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ABSTRACT--The basic equation for fringe formation in the 
case of reflection moir6 applied to surfaces of arbitrary cur- 
vatures is derived. A practical point-by-point solution for the 
application of this method is introduced, and the correspond- 
ing simplified equations are given. The technique is applied 
to an industrial problem, the stress analysis of a shell-shaped 
door. 
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Nomenclature 

Po = projected point of the grating 
P = point of the initial shell surface where the beam com- 

ing from Po is reflected 
Q = point of the deformed shell surface where the beam 

coming from Po is reflected 
R = point of the image plane corresponding to point Po 

before deformation 
P '  = point of intersection of plane ~x with the normal from 

point P 
Q' = point of intersection of plane r~ with the normal 

from point Q 
T = point of the image plane corresponding to Po after 

deformation 
r i  = position vector of point P 
rQ = position vector of point Q 
rR = position vector of point R 
rT ---- position vector of point T 
r iR = unit vector that defines the line P R 
rip, = unit vector that defines the line P P '  
rQQ, = unit vector that defines the line Q Q' 
rQT = unit vector that defines the line Q T  
Io = unit vector that defines the direction of illumination 
rip = normal to the initial surface at point P 
nQ = normal to the deformed surface at point Q 

A method for obtaining the partial slopes of flexed surfaces 
1 was introduced by Ligtenberg. This method was extensively 

used at the Netherlands Organization of Applied Scientific 
Research for the study of complex plate systems. Reider 
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and Ritter 2 proposed a modification of this method. Both 
methods use a grating that is focused on the image plane of 
a camera via a reflecting model surface. Pedretti 3 proposed 
an alternative technique in which a grating is projected on 
an image plane via reflection on a model. A number of op- 
tical setups to obtain partial slopes using reflecting surfaces 
were proposed by Theocaris. 4 More recently, Sciammarella 
and Combel 5 showed that all of the techniques described 
above are forms of shearing interferometry. Theocaris 6 and 
Osgerby 7 proposed extensions of the moir6 reflecting tech- 
nique to cylindrical shells. Kamaritova 8 analyzed the appli- 
cation of reflection moir6 to shells. A very general discussion 
of the application of reflection molt6 to shells was offered by 
Gambarova et al. 9 who proposed a method based on itera- 
tion to obtain local rotations from moir6 patterns resulting 
from the reflections of gratings of shell surfaces. Numerical 
examples were presented only for simple shapes as cylinders 
and spheres. Ritter and Schulte 1~ derived equations for fringe 
patterns corresponding to shells of arbitrary shape. No actual 
applications were provided. 

In this paper, a point-by-point reflection moir6 technique 
is proposed and applied to the study of a reflecting shell. 

Derivation of the Fundamental Relationships 

The general equations for the formation of fringes after 
the reflection of a grating on a convex surface of arbitrary 
shape are derived from geometrical optics. These general 
equations will be simplified for the particular method of ob- 
servation proposed in this paper. The extension to concave 
surfaces is immediate and requires only the use of the corre- 
sponding imaging optics. 

Figure 1 shows the schematic representation of the optical 
system. A cross grating is illuminated by monochromatic col- 
limated light. The image of the grating is received on a plane 
~x after reflection on an arbitrary convex surface So (x, y, z). 
To simplify expressions, the plane xy ,  the plane of the grat- 
ing and the image plane are chosen to be parallel to each 
other. The surface is loaded and after deformation becomes 
the surface Sd(x, y, z). A point Po of the grating is imaged 
on the point R after reflection at the point P. After defor- 
mation, Po is imaged onto point T via reflection on point Q 
of Sd. The following nomenclature is introduced. Io is the 
unit vector defining the incident illumination beam, np is the 
vector normal to the surface So at P, nQ is the vector normal 
to Sd at Q, r i a  is the reflected beam at P, rQT is the reflected 
beam at Q and rip, is the perpendicular from point P to the 
plane 3x. From the law of reflection, one can conclude that 
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Fig. 1--Coordinate system for the analysis of the image for- 
mation in reflection moir6 

Io, np and rpR are in the same plane, as well as Io, nQ and 
rQT. In addition, because of the laws of reflection, the angles 
Io n p =  np r PR' Io n Q = nQ ~ QT" The illumination vector 
is defined by 

Io = cos01ex + cos02ey + cos03ez, