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ABSTRACT--A method is described for the rapid, ac- 
curate determination of residual stresses from a holo- 
graphic interference fringe pattern. The pattern is gen- 
erated by the displacement field caused by localized relief 
of residual stresses via the introduction of a small, shal- 
low hole into the surface of a component or test speci- 
men. The theoretical development of the holographic 
method is summarized. An example is given showing how 
the method can be applied to a typical experimentally 
observed fringe pattern to determine principal residual 
stresses and directions. 
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qb 0 = net phase shift of the object 
beam 

qb R = net phase shift of  the reference 
beam 

A~ = net phase shift change 

Introduction 

The blind-hole drilling technique utilizing strain-gage 
rosettes ~'2 is a widely applied method for determining 
residual stresses, but it has certain disadvantages, in- 
cluding: (a) the time and costs associated with in- 
stalling a special rosette and precision drilling guide 
at each measurement location, (b) the necessity that 
the location be sufficiently large and flat enough to 
accommodate a rosette and its drilling guide, (c) in- 
accuracies introduced by holes drilled even slightly 
off-center in a rosette or by apparent strains induced 
by temperature fluctuations, unless properly taken into 
account, and (d) inapplicability of conventional ro- 
settes in hostile environments (e.g., elevated temper- 
atures). 

During the 1980s, the possibility of determining re- 
sidual stresses through use of optical techniques in 
conjunction with hole drilling was explored by a num- 
ber of researchers. In essence, the optical techniques 
were intended to replace strain rosettes by furnishing 
information on surface displacements produced by hole 
drilling, from which residual stresses could be de- 
duced, at least in principle. 

The use of moir6 interferometry as an optical tech- 
nique for relating the in-plane displacements from hole 
drilling to residual stresses was proposed by Mc- 
Donach et  al. 3 and has been further developed by 
Nicoletto 4'5 for those cases where the in-plane dis- 
placements can be described by closed form, plane- 
stress formulations (e.g., through holes in thin plates). 
For blind holes, Furgiuele et al. 6 have used numerical 
analyses to develop relations between in-plane dis- 
placements and stresses. Use of  a moir6 grating in 
place of a strain rosette eliminates some of the draw- 
backs associated with rosettes. However installation 
of a grating can still be somewhat time consuming 
and is limited to structural regions and environments 
receptive to gratings. 

Other optical methods such as shearography have 
been applied with surface indentations 7 instead of hole 
drilling but they are qualitative rather than quantita- 
tive in their present state. 

To avoid some of the limitations associated with 
rosettes and gratings, the feasibility of using holo- 
graphic interferometry as an optical technique for pro- 
viding information about surface displacements from 
hole drilling was shown independently at about the 
same time b E Antonov, 8 Bass et al . ,  9 and Nelson and 
McCrickerd. 0 Antonov proposed that the out-of-plane 
displacements from hole drilling could be used to de- 
termine residual stresses for through holes in thin 
sheets. Since out-of-plane displacements from hole 
drilling are considerably smaller than those from in- 
plane displacements, the sensitivity of the approach 
is correspondingly reduced. Bass et al. predicted op- 

tical interference fringe patterns for holes drilled into 
rock masses assuming that different states of stress 
and stress levels were applied to the rock. Stresses 
were deduced by trying to match predicted patterns 
with experimentally observed ones. Refinements of 
the same technique are reported by Smither et  al. 11,12 
Extensive descriptions of geophysical applications of 
holography can be found in Ref. 13. Nelson and 
McCrickerd ~~ proposed a fringe counting method that 
might be used to quickly convert the displacement in- 
formation contained in an observed fringe pattern to 
estimates of residual stresses but offered no theoret- 
ical derivation for the approach. 

This paper is divided into two parts. The first pro- 
vides a theoretical derivation of a generalized fringe- 
counting method for determining residual stresses from 
holographic/hole drilling tests and an example of how 
the method can be applied to a typical fringe pattern. 
The second part, Ref. 14, describes experiments used 
to generate fringe patterns and provides a more ex- 
tensive comparison of predictions of residual stress 
from the fringe counting method with experimental 
results�9 

The approach described in this paper was devel- 
oped with the following criteria in mind: (a) that it 
require only one hologram per measurement location, 
made with a single beam and direction of illumina- 
tion, (b) that it be able to process the displacement 
information contained in an optical interference fringe 
pattern and convert it to estimates of stress in a way 
that is relatively easy to learn and implement, and (c) 
that it produce reasonable estimates of stress even if 
the illumination direction does not coincide with the 
direction of maximum principal stress, since knowl- 
edge of that direction may not be known in advance 
of testing. 

Displacement Relations for a Hole Drilled in a 
Uniform Residual-stress Field 

The introduction of a hole in a previously stressed 
material produces a displacement field which can be 
found from the difference between two known stress 
solutions.15 Assuming a plane-stress state character- 
ized by Crxx, O'yy, "rxy, which remain uniform over a 
thin plate, as shown in Fig. 1, the displacement field 
produced by drilling a through hole of radius r0 can 
be expressed in cylindrical coordinates as 

+ 2"rxy sin 20][4p - (1 + v)p3]} 

F 0 
u0 = -~-~ {[(O'x~ - ayy) sin 20 - 2r~y cos 20] 

�9 [2(1 - v)p + (1 + v)p2]} 

vt p2 
Uz = E [(cr~ - ayy) cos 20 + 2"r~ sin 20] 

ro 
= _~ {(1 + v)(o-= + %y)p + [(cr~_~ - % )  cos 20 

EL' 

(1) 
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ro: hole radius X / ~ ' ~ . ~  
t : thickness / / / s  "--.. "-~ 
z =0 corresponds to the . ~ - - " ' - ~ =  ~ ~  ~ 

midplane of the plate ~ /  "-~ -~'~'-'xx 

Fig. 1--Through hole in a thin plate subjected to uni- 
form biaxial stresses 

where 
ur, u0, uz = cylindrical components of the displace- 

ment field 
E = Young's modulus 
v = Poisson's ratio 
p = ratio of hole radius to radial coordinate 

(ro/r) 
t = plate thickness 

These equations can be conveniently written as 

Ur = ,g,(cr= + Cryy) +/~[(o-xx -- ~yy) cos 20 

+ 2~rxy sin 20] 

u0 = C[(cr= - (try) sin 20 - 2%y cos 20] 

uz = G[(~r= - Cryy) cos 20 + 2"r~y sin 20] (2) 

where 

A='--~-~(lr" + v)p d = - r-2-~ - v) p 
2E 2E 

/3 = ~ E [ 4 P  - (1 + v)p 3] 

+ (l + v)p 2] 

= Vs p2 
E (3) 

Equations (3) assume a plane-stress state. The intro- 
duction of a blind hole in a previously stressed ma- 
terial produces a complex three-dimensional stress state 
which cannot be described by plane-stress assump- 
tions, and for which no closed form solution is 
known. 16'17 This problem will be addressed later in 
the context of stress calculation formulas. 

for example, to Vest ~s for a more complete treatment 
of the subject. 

