ratio as the average distance 

between two heterocysts. 

We assume that the number of vegetative cells increases 

exponentially in the filament. The distance between two 

heterocysts at the moment when one of them is just formed is 

x t. The distance between the heterocysts then increases until 

it becomes 2xt, at which time a new heterocyst will arise. The 

mean distance during this time is given by the following 

formula 

t d 

d = I__ J x t e rt dt (26) 
t d 

0 

In 2 
where t d is the doubling time or cell cycle length and r= 

t d 

The solution of this integral is 
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[i xt ]0td rtd 
d = td " r ert =-~d . e 

xt I xt rtd ] 
r I 

Since 

xt [eln2 1 xt in 2 d - I -- (27) 
r - td , - in 2 In2 

On the basis of formula (27) we can calculate the expected 

average distances between heterocysts for various values of 

Ch/Ct, and compare these distances with those found in 

simulations. In Table 2 we show a number of such comparisons. 

There is a reasonable good agreement between the expected 

and simulated heterocyst distances. 

C h 
-- expected d expected d value of d 

c t in ct (discrete (continuous from 
model) model) simulation 

0.02 10.33 15.5 14.9 14.9 

0.04 9.64 14.4 13.9 12.9 

0.08 8.95 13.4 12.9 12.7 

0.16 8.25 12.3 11 .9 10.7 

0.32 7.56 11 .3 10.9 11 .1 

0.64 6.87 10.3 9.9 9.9 

1.28 6.17 9.2 8.9 6.8 

2.56 5.48 8.2 7.9 8.2 

5.12 4.79 7.1 6.9 7.1 

10.24 4.10 6.1 5.9 5.3 

20.48 3.40 5.1 4.9 3.3 

40.96 2.71 4.0 3.9 2.5 

Table 2. Expected and observed values of average heterocyst 
distance for different threshold concentrations. In all cases 
c h = 615, D =k = 0.25 and t d = 120. 
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In the simulation shown in Table I the Ch/C t ratio of 

922.5/0.48 is the same as the ratio 615/0.32 used in one of 

the rows of Table 2. The heterocyst distance in both cases is 

about 11, which agrees well with the expected values. 

We should point out that the observation of the average 

heterocyst distance in real organisms is not sufficient to 

give us an estimate of the parameters Ch/C t and k/D since both 

of them are affecting the value of x t and thereby of d. 

However, the development of regular heterocyst patterns 

(without multiple heterocyst appearing) depends on the D and k 

parameter values in conjunction with cell cycle times. From 

simulation experiments in which D and k are varied, one can 

find domains of regular patterns for these parameters indepen- 

dently from the value of Ch/C t but dependent on t d. An example 

is shown in Figure 3, where the effect of the variation of D 

and k as well as of t d is shown on the average number of 

vegetative cells between heterocysts (with a constant In 

(Ch/C t)_ = 6.89 value). 

We see that for t d = 120 the domain of normal behaviour 

(about 10 cells between heterocysts) is present for D = k 

values above 0.12, for t d = 90 it is above D = k = 0.11, and 

for t d = 60 it is above D = k = 0.15. These limit values can 

serve to give independent estimates for D and k in the model. 

Note that D cannot be greater than 0.33 because above this 

value instability arises due to the fact that more inhibitor 

can leave a cell than the amount that enters. 

The growth rate of a filament (the change in cell number) 

is determined primarily by the cell doubling time t d and 

secondarily by the other two parameters, since the cells which 

turn into heterocysts do not divide anymore. 

The growth function is an exponential function correspon- 

ding to the differential equations 

dV 
d--t : (r-e) V 

dH 
d-~ = aV 



269 

where V(t) and H(t) are the numbers of vegetative cells and 

heterocysts at time t, u is the rate of which vegetative cells 

are transformed into heterocysts, and r is the rate of 

multiplication of vegetative cells. We have seen that r - in 2 
t d 

(formula 13), but we have no corresponding explicit formula 

for u as function of the other parameters. 

5. CONCLUSIONS 

We can also attempt to correlate our simulation parameters 

with physical parameters observed in the filaments. 

According to measurements by Wilcox et al. (1973), the 

average time between successive divisions of vegetative cells 

growing at 24 ° on solid media is 14-15 hrs for Anabaenu 

catenula, and 23-28 hrs for A. cylindrica. The number of 

vegetative cells between nearest heterocysts or proheterocysts 

in young filaments has a mean of 10.1 ± 2.5 cells in the first 

organism and a mean of 9.3 ± 2.8 cells in the second organism. 

Finally, the average length of vegetative cells in these 

organisms is 7.2 um and 5.5 um, respectively. 

Since in the simulations for Table 2 we have adopted the 

value of 120 iteration steps per division, we can easily find 

that for A. catenula one iteration step would correspond to 

7.0-7.5 minutes, while for A. cylindrica one iteration step 

would be 11.5-14.0 minutes. 

In order to find a physical value for the critical inhibi- 

tion distance x t between two heterocysts (the distance at 

which the threshold concentration is reached at equilibrium), 

we should recall that 

x t = In 2. d 

where d is the average observed distance between heterocysts. 

From the above data we obtain the physical value of 

x t = 10.1 × 7.2 × In 2 = 50.4 um for A. catenula, and a value 

of x t = 9.3 x 5.5 x in 2 = 35.5 um for A. cglindrica. The 

value of about 50 um in the case of A. catenula agrees well 
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with the minimum distance seen in the microphotographs of 

Mitchison & Wilcox (1972) (Fig. I ). 

For A. cuZeauLa we have therefore the following physical 

values : 

At = 7.25 min = 435 sec 

A1 = 7.2 m = 7.2 x 10 -6 m 

We have seen previously that the 

diffusion and decay are: 

2 
* (AI) * k 

D = D and k = -- 
At At 

physical constants for 

In our considerations on feasible simulation values for D and 

k we came to the estimate that for a regular heterocyst 

pattern 

0.12 < D < 0.33., and t D > 60. 

In terms of physical units, this means that 

, 
t D > 60 x 7.25 min = 7.25 hrs and 

1 4 3  x 10 -14 m2/sec < • < 3.93 x 1 m2,sec / D* 0-14 

Thus the actual diffusion constant in the filaments must have 

a value of between 1.4 and 3.9 × 10 -14 m2/sec, which is a 

rather low value for diffusion in water at room temperature• 

An organic molecule of molecular weight 100 to 200 (such as 

glutamine) has a diffusion constant in water at 20 ° of about 

10 x 10 -10 m2/sec. But in the case of cellular filaments we 

have to take into account an average diffusion velocity in 

cells and in cell membranes, for which the above estimated 

value is not unreasonable. 

In our simulations we have assumed that k = D. This refers 

to the simulation values of these constants and obviously does 

not imply that their physical values are identical• This would 

yield the following estimate for the physical value of the 

decay constant: 

2.7 x 10 -4 sec -I<k~7.5 × 10 -4 sec -I 
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These are reasonable values for a reaction constant concerning 

enzymatic breakdown of the inhibitor. 

As far as the cell cycle length of 7.25 hrs is concerned, 

this value is well below the 24 hr length observed in rapidly 

growing Ana£a~na cultures (Wilcox et al., 1973). The bounds 

for the physical values D , k and t D of the diffusion, decay 

and cell cycle constants represent the main biological 

predictions of this model. 

Wolk et al. ( 1974 ) obtained an estimation of the 

physical values of k and D by following the movement of 

13N_labelled compounds in the filaments. Their conclusion 

concerning the D value is probably incorrect because it is 

based on the movement of all N-containing compounds between 

the cells. Their value for D appears to be above the 

value 5 x 10 -12 m2/sec (recalculated from their estimate of 

T < 5 sec. cell -2). The value they obtained for the decay con- 
* -I 

stant k is probably valid and is estimated at 8 x 10 -4 sec . 

This is in excellent agreement with our estimate above. 

The above estimate of the diffusion constant for a morpho- 

genetic inhibitor in blue-green bacteria is surprisingly close 

to that found in a model for phyllotaxis (leaf primordium 

determination on the apex of higher plants) by Veen & Linden- 

mayer (1977). There the estimates were 

* ~ 0-I 4 m2 D -- 0.4 x 1 /sec 

and 
* 0-4 -1 k < 2 x 1 sec 

That diffusion processes involved in morphogenesls have 

similar physical parameters in widely different organisms was 

assumed by Crick (1970) already. 

Our choice of the simulation values k = D in the present 

paper made the model simpler by reducing the number of 

parameters and was based originally on the idea that decay can 

be considered an analogue of diffusion out of the cells. Since 

the dimensions of these constants are not the same, the 

physical values of the diffusion and decay constants are 

obviously not identical. But further investigation is clearly 
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necessary on extending the model to independently chosen 

values of k and D. 

Another way in which the model could be made more realis- 

tic, but also more complex, is by introducing a gradual 

increase in the inhibitor concentration in a recently 

initiated heterocyst. This would take into account the fact 

that newly formed heterocysts cannot immediately fix nitrogen. 

Thus the value of c h should increase as a function of time. 

The theoretical methods by which we arrived at estimates of 

the physico-chemical parameters can contribute to experimental 

tests of the hypotheses incorporated into our model. Particu- 

larly the nature and mode of transport of the nitrogen-rich 

inhibitor needs to be further investigated in the light of the 

predictionsprovided by the model. Another interesting aspect 

of morphogenesis in blue-green bacteria for future investiga- 

tions is the suppression of branching habit in Anabaena 

doLioLum by added nitrogen An the medium (Dhar, 1979). Other 

studies have suggested that the branching character is 

governed by a single or at most a few genes. This indicates 

that the induction mechanism may be related to that of 

heterocyst induction. The practical uses of nitrogen-fixing 

cyanobacteria have been reviewed in Hall et al., 1985). 
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