
The Alignment Error of the Hole-drilling Method 

The s t r e s s - s t r a i n  re la t i onsh ip  for  the  e c c e n t r i c  ho le  case  has 

been  de r i ved  and e x p r e s s e d  in t e r m s  of the o f f - cen te r  d i s t a n c e  

(ho le  cen te r  to s t r a i n - g a g e - r o s e t t e  cen te r )  and the  po la r  ang le  

b y  H s i n - P a n g  W a n g  

ABSTRACT--The hole-drilling method is one technique for 
measuring residual stresses. All the existing equations for the 
calculation of residual stresses are based on the assumption 
that the hole is located at the rosette center. In this paper, the 
stress-strain relationship for the eccentric hole case has 
been derived and expressed in terms of the off-center distance 
and the polar angle. The alignment error is studied and 
demonstrated by two examples, namely, a uniaxial-stress 
field and a hydrostatic-stress field. The error analysis yielded 
the following typical result: ten percent of hole radius off- 
center will yield about five-percent measuremenl error for the 
standard rosette (EA-09-062-RE,120). 

I n t r o d u c t i o n  

The hole-dril l ing me thod  for de termining  residual 
stresses has been developed by many  researchers '-~ for 
several decades. The  me thod  is based on  the fact tha t  
residual stresses can be calculated f rom the measurement  
of  surface strains which result when stresses are relieved 
by a hole. There  are various procedures  to relax the 
stresses, either the mechanica l  me thod ,  i.e., hole drilling 
or some modern  techniques such as abrasive j e t3  

Because of  possible eccentricities occurr ing between a 
hole center and  the rosette center,  the a l ignment-er ror  
analysis is impor t an t  to the final stress results. 

T h e o r y  

Several assumpt ions  should  be made  before  fo rmula t ion  
of  the problem : (1) the dimensions  of  t h e  test specimen 
are large with respect to the diarheter of  the hole; (2) the 
surface de fo rma t ion  will not  cont inue af ter  the hole dep th  
reaches one-diam deep, 2-' (3) the var ia t ion  of  stresses over 
the thickness is neglected. With  these assumpt ions  the 
p rob lem is simplified to the case of  the stresses a r o u n d  a 
circular hole in an infini te  plate. 
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By the  hole-dr i l l ing me thod ,  the residual stresses are 
not  fully relieved at the s train gage unless the  gage is 
infini tesimally small and  located at  the  edge of  the hole. 
However ,  the relief stress field can be derived by super- 
posing two known  funct ions ,  2 the stresses on  a flat plate 
and the stresses a r o u n d  a hole. The relief stresses are:  
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where a~,a2 = the principle stresses 
a = the hole radius 
r = the radial  distance f rom the hole center  
0 = the angle between ar and  a , .  

Concentr ic  Hole 

By H o o k e ' s  law, the radial  s t rain is 

1 ~r = ~- (or - ~o,) (2) 

where 

E = Young ' s  modulus  
v = Po i s son ' s  rat io 

S u b s t i t u t i n g  eq (1) into eq (2), the measured  s t ra in  c, 
becomes 

l r oh + o-z o'~ - -  (r2 - H - -  
E ( r o / a )  ~ 2 

[3(1 + v ) / ( r o a )  2 - 41 cos 20} (3) 

As shown in Fig. 1, ro is the radial  dis tance f rom the 
rosette center  to the center of  each gage. The  gage reading 
% expresses the averaged value of  the radial  s t rain over 
the gage area. 
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For the uniaxial stress field (a2 = 0), assuming the 
gage direction coincided with the stress direction, the 
reading ~, is 

0"1 
e,(0 = 0) = K , ~ -  (4) 

where 

K1 = 
- 5  - v + 3 ( l + o ) / ( r o / a )  2 

2(ro/a) 2 

and the uniaxial stress a, is 

Ee, 
o, = (5) 

KI 

In a biaxial-stress field with known principal directions, a 
two-gage system is used for the measurement.  The 
measured strains are 

1 + K2 a2) (6) ~,, (0  = 0 ~ = -~- ( K , o ,  

1 
e,2 (0 = 90 ~ = --~ (K2a, + K202) (7) 

where 

K 2  = 
3 - v - 3(1 + v ) l ( r o / a )  2 

2( ro/a ) 2 

and  the  pric ipal  s tresses  are 

(rl = E - K , e ~ ,  + K2%2 (8) 
K22 - K,  2 

a2 = E K2%, - K2eg2 (9) 
K2 2 - KI 2 

�89 

/ \ /  1 , 

Fig. 1- -Dimensions  of a strain-gage rosette 

If  the principal direction is not  known, three unknowns 
al ,  ~2 and 0 in eq (6) can be solved by three simultaneous 
equations obtained by  putting three gages in the directions 
0, 0 + a and 0 - c~. The general solutions are found to 
be 

1 --  cos2_E_u 
0 = �89 tan- '  [(. 2e, - e. - e-. 

a , = E t  ~ . + ~ - . - 2 e ,  cos 2c~ + 

e-c, - -  ~a  �9 ) 

(10) 

[(~,_ E.)2+ (~,_ ~_o),],,2 
B sin 2 c~ } 

( l l )  

a z = E {  e~+E_.-2e, cos 2 a  [(e,-~.)2+(Ee-e_.)2] ''2 } 
2A (1 - cos 2tx) xf2 B sin 2ct 

(12) 

w h e r e A =  (1 + v)a  2 . B =  2a2 [ - 1  + 3(1 + v)a 2] 
2r  2 , - 7  4 r  2 J 

Eccentric Hole 

Figure 2 shows each parameter in the eccentric-hole 
analysis, where Co is the center of  the gage system and C 
is the hole center. The /3  angle denotes the gage direction 
relative to the line connecting the hole center and the 
center o f  each gage. 

F rom the basic Mohr ' s  circle, the strains in the 0 
direction can be found in terms of  the principal strains, 
e, and ~2. 

e. = e, cos20 + e2 sin20 (13) 

e, = e, sip20 + e2 c o r  (14) 

Similarly, the measured strain e. can be expressed as 

e~ = e, c o r  (0 - /3) + e2 sin 2 (0 - /3) (15) 

Solving the simultaneous eqs (13) and (14) for e, and e2, 
and substituting these two values into eq (15). the measured 
strain becomes 

1 
e, = c o s 2 0 _  sin20 [ ( e r c o r  e, sin20) c o r  /3) 

+ (e, cos20 - e. sin20) sin 2 (0 - 13)] (16) 

By Hooke ' s  law for plane stress, eq (16) yields 

1 (L ,  ar + L2a,) (17) (.g= ~" 

where 

L,  = [(cos20 + v sin20) cos2(0 - / 3 )  - (sin2O + v c o r  

sin 2 (O - / 3 ) ] / ( c o s 2 0  - sin20) 

L2 = [(cos20 + v sin20) sin2(0 - / 3 )  - (sin=0 + v cos20) 

c o r  (0 - / 3 ) ] / ( cos20  - sin20) 

In the hole-drilling process, the measured strain is 
caused by the relief stresses. Therefore,  the stress function 
in the eq (17) should be represented by eq (1). Finally, the 
measured strain becomes 
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Using the law of  cosine (see Fig. 2) the dimensionless 
distance r/a is 

r/a = [ (R /a )  2 + (ro/a)  ~ - 2 ( R / a )  (ro/a)  cos y]"= 

(19) 

where off-center distance R and y angle are shown in 
Fig. 2. By the law of  sine, the sin/3 becomes 

R / a  sin y 
sin/3 = 

[ (R /a )  2 + ( r o / a ) 2 - 2 ( R / a ) ( r o / a ) c o s ' y ]  '/~ 

(20) 

For  the uniaxial stress case, the gage is assumed to be 
parallel to the stress field. The strain is 

e. (0 = - / 3 )  = K .  (r /a , /3)  ~ (21) 
E 

where 

�9 1 3 2)(1 2 sinS/3)] 
K . ( r / a , / 3 )  = { [ -  ~ -  + ( 2 ( r / a )  ~ 

1 3 
[1 - (1 - v)sin2/3] + [ 2  2(r /a)  5 

(1 - 2 sin'/3)] [ - v  - (1 - v) sinS/3]} 

/ [ ( r /a )  5 (1 - 2 sinS/3)] 

K I ,  (r /a , /3)  can be written in terms of  R / a ,  y and ro/a by 
eqs (19) and (20). The stress is then 

E E 
o, - K , ( r / a , / 3 )  ~ = K . ( R / a ,  y ,  ro/a) % (22) 

As shown in Fig. 3, a two-gage system is used for the 
biaxial-stress case. Let 0 = 0,; /3 = /3, for gage one and 
0 = 05; /3 = /35 for gage two. Since the direction of  the 
gage system is consistent with the principal axes, then 
0~ = -/31; 05 = 90 ~ + /35. The strains ~= and e,2 become 

~ , ( 0 =  - / 3 1 , r = r l ) = l  [ K . ( r , / a , / 3 ~ ) a l  + Kn(r , /a , /31)o2]  

(23) 

0"2,E 2 

O ' j , E  I 

Fig. 2--Schematic showing geometrical 
parameters and stress components 

Eg 

E r 

1 [K2,(r2/a,/32)o,  % 2 ( 0 = 9 0 ~  + /32, r = r2) = - ~ -  

+ K52(r5/a,/32)o21 (24) 

where K . ,  K~5, K21, and K22 can be obtained by eqs (18), 
(19) and (20) and are listed in the Appendix.  Now,  the 
principal stresses o1 and 02 are 

E 
cr, = (K22e,, - K,2%2) (25) 

KnK22 - K21KIz 

E 
o2 = KI~K~2 - K21K12 (-K51%~ + K~%2) (26) 

The alignment error analysis will be demonstrated by 
two extreme cases, the uniaxial-stress field and the hydro- 
static-stress field. The general solutions of  o1, 02 and O for 
the eccentric case, have not been solved yet due to 
complexity of  eq (18). 

A l i g n m e n t  Error 

First, the uniaxial case will be discussed. Let cr be the 
stress solution of  the eccentric hole and a* be the stress 
solution of  the concentric hole. F rom eqs (5) and (22), the 
error is 

o *  - o K l l ( R / a ,  y ,  ro/a) 
~ = (27) 

o K , ( r o / a )  

Figure 4(a) shows the alignment error vs. y angle for the 
case R / a  = 0.1. It is seen that the error is higher at the 
axis of  the gage (y  = 0, 70 and increases with the hole 
size. The alignment error vs. the off-center distance R / a  
is shown in Fig. 4(b). It is obvious that the error increases 
as the R / a  increases. 

For the hydrostatic case, the aligmnent error is dependent 
upon the number  of  the gage being used. The single-gage 
case will be discussed first. Substituting a, = 05 into eq 
(23) yields 

E% ( & / a )  2 (1 - 2 sin2/31) 
o - - E% 

K11 + K,5 - ( 1  + v) 

(28) 

i 
Fig. 3--Schematic of the two-gage rosette 
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Fig. 4 ( a ) - - A l i g n m e n t - e r r o r  ana l ys i s  for  the  un iax ia l - s t ress  
f ie ld  (Rla --- 0.1; z, = 0.3) 

3oF  7",o 

0 " Rio 

Fig. 4(b)--Alignment-error analysis for the uniaxiabstress 
71" 7r 3"/1" 

field (7 = 0, ~ - , ~ ,  4 ,~r;(ro/a = 3.3;u = 0.3) 
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Fig. 5 ( a ) - - A l i g n m e n t - e r r o r  ana l ys i s  fo r  the h y d r o s t a t i c -  
s t ress  f ie ld  by  s ing le  gage  ( R l a  = 0.1; u = 0.3) 

40 - -  7.=0 

3 0 7 "  20 W4 

b b I0 7": ~IZ 
0 I I �9 Rio 

,.r -10 ~ 7"7 
-20 ~ : 3vr/4 

:'/r 
-30 -- 

-40 - 

Fig. 5(b)--Alignment-error analysis for the hydrostatic- 
~r ~r 37r 

s t ress  f ie ld  by s ing le  gage  ( 3 ' =  0, ~,,  ~_, 4 'Tr; 

ro /a  = 3.3; v = 0.3) 

Similarly, eq (6) gives the stress (7* of the concentric hole 

E~e (ro/a)  2 
o* . . . .  E~, (29) 

KI + /~  l + v  

Hence, the error of the single-gage is 

a* - (7 K11 + K~2 (ro/a)  2 
- - 0 7 0  - - -  1=  

o K I + K 2  ( r ~ / a ) 2 ( l - 2  sin~/31) 
- 1  

(30) 

By employing eqs (19) and (20), the error becomes, 

( 7 " - - 1 7  
- - 0 7 0 =  

(7 

( r o / a )  ~ 
- 1  2 2 2 2 ( R / a )  + (ro/a)  - 2 ( R / a ) ( r o / a ) c o s 3 / -  2 ( R / a )  sin 3' 

(31) 

Figures 5(a) and 5(b) show the alignment error of the 
hydrostatic case by a single-gage measurement. It is noted 
that (ro/a)  2 is dominant in the eq (31). 

Unlike the single-gage case, the errors for the two-gage 
system are in two directions. 

o 1 " - o  07 o = -K~e~l+K2r K .K22-K21K12  _ 1 
(7 1(22 E~I - K12 r 1(2 z - K12 

(32) 

a2"-(7 070 = Kz~gl-Kle~2 K ,  K22-K21K12 _ 1 
o -K21~,I+K~1~2 K 2 2 - K I  2 

(33) 

where o1" and a2* are calculated by substituting e~, and 
c,~ into eqs (8) and (9) for the concentric hole. 

For the hydrostatic condition, ~,1 in eqs (25) and (26) 
can be expressed 

~., = Ne~2 (34) 

where N = ( K .  + K12)/(K22 + K21). 
Now the errors become 

o,* - o - K , N +  K2 K11K~2-K21K,2 
- -  0 7 0  w 

a K z 2 N - K 1 2  K22-K12 

0 2 * - 0  K 2 N - K I  K . K 2 2 - K n K . 2  
070= 

a - K 2 1 N + K .  K2=-K12 

- 1  

(35) 

- 1  

(36) 
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Fig. 6(a) - -A l ignment -er ror  analysis for the hydrostat ic-  
stress f ield by two-gage roset te (R/a = 0.1; rola = 3.3; 
p = 0.3) 
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Fig. 6 (b) - -A l ignment -er ror  analys is for the hydrostat ic-  
7r 37r . 

stress f ield by two-gage roset te (7 = 0 ,~ - ,  7r, 2 ' 

rola = 3.3; v = 0.3) 

Where 7 is equal to 45 deg or 225 deg, the hole is a 
symmetric position and the strains from both gages are 
equal. The errors for these two specific angles are 

O l *  - -  (7 02*  - -  U 
~  % =  

(7 (7 

- K,  + K2 K . K 2 2 -  K2,K,2 
- 1 (37)  

K22 - K,2  K22 - K #  

Figures 6(a) and 6(b) show the alignment error of the 
hydrostatic stress field for two gages and the symmetric 
characteristic along the �88 ~r and 1 �88 7r directions. 

C o n c l u s i o n  

From Table 1 of computed results, it is noted that the 
alignment error increases when the r o / a  ratio decreases at 

TABLE 1--COMPUTED RESULTS OF MAXIMUM ALIGNMENT 
ERROR FOR R/a = 0.1 

ro/a = 3 . 3 *  ro/a = 2.0 
% % 

e 

Uniaxial 5.8 8.1 
One Gage 6.3 1 0.8 

Hydrostatic Two Gages 4.7 8.3 

* The standard rosette (EA-O9-O62-RE- 120). 

a constant value of R / a .  For a standard rosette (EA-09- 
062-RE-120) the alignment error is about five percent in 
the stress solution for the case with 3 mils out of the 
rosette center in which R / a  is equal to 0.1. 

It is recommended that the general solution for the 
eccentric hole case be derived. Then the principal direction 
and the principal stresses can accurately be calculated by 
substituting the measured values of R and 3,. However, 
with the present formulation the principal direction can 
only be solved iteratively. 
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A P P E N D I X  

The general expression of coefficients K,, ,  K,2, K2, and 
K22 in terms of ( r , / a ) ,  (/3~), ( r J a )  and (/32) can be 
written as : 

K, ,  ( r , / a , f 3 , )  = 
12 

{ [ - � 8 9  + ( ~ )  - 2 ) ( 1  - 2 sin2/3,)] [1 - (1 - v) 

3 sin2/3,] + [�89 =F - -  (1 - 2 s in2 /3 , ) ]  [ - v  
2 ( r l / a )  2 

- ( 1 -  v)sin2/3,]} / [ ( r , / a )  2 ( 1 - 2  sin2/3,)] 

K2, ( r J a , [ L )  = 
22 

3 2) (1-2sin2/32] [ 1 - ( 1 -  v) 
{ [ - � 8 9  =r ( 2 ( r j a ) 2  

3 sin2/32] + [�89 _+ - - ( 1 - 2  s i n 2 / 3 2 ) ] [ - v  
2 ( r J a )  2 

- ( 1 -  v) sin2/32)} / [ ( r J a ) 2 ( 1 - 2  sin2fl2)] 

where r l / a , / 3 ~ ,  r 2 / a  and/3z are also functions of R / a ,  ~/, 
and r o / a  based on the following equations : 

( r a / a )  2 = ( R / a ) 2 +  ( r o / a )  2 -  2 ( R / a ) ( r o / a ) c o s 7  

sin2/3, = (R /a )2s in~ '~  
( R / a )  2 + ( r o / a )  2 -  2 ( R / a ) ( r o / a ) c o s 7  

( r 2 / a )  2 = ( R / a )  2 + ( r o / a )  2 -  2 ( R / a ) ( r o / a ) c o s ( 9 0  ~ - ~/) 

( R / a ) 2  s in  2 ( 9 0  o _ .y)  
sin2/32 = ( R / a )  2 + ( r o / a )  2 -  2 ( R / a ) ( r o / a ) c o s  ( 9 0  o _  .~) 
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