If a hologram is made of the surface of a region 
containing residual stress, and a hole drilled into the 
region, when the hologram is exposed again or viewed 
under real-time conditions, the result is a pattern of 
alternating dark and light fringes like the one shown 
in Fig. 2. The reconstructed wavefront from the orig- 
inal image of the unperturbed material interferes with 
the wavefront coming from the material deformed by 
the introduction of the hole. The net effect is the pro- 
duction of interference fringes whenever the phase shift 
is an integer multiple of "rr. Each dark or light fringe 
represents contours of constant phase shifts. At a given 
point in the material, the relationship between the phase 
shift and displacement is given by 

,5 =K.  a (4) 

where 

6_ = phase shift 
K = sensitivity vector 
a = displacement vector 

The sensitivity vector is dependent on the illumination 
and viewing parameters of the experimental setup and 
is found as the vector difference of the respective 
propagation vectors. 18 

 =k2- k, ( 5 )  

The propagation vectors k 1 and k2 define the direction 
of the illumination and viewing directions for a par- 
ticular point in the x-y plane identified by (r, 0) in 
Fig. 3. Regardless of the observer's position, the 
magnitudes of kt and/~2 are defined as 

2,n" 
I 11 = = -  

X (6) 

where X = wavelength of the illumination source. The 

H o l o g r a p h i c  M e t h o d  

Holographic interferometry provides the means to 
detect the incremental displacements produced by the 
introduction of either a blind or through hole in a ma- 
terial under stress. Only the basic equations and con- 
cepts needed to develop the method for computing 
stresses will be explained here. The reader is referred, 

Fig. 2--Typical experimental fringe pattern for uniaxial 
stress 
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Fig. 3--Definition of propagation vectors and angles of 
illumination and viewing 

illumination and viewing propagation vectors with the 
observer at finite distance z w from the hole, as indi- 
cated in Fig. 3, are then 

2 ~  
/~1 - ~ [cos ~/1 cos ~ ex + cos ~/1 sin ~ ~y 

+ sin ~1 ez] 

27r 
/~2 = ~ [ - s i n  a cos 0 ~ - sin a sin 0 s 

+ cos ~ ~] (7) 

where 
"/1 = grazing angle of the illumination source 

= inclination of the illumination direction 
with respect to the x axis 

~x, ey, ez = unit vectors along the x, y, and z axes of 
Fig. 3 

and 

o~ = tan -1 [(x 2 + y2)l /=/z,p] = tan -1 [r /zvo ] (8) 

zvo = position of an observer along the z axis 

The direction of the illumination propagation vector, 
which can have any orientation in space, has been 
defined by two angles, namely the grazing angle ~1, 
which is measured in a plane normal to the x-y plane 
(Fig. 3), and the inclination with respect to the x axis, 
~, which is measured in the x-y plane. Alternative for- 
mulas to eq (8) can be derived for k2 if the viewer is 
not located along the z axis. The sensitivity vector is 
expressed as 

2'rr  
i ~  = - -  [ (COS "Y1 c o s  ~ - sin a c o s  0)~. 

+ (cos % sin ~ - sin o~ sin 0)~y 

+ (sin ~/1 + cos or) s (9) 

If the observer is at z~, ~ 0% oL = 0 in Fig. 3 and the 
sensitivity vector is then 

2'/T 
/~0 = - -  [ (COS "Y1 COS ~)1~ x 

h 

+ (cos ~1 sin ~)~y + (1 + sin ~/1)e~] (10) 

Equation (4) can now be expressed as 

~b = n'rr = K~u x + gyUy -~ g z u  z (1 l) 

where 
n = fringe order 

ux, Uy, uz = Cartesian components of the displace- 
ment vector 

Kx, Ky,  Kz = Cartesian components of the sensitivity 
vector 

In this expression, the phase shift is expressed as an 
integer multiple of ,rr. With this notation, dark fringes 
are produced for n = -+ 1, 3, 5 . . . .  and light fringes 
for n = +0,  2, 4, ... Fractional fringe orders can be 
defined in the same form. 

Equation (11) is fundamental to the interpretation 
of a given fringe pattern since it gives the relationship 
between the phase shifts, which can be extracted from 
the holographic interferogram in the form of fringe 
orders, and the unknown displacement field. Noting 
that the displacement field is in turn given by eqs (2) 
and the sensitivity vector is known from the illumi- 
nation parameters, eq (11) will ultimately provide the 
means to compute the unknown components ~rxx, O'yy, 

and ,% of the stress tensor. 

Fringe-counting Method 

A convenient method is needed for extracting the 
information from a given fringe pattern in order to 
evaluate the left-hand side of eq (11). One such method 
will now be described. 

Equation 4 and hence eq (11) express the fact that 
a fringe pattern is sensitive only to the projection of 
the displacement vector ti over the sensitivity vector, 
K. With single beam illumination and for virtually all 
orientations of the sensitivity vector, both in-plane and 
out-of-plane components of the displacements inter- 
vene in the formation of the fringe pattern. This has 
the effect of producing a nonsymmetric fringe pattern, 
as seen in Fig. 2. 

Although there is no requirement to work only with 
the in-plane components of hole-drilling displace- 
ments, the equations for computing stresses are sim- 
plified without the out-of-plane components. The in- 
fluence of out-of-plane displacements in a fringe pattern 
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Fig. 4--Typical fringe counting path 

can be circumvented using a straightforward fringe- 
counting method first applied in Ref. 10. 

Suppose that a fringe pattern has the signs of its 
phase shifts known, as in Fig. 4. A fringe count is 
taken between two diametrically opposite points. For 
example, after picking a starting point centered on a 
light fringe located on the positive phase shift side, 
say point (1) identified by the radius rl and angle 01 
with respect to the arbitrary set of x-y axes in Fig. 4, 
the fringe count is taken while 'hiking' to the dia- 
metrically opposite point (1') on the negative phase 
shift side. The 'hiking' path can be the one indicated 
by arrows in Fig. 4 but other paths can be used as 
well. Each time a dark or light fringe is crossed, a 
positive or negative count of one is registered, taking 
care not to cross the same fringe twice to avoid 'dou- 
ble counting' . The sign of the count will depend on 
the direction of the 'hike'. This can be illustrated with 
the aid of Fig. 5. If the displacement field around the 
blind hole is known, for example through a finite- 
element analysis, eq (11) represents a three-dimen- 
sional surface defined in the x-y or r-0 plane when 
put in the form 

+(r, O) = Kx(r, O) ux(r, O) + gy(r, O) Uy(r, O) 

+ K,(r, O) u,(r, 0) (r > r0) (12) 

This surface will be referred to as fringe function since 
it gives the value of the phase shift for all points of 

Fig. 5--Fringe function, fringe pattern, and a fringe 
counting path 

the domain around the hole. ~9 Positive phase shifts 
will produce protruding regions whereas negative phase 
shifts will produce depressions. The fringe pattern can 
then be obtained by cutting this surface with planes 
of constant phase shifts in the same way topograph- 
ical maps are made by cutting geographical features 
with constant elevation planes. The hiking path can 
be pictured over the three-dimensional fringe function 
surface as indicated in Fig. 5. A hike can either main- 
tain constant 'elevation' or change it by crossing 
fringes. The hiking path shown in Figs. 4 and 5 re- 
quires changing elevation and thus crossing fringes. 
In this case the hike is downhill, starting from the 
positive phase shift side, and the fringe count incre- 
ment is taken as positive each time a fringe is crossed. 
If the hike is uphill on the fringe function surface 
starting from the negative phase shift side, the fringe- 
count increment is negative. The experimental method 
used to determine phase shift signs in different re- 
gions will be described shortly. 

Fractional fringe counts are possible since the end- 
ing point cannot coincide always with the center of a 
fringe. The final fringe count divided by two repre- 
sents the fringe order of point (1) in Fig. 4 if there 
are no out-of-plane displacements, as will be shown. 
This fringe-counting method relies on relative fringe 
orders without the advance knowledge of absolute 
fringe orders but ultimately ends up finding an ab- 
solute fringe count whether or not the zero order fringe 
is crossed somewhere during the counting process. As 
a side effect, this fringe-counting procedure assures 
cancellation of out-of-plane displacement effects as 
will also be shown. A special case occurs when start- 
ing and ending a fringe count on the zero order fringe 
or on the same fringe; in such cases the fringe count 
is taken as zero. 

If under a given residual stress state a hypothetical 
hologram were somehow to capture a fringe pattern 
insensitive to out-of-plane displacements, its positive 
and negative phase shift lobes would be perfectly 
symmetric. In such a case, the fringe orders at dia- 
metrically opposite points inside the lobes would have 
the same value, n o , differing only in their sign. The 
actual fringe pattern that includes the effects of out- 
of-plane displacements for the same residual-stress state 
and illumination conditions is nonsymmetric, as in Figs. 
2 and 4. Therefore, fringe orders at the homologous 
diametrically opposite points are, in general, not only 
of opposite sign but of different value. If the fringe 
order at point (1) of Fig. 4 is n (1) and is n ~ at the 
diametrically opposite point (1'), the fringe-counting 
method outlined previously asserts that 

/~(1)  - -  / ~ ( 1 ' )  

- -  n 0 

2 (13) 

The operation indicated above is actually the average 
of a relative fringe count and its validity is maintained 
even in cases where the starting and ending points of 
a hike, (1) and (1'), are in a region where the phase 
shift sign remains the same over the path of the hike. 
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This interpretation generalizes the sign assignment for 
fringe counts. Downhill hikes always produce posi- 
tive counts while uphill hikes produce negative counts. 
Regardless of the phase shift signs of the starting and 
ending points, downhill hikes produce a positive n ~ 
since n ('~ > n (''). The opposite is true for uphill hikes. 

Taking into account the relations between cylindri- 
cal and Cartesian components of displacements and 
eqs (11) and (12), the fringe orders n (1) and n (''~ can 
be expressed as 

vn (t) = (K<~ ') cos 0, + K<9 ) sin 0~) Ur(rl, 01) 

+ (-K~ ') sin 0~ +/~y') cos 0,) uo(r,, 0,) 

+ IU~ ') u~(rl, O j) 

"rrn (1') = -[Kx (1') cos 01 q- Ky ~ sin 0,] u~(rl, Oi + w) 

- [ - / ( f )  sin 0, +/(y") cos 01] u0(r,, 0, + w) 

+ I(~ ''~ u~(rl, 01 + ~ )  (14) 

where ~t) ,  ~,'3 = Cartesian components of the sen- 
sitivity vector at points (1) and (1 ') in Fig. 4. In these 
expressions, the displacements at diametrically op- 
posite points have the same value and sign since ac- 
cording to eqs (2) they depend on cos  20  and sin 20.  

Substituting the expressions for the components of 
the sensitivity vectors from eq (9) and subtracting eqs 
(14) to form an average fringe order, 

n (') - n ('') 2"rr 
-- {[COS "~1 COS ~ COS 01 

2 k 

+ cos "/1 sin ~ sin 01] u,(rl, 0,) 

+ [ -cos  % cos ~ sin 0~ 

+ cos ~, sin ~ cos 01] uo(r,, 01)} (15) 

The out-of-plane displacement component, uz, dropped 
out in this last step. If the observer is sufficiently far 
from the object, such that angle ~x in Fig. 3 ap- 
proaches zero, as is usually the case, then the follow- 
ing components of the sensitivity vector can be rec- 
ognized from eq (10), 

2,1i 
= - -  c o s  ",/, c o s  

k 

21T 
g~y = - -  COS '~1 sin 

h (16) 

Using eqs (14) and (16), eq (15) becomes 

fluence of out-of-plane displacements. It is noted that 
knowledge of the absolute fringe orders, n ('~ and n (m, 
is not required. Since the fringe counts are multiplied 
by 7r, eq (17) actually expresses a relationship be- 
tween phase shifts and displacements. The fringe count 
may also be viewed as representing the in-plane com- 
ponent of displacement parallel to the direction of il- 
lumination. 2~ 

Stresses 

Equation 17 provides the starting point for obtain- 
ing stresses from the fringe-counting procedure. A di- 
rect relationship between the unknown components of 
the stress tensor and the fringe count can be obtained 
by substituting eqs (2) into eq (17) using the relations 
between cylindrical and Cartesian components of dis- 
placements, 

rrn ~ = (K~ cos 0 + /~y  sin 0) {A(o'~ + %y) 

~- g[ ( l~xx  -- (Yyy) COS 20 "]- 2T~y sin 20]} 

+ ( - K  ~ sin 0 +/~y cos 0){C[(~r~ 

- ~yy) sin 20 - 27xr cos 20]} 

After rearranging, 

"rrn ~ = {(/~ cos 0 + K~y sin 0)(A +/3  cos 20) 

+ (-K~ sin 0 + K~y cos 0) C sin 20}Crx~ 

+ {(K~, cos 0 +/~y sin 0)(.4 - / ~  cos 20) 

- (-/(~ sin 0 +/~y cos 0) C sin 20}~yy 

+ 2{(K~ cos 0 +/~y sin 0)(/~ sin 20) 

- (-K~x sin 0 +/~y cos 0) C cos 20}'% (18) 

When the fringe count is performed for three different 
pairs of diametrically opposite points around a hole, 
eq (18) originates a system of linear equations which 
can be put in matrix form as 

/ n O J  C3l C32 C33J "rxy 

where the ith fringe count is found as 

- + = n ~ - _ _  

2 (17) 2 

(19) 

This shows that the average fringe count performed 
between diametrically opposite points on a fringe pat- 
tern according to the procedure described before, gives 
an absolute fringe order, n o , which excludes the in- 

Assuming all fringe counts are taken at the same ra- 
dius, but at different angles 0i with respect to the ar- 
bitrary set of axis of Fig. 4, the coefficients C;j of eq 
(19) can be expressed as 
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C,j = (/(~ cos 01 +/~y sin 01)(/i +/Y cos 20,) 

+ (-K~x sin 0i + K~y cos 0i)C sin 20i 

Ca = (K~ cos 01 + K~y sin 03(,~ - /Y cos 20/) 

- (-/~x sin 0i + K~y cos 0i)C sin 20i 

C/3 = 2{(K~ cos 0, + K~r sin 0/)(/Y sin 20/) 

- (-K~ sin 0i + K~y cos 0/)C cos 20i} (20) 

The unknown components of the stress tensor can then 
be found by inverting eq (19). 

(21) 

The principal stresses, 0"~ and 0-2, and their directions 
can then be found using the following expressions. 

O"17 0" 2 - -  _ _  . + . + I t . . t .  2 2 2 + -r~ (22) 

[3 = 45 deg (1 - sign [o-~ - 0.yy]) 

�9 ( 1  - 8 ( o - =  - 0 . . ) )  

' ( > /  
+ 2 tan-1 \0.xx -- % y /  

where 
13 = angle between the illumination direction and 

0.1 

~( ) = impulse function 
sign [ ] = sign function 

+_1 i fx  > 0 

sign Ix] = 1 if x < 0 
g(x) = {01 i f x # 0  

i fx  = 0 

Two items, which are addressed in the next sec- 
tions, remain unsolved on the right-hand side of eq 
(21). The first involves determination of signs of phase 
shifts in different regions of the fringe pattern, and 
the second an expression for the coefficients A, /3, 
and C in eqs (20). It is noted that knowledge of the 
phase shift signs of the starting and ending points al- 
lows the experimenter to detect if a hike goes uphill 
or downhill during a fringe count, and thus defines 

hi, n2, and n3. the signs of o 0 o 

Determination of Fringe Orders and Phase- 
shift Signs 

Phase-shift signs are in general associated with the 
direction of the displacements captured by a holo- 
graphic fringe pattern. Determination of absolute fringe 
orders and phase-shift signs in a given holographic 
fringe pattern is an issue addressed by several authors 

who offer solutions that, although original in nature, 
cannot be easily applied when measuring residual 
stresses by the hole-drilling method. Ennos 2~ correctly 
pointed out that a static fringe pattern fails to identify 
the sign of the phase shift of a given fringe and pro- 
posed its deduction from a 'live fringe' experiment. 
Jones and Wykes 22 describe in detail the identification 
of fringe orders and their signs by observing the mo- 
tion of fringes using real-time holography while in- 
cremental loads are applied to the object under study. 
unfortunately, this dynamic method is not applicable 
for measuring residual stresses since the experimenter 
cannot control the loading source, i.e., the residual 
stresses. Hariharan and Ramprasad 23 demonstrate the 
introduction of 'background' fringes by manipulating 
various optical parameters in order to eliminate the 
ambiguity in the phase-shift sign. Related approaches 
utilizing 'carrier fringes' have been applied by Plot- 
kowski e t  a l . ,  24 Matthys e t  a l .  25 and Guo e t  a l .  26 Os- 
trovsky e t  a l .  17 maintain the displacement sign and 
therefore the phase-shift sign cannot be determined 
from a fringe pattern when measuring residual stresses 
using an optical setup sensitive only to out-of-plane 
displacements. 

As it turns out, phase-shift signs can indeed be ex- 
tracted from a fringe pattern without the need for ex- 
tra equipment or resorting to incremental loading. 
Reference 10 describes a simple dynamic method based 
on the perturbation of the reference beam in a real- 
time holographic setup after a hole is drilled and a 
fringe pattern is visible. The perturbation can be eas- 
ily introduced by a momentary shortening of the op- 
tical path in the reference beam, for example by gently 
pushing a mirror located in its path. The response of 
the fringe pattern to such a perturbation is a change 
in configuration or continuous 'flow' of fringes to ad- 
jacent positions as indicated in Fig. 6. Fringe lobes 
can be classified according to their shrinking or ex- 
panding behavior. Regions with shrinking fringes 
undergo displacements towards the illumination ;ource 
and are assigned a positive phase shift sign. If the 
phase shift r is positive, then according to eq (4), 

' l /  ,,,u.,na> 
�9 J, / . . . . . . . . . . . . . . .  expanding fringes 

negat,ve pha~$sSlaift ,-'fV'- , ....... ; .... 

................................... / I ....... s-h;inking fr'g s, 
/ I positive phase shift \ 
I 

"~ J z~cP =-0.75~ (phaseshiftintroduced 
/ in the reference beam) 

Fig. 6--Fringe pattern flow under reference-beam path 
perturbation (shortening) 
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K" u > 0, indicating that the displacement vector forms 
an acute angle with the sensitivity vector. The fringe 
pattern registers the component of the displacements 
directed towards the illumination source. Regions with 
expanding fringes experience displacements away from 
the illumination source and are assigned negative phase 
shift signs. 

The reason for this behavior becomes clear when 
the phenomenon is explained with the aid of the fringe 
function described by eq (12). A shortening of the 
reference beam path is equivalent to the introduction 
of an extra negative phase shift term in eq (12), as 
can be shown from analysis of the irradiance distri- 
bution of a holographic plate. Therefore, the fringe 
function can now be expressed as 

~b(r, O) = Kx(r, O) Ux(r, O) + Ky(r, O) Uy(r, O) 

+ Kz(r, O) Uz(r, 0) + Aqb (23) 

where Aqb = qb R < 0 = net phase shift introduced by 
reference beam path shortening. 

The surface representing the original fringe func- 
tion can be pictured as 'sinking' an amount Aqb with 
respect to its original position while maintaining its 
overall shape. An intuitive explanation of the corre- 
sponding effects on a fringe pattern considers a series 
of planes fixed in space, each representing a given 
phase-shift value. When the fringe function surface 
sinks, these planes will continuously cut different sec- 
tions of the surface giving a succession of fringe pat- 
terns. The resulting effect will give the observer the 
impression of viewing shrinking fringes in those re- 
gions where the fringe function exhibits protrusions, 
i.e., positive phase shifts, and expanding fringes where 
the fringe function exhibits depressions, i.e., negative 
phase shifts. 

Figure 7 shows the sunken surface of the fringe 
function with the current fringes after a phase shift 
Aqb = -0.75av has been introduced in the reference 
beam path. Two planes of constant phase shift are 
drawn with the cutout profiles of the fringes before 

Fig. 7--Visualization of fringe flow under reference- 
beam perturbation with the aid of the fringe function 

the surface downward movement showing the fringe 
shrinkage effect for positive phase shift regions. The 
gap between current and former fringe positions rep- 
resent the successive positions of the fringe if the 
downward movement is continuous. It is noted that 
the current and former fringe positions are at the same 
level. 

An interesting situation develops in the transition 
region between protrusions and depressions in the fringe 
function when [ Aqb I > 7r. The outermost expanding 
fringe crosses the location of the original zero order 
fringe and enters the protruding region giving the 
impression of snapping into a shrinking fringe. In other 
words, expanding fringe regions act as fringe sources 
whereas shrinking fringe regions act as fringe sinks. 

If the object beam optical path is shortened instead, 
the effects are opposite to those discussed above. Ex- 
panding fringes now indicate regions with positive 
phase shifts and shrinking fringes regions with neg- 
ative phase shifts. This is due to the sign of the re- 
suiting phase shift, Adp = qb 0 > 0. Now the fringe 
function surface 'rises' an amount/Xdp with respect to 
its original position. 

An example of the determination of signs of phase 
shifts for an actual fringe pattern will be given shortly. 

Correction of the Plane-stress Displacement 
Formulas 

The displacement formulas, eqs (2), and therefore 
the stress calculation formulas, eqs (20)-(21), with 
coefficients defined by eq (3) are only applicable when 
plane-stress assumptions are valid. As pointed out 
earlier, a blind hole produces a complex three-di- 
mensional stress state in its surrounding area which 
cannot be described by plane-stress solutions. How- 
ever, following Schajer, 27 the displacements still have 
the general form expressed by eqs (2) but with a dif- 
ferent set of coefficients .4 through G. These coeffi- 
cients can be determined from the displacement data 
of a finite-element modeling of the blind-hole drilling 
process. 

If a blind hole is drilled in a material subjected to 
a uniaxial uniform stress, trxx, the cylindrical com- 
ponents of the displacement field around the hole are 
assumed to be expressed by Fourier expansions of the 
type 16 

ze 

u,(r, O, z) = E ur,(r, z) cos nO 
n = 0  

uo(r, O, z) = E uo.(r, z) sin nO 
n = O  

Uz(r, O, z) = E uz,(r, z) cos nO 
n = 0  (24) 

As a first approximation only the terms n = 0 and n 
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= 2 (not to be confused with fringe orders) are re- 
tained, giving the following expressions. 

Ur(r, 0) = (/~ + /~ COS 20) O',~ 

uo(r, 0) = (/) + d sin 20) r 

u2(r, 0) = (F + G cos 20) crx~ (25) 

A, /~, C, F, and G are coefficients yet to be deter- 
mined. In general, these coefficients will depend on 
the elastic constants, the hole dimensions, the loca- 
tion given by the ratio p = ro/r, and the hole depth 
to diameter ratio, hiD. 

The meaning of eqs (25) can be explained with the 
aid of Fig. 8. For a constant radius, i.e., at a constant 
ratio p, the displacements vary as harmonic functions 
superposed on a constant. Therefore, the coefficients 
A through G for a given ratio p can be found from 
the displacements of a single finite-element run as fol- 
lows: 

_ .r10=,5 B ---- "rl0 0 deg --  ",10 45 

O'xx 

C - ,010=45 deg 

O'xx 

p _ . 5 = 4 5  deg 

z) - _ _  

= 

O'xs r 

U0[0=0 deg 
- 0  

O'xx 

gz[0=0 deg --  Uz[0=45 deg 

cr~ cr~ (26) 

where Ur[0-45 deg = nodal displacement in the radial 
direction at 0 = 45 deg and r = ro/p. 

These formulas have been derived from eqs (25) by 
taking a pair of values for 0, 0 deg and 45 deg, at a 
given radial distance from the blind hole. Alternative 
formulas can be found for any other pair of values for 
0. Although these coefficients are found from a finite- 
element model under uniaxial load, they are also valid 
for the biaxial displacement formulas, eqs (2), pro- 
vided the superposition principle holds. It is noted that 
these coefficients are independent of the stress level 
and are only valid for a particular ratio p, a given hole 
depth to diameter ratio h/D, a given hole diameter, 
and a given set of elastic constants. 

U r X l 0  5 

[ram] 

5.00 

2.50 

~ ' ~ ' ~ ,  7, Crxx + w axx cos 2 O 

% 

Fig. 8--Circumferential variation of radial displace- 
ments at a constant radius around a hole 

In order to make the coefficients independent of hole 
diameter and possibly the elastic constants, it is con- 
venient to define the following nondimensional coef- 
ficients, 

2E 2E _ 2E _ 
d - - - A  /~ = - - B  C = - - C  

ro(1 + v) ro ro 

3~ 2 E p  2E 
= g =  0 

ro 4vro (27) 

The choice for the normalizing parameters was guided 
by the form of the coefficients in the original plane- 
stress formulas, eqs (3). Note that the hole radius is 
used above to make the f and ~ coefficients nondi- 
mensional instead of half the material thickness 0 /2 )  
as in the plane-stress formulas. 

The coefficients fi through G as computed by fi- 
nite-element analysis are dependent on Poisson's ratio 
to varying degrees. However, it was found that the 
nondimensional coefficients d and b had little or no  
dependence on Poisson's ratio, the dependence o f f  is 
weak, while for ~ and ~ it can be significant. Values 
o f f  and g are not needed for stress calculations when 
the fringe-counting method is employed since those 
coefficients pertain to out-of-plane deformations which 
are cancelled out by the method. Even though ~ ex- 
hibits dependence on Poisson's ratio, the resulting in- 
fluence on stress calculations is minimal as discussed 
later. 

Table 1 shows the nondimensional coefficients ob- 
tained from finite-element modeling of a 1.58-mm 
(0.062-in.) diameter blind-hole drilling process in a 
material with v = 0.3 and stressed uniaxially at 186 
MPa (27 ksi). The values are listed according to the 
radial locations expressed by multiples of the hole ra- 
dius, r0. Even though these values have been obtained 
using a model with a specific residual-stress level and 
hole diameter, they can be used for other stress levels 
and hole diameters by virtue of eqs (26) and (27). 

Values for Table 1 have been obtained considering 
a full hole depth, h, of 1.2 times the blind hole di- 
ameter, D, and a hole drilled into a plate where the 
ratio of plate thickness to hole diameter is eight. If 
the hole depth is less than 1.2 D, the coefficients can 
be recomputed in order to take into account the re- 
duced relaxation of stress by shallower holes. 

TABLE 1--NONDIMENSIONAL COEFFICIENTS 
FROM FINITE-ELEMENT ANALYSIS 

r/ro & /~ e i O 

1.5 0.6808 1.8626 -0.7514 0.2763 0.4257 
2.0 0.5073 1.4170 -0.4206 0,2098 0.2595 
2.5 0.3943 1.0870 -0.2814 0.1530 0.1529 
3.0 0.3136 0.8517 -0.2071 0.1074 0.0879 
3.5 0.2534 0.6792 -0.1630 0,07555 0.04752 
4.0 0.2073 0.5512 -0.1347 0.05325 0.02216 
5.0 0.1456 0.3854 -0.0995 0.02474 -0.00270 
6.0 0.1069 0.2865 -0.0805 0.01033 -0.01206 

Note: valid only for hole depth to diameter ratio, h / D  = 
1.2 
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Summarizing, all nondimensional coefficients are 
independent of the hole radius and Young's modulus. 
They are still dependent on the particular ratio p, a 
given hole depth to diameter ratio (h/D), and Pois- 
son's ratio in the case of ~ and g. Once the fringe 
count is performed at a given radial location around 
a hole, stress calculations can proceed using eqs (21)-  
(22) with coefficients A, B, and C obtained from Ta- 
ble 1 and eqs (27). 

The finite-element mesh used for obtaining all of 
the data in Table 1 is shown in Fig. 9. Due to the 
symmetry of the problem, only a quarter of a 27.94 
x 27.94 x 12.7-ram (1.1 x 1.1 x 0.5-in.) square 
plate was considered with the appropriate boundary 
conditions. The model was built with 4725 three-di- 
mensional eight- and six-node constant-strain isopar- 
ametric elements using the Abaqus code. The blind- 
hole drilling process was simulated by inactivating 
elements representing removed material after the model 
had been loaded to the desired stress level. When in- 
cremental drilling is required, the elements have to be 
inactivated in several steps after the initial loading. 
The model is considered to be subjected to uniaxial 
stress in the x direction. 

The displacement data obtained from the finite-ele- 
ment analysis can also be processed in order to pro- 
duce synthetic fringe patterns by solving eq (12) for 

~ X  
2 3 '4 '5 '6 '7 rnm 

// 
J l l l l  J l I I 

Boundaries of hole JI- 

m 
m 

integer values of n at discrete points around the hole. 
The result is a series of points defined by their co- 
ordinates, either (x, y) or (r, 0), which can be plotted 
using a desktop computer. The fringe pattern shown 
in Fig. 4 was obtained using this method. 

I l l u s t r a t i v e  E x a m p l e  

In order to generate fringe patterns to check the 
ability of the holographic/hole-drilling technique to 
determine residual stresses, a series of experiments 
were conducted using specimens with known stresses. 
The details of the experiments are described in Refs. 
14 and 28. The results of one of the experiments will 
be considered here for the purpose of illustrating ap- 
plication of the theoretical approach derived in this 
paper. A more comprehensive comparison of stresses 
determined by the holographic technique with those 
determined from other methods is also provided in Ref. 
14. 

The experiment to be considered here utilized an 
interference fit between two thick-walled hollow cyl- 
inders to produce a uniaxial circumferential residual 
stress. The cylinders were made of stress-relieved alu- 
minum alloy 7075-T651. The circumferential stresses 
were calculated from theory and estimated from con- 
ventional strain-rosette hole-drilling measurements to 
be between 186 and 200 MPa (27 and 29 ksi). Figure 
10 shows the interference fringe pattern obtained when 
the illumination axis was at 30 deg to the circumfer- 
ential stress direction. Relevant test parameters are 
given in Table 2. An arbitrary set of axes with an 
origin at the center of the hole has been taken with 
the x direction coincident with the illumination direc- 
tion. This particular choice simplifies the expression 
for the sensitivity vector since ~ = 0 deg in eqs (9) 
and (10). However, any other coordinate axes ori- 
entation could be used without loss of generality. 

The starting points for the fringe-counting proce- 
dure are labeled as (1), (2), and (3), the ending points 
as (1 '), (2'), and (3'). They are all located at the same 

Fig. 9--Finite-element mesh 
Fig. lO--Fr inge pattern with the illumination direction 
at 30 deg to direction of uniaxial stress 
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TABLE 2 - -DATA FOR CALCULATING STRESSES 
FROM THE FRINGE PATTERN OF FIG. 10 

Young's modulus 

Poisson's ratio 
Grazing angle 
Illumination direction 
Illumination wavelength 
Hole diameter 
Hole depth 
Fringe count radial location 
Angles and fringe counts 

E = 71.0 GPa (10.3 x 106 
psi) 

v = 0.33 
3'~ = 23.5 deg 
i~ = 0 deg 
h = 514.5 x 10 -9 m 
D = 1.68 mm (0.066 in.) 
h = 2.03 mm (0.08 in.) 
r =  D =  1 .68mm 
0~ = 30 deg, n o = 7.7 
02 = -31  deg, n o = 0 
03 = - 6 0  deg, n o = - 2  

radial distance, r = 2r0, from the center of the hole. 
Other radial locations could have been used as well. 

The inclination with respect to the x axis of the seg- 
ment joining (1) and (1') is 0~ = 30 deg. The incli- 
nations of the segments (2)-(2 ')  and (3)-(3 ')  are 02 
= -31  deg and 03 = - 6 0  deg respectively. The strat- 
egy followed for these choices was to maximize the 
fringe counts for the points (1)-(1 ') and (3)-(3') .  The 
points (2)-(2 ')  were chosen to make the fringe count 
zero in order to remove any fractional fringe esti- 
mation errors. As a practical note, this situation may 
not be present in all fringe patterns. It should be also 
noted that other starting and ending points could have 
been used as well. 

The hiking paths and directions for the fringe counts 
are indicated with white lines and arrows. The start- 
ing point (1) is centered on a dark fringe in a region 
of shrinking fringes if the reference beam path length 
is shortened. The hike ends on the edge of another 
dark fringe which expands when the reference beam 
path is shortened. The hike is downhill and the count- 
ing increments are thus positive. The count divided 
by two is estimated to be 7.7. Starting point (2) is 
centered on a bright fringe located between shrinking 
and expanding fringes which suggests that it is the 
zero-order fringe. After circling outside the zone seen 
in Fig. 10, the hike ends on the same fringe giving a 
zero count. Starting point (3) is located in a region of 
expanding fringes which indicates negative counting 
increments. The final fringe count divided by two is 
--2. 

Using the information summarized in Table 2, and 
the stress calculation formulas, eqs (21)-(22), with 
coefficients .4,/~, and C defined by the plane stress 
formulas, eqs (3), the following values of principal 
stresses and directions are found: 

0-] = 194 MPa (28.1 ksi) 

0" 2 = 32 MPa (4.7 ksi) 

[3 = 36 deg 

If the coefficients A, /~, and C are derived instead 
from the finite-element-based nondimensional coef- 
ficients of Table l ,  the principal stresses and direc- 
tions for the same experimental data are computed to 
be 

0-~ = 194.4 MPa (28.2 ksi) 

0-2 = - 2 2  MPa ( - 3 . 2  ksi) 

= 30 deg 

The differences between stresses determined by plane- 
stress and finite-element formulations are indeed small 
in this case, and both sets of values agree well with 
the level of  residual stress in the interference fit spec- 
imen. However, if fringe counts are taken ~t greater 
distances from the center of the hole, discrepancies 
become noticeable. For example, Fig. 11 shows the 
differences when counts are taken as a function of 
r / r  o. The values for 0-1 obtained using the plane-stress 
solution tend to drop with respect to the finite-element 
formulation as counts are taken at increasing distance 
from the center of the hole for r > 2r0. However, the 
values for 0-2 tend to maintain about the same differ- 
ence between both solutions. 

The above finite-element-based stress calculations 
were made considering Poisson's ratio as v = 0.33, 
a typical value for aluminum, but without making any 
corrections to the nondimensional coefficients d, b, 
and ~, of Table 1 which were calculated assumingv 
= 0.3. When calculating coefficients, A, B, and C, 
the influence of Poisson's ratio appears implicitly in 
the nondimensional coefficients d, b, and 6, and ex- 
plicitly in the expression for A, 

r0(1 + v) 

2E 

Extensive computations have shown that use of the 
actual Poisson's ratio in this equation without cor- 
recting any of the nondimensional coefficients yields 
stress values very close to those obtained when cor- 
rections are made. In fact, it was found that the use 
of nondimensional coefficients in Table 1 for cases 
where Poisson's ratio varied between 0.25 and 0.35 
caused computed stresses to differ by a few percent 
at most. For example, the values of d,/~, and ~ listed 
in Table 1 can be recomputed by running the finite- 

a 
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200 

150 

100 

50 

0 

-50 
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~1 Plans "~ "  
stress 

c 2 Plane[ 
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~2 Finite 

.5 2.0 2.5 3.0 
r / r  o 

3.5 4.0 

Fig. 11--Differences in stresses estimated by plane- 
stress and finite-element solutions 
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element model for v = 0.33. The stresses can be then 
recomputed for the data listed in Table 2 yielding the 
following values. 

0-1 = 193 MPa (27.9 ksi) 

0"2 = - 2 4  MPa ( - 3 . 4  ksi) 

[3 = 29 deg 

Discussion 

Holographic interferometry used in conjunction with 
blind-hole drilling provides an accurate, fast tech- 
nique for determining residual stresses while elimi- 
nating most of the drawbacks associated with the con- 
ventional strain-gage-rosette technique. However, the 
holographic technique does require rather strict vibra- 
tion isolation during the exposure of the holographic 
plate, which is usually on the order of a second. Since 
vibration isolation is typically obtained by means of 
an optical table, the scale of the structures or com- 
ponents that can be mounted on it is limited by its 
size. 

The holographic/hole-drilling technique should be 
applicable, as currently derived, for determining uni- 
form components of stresses in the presence of stress 
gradients acting along a surface if the hole is suffi- 
ciently small relative to the dimensions over which 
the gradients exist and if the uniform components of 
stress are sufficiently large relative to the varying 
components of stress. The meaning of 'sufficiently' 
needs to be investigated as well as possible ways of 
extending the technique to determine surface stress 
gradients. 

The holographic/hole-drilling technique could also 
be used to determine stress gradients below a surface 
by recording fringe patterns, viewed in real time, at 
various increments of hole depth and then processing 
the optical information as a function of depth in con- 
junction with displacement-based approaches similar 
to strain-based approaches such as given in Refs. 16 
and 27. 

The use of holes smaller than those considered here 
is certainly feasible. Experiments utilizing 0.8-mm 
(0.031-in.) diameter holes have been used success- 
fully to determine stresses, as described in Ref. 14. 

Perturbation of a fringe pattern need not be done 
by manually touching the back of a mirror in the ref- 
erence or object beam paths. Instead, a known phase 
shift of any desired amount could be introduced by 
optical means, e.g., by interposition of a compensator 
in the object or reference beam paths. Thus, the 
'flowing' effect of fringes can always be obtained either 
in a continuous or discrete fashion. 

The extra phase shift term in eq (23), Aqb, can ac- 
tually be regarded as time-dependent since the ref- 
erence-beam path length varies with time until a limit 
is reached. The method of perturbing the fringe pat- 
tern by a time-dependent variation of the optical path 
length of the reference beam is hardly new, but to our 
knowledge it has not been applied before to deduce 

phase-shift signs in holographic interferometry by 
simple observation. The interpretation of fringe pat- 
terns as level curves of a three-dimensional surface 
has originally been reported by Holloway and Durelli 29 
for an analysis of out-of-plane displacements origi- 
nated by stress waves. In this paper, that interpreta- 
tion has been extended to a more general case in- 
cluding out-of-plane and in-plane displacements, and 
recognizing the time-dependent movement of the en- 
tire fringe function surface to explain the causality be- 
tween directions of 'flowing fringes' and phase-shift 
signs. 

It is noted that the process of converting fringe counts 
to stresses is valid as long as a given fringe pattern 
is unique, that is, there are no other stress states that 
produce the same fringe pattern under consideration. 
It has been found that for a given fringe pattern, orig- 
inated by a stress state defined by the tensor 0-is, it is 
possible to obtain an identical fringe pattern by sim- 
ply reversing the sign of the stress tensor, i.e., -o-ij. 
Although the fringe patterns for both cases look the 
same under static conditions, i.e., regarding a fringe 
pattern as a frozen two-dimensional image, their be- 
havior under reference beam perturbation is different. 
This dynamic behavior, envisioned as a moving three- 
dimensional surface, provides information that allows 
the observer to remove the sign ambiguity and regain 
uniqueness. A formal uniqueness proof for fringe pat- 
terns originated by the holographic/hole-drilling tech- 
nique is offered in Ref. 30. 

The fringe-counting procedure described in this pa- 
per is valid as long as the grazing angle is "Vl < 90 
deg. When ~ = 90 deg, only out-of-plane displace- 
ments are picked up by the fringe pattern and the ma- 
trix of coefficients is singular in eq (21) since ac- 
cording to eqs (16) 

Moreover, the fringe counts between diametrically 
opposite points will always be zero since the phase 
shifts are +(r, 0) = ~b(r, 0 + rr) due to the fact that 
uz ( r ,  O) = uz (r, 0 + 7r), i.e., 

w n  (~ = K~u~(r ,  Oi) = K ~ uz ( r ,  Oi + ~r) = 7rn (i') 

A separate set of stress calculation formulas could be 
developed for this special case. 

Finally, it is noted that alignment of the object with 
respect to the viewer or the illumination and reference 
beams is not important in this technique, only rea- 
sonably accurate measurement of optical parameters 
such as the grazing angle "Yl is needed. The effect of 
surface topography may be another concern, but the 
holographic technique requires no special surface 
preparation and has been applied successfully to ir- 
regular surfaces such as those of weld beads, 31 which 
distorted fringe shapes to some extent but did not pre- 
vent an accurate fringe count. The technique can also 
be applied to curved surfaces as long as the curvature 
is such that the relations between stress and the dis- 
placements associated with hole drilling, derived for 
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an infinite plate, can be applied with sufficient ac- 
curacy. The same type of limitation is encountered in 
the strain-rosette technique. 

Conclusions 

There is sufficient displacement information con- 
tained in one holographic fringe pattern viewed in real 
time, made with a single beam and one direction of 
illumination, to uniquely determine principal residual 
stresses and their directions for uniaxial or biaxial 
stresses approximately uniform in the locale where a 
hole in introduced. 

The fringe-counting method derived here allows 
stresses to be determined rapidly and with an accu- 
racy comparable to other residual-stress measurement 
techniques. 

The whole-field characteristics of a holographic 
fringe pattern allows one to recognize broadly the na- 
ture of residual stress present, e.g. uniaxial compres- 
sion versus equibiaxial tension, and the relative mag- 
nitude of stresses, i .e . ,  high, low, negligible. 
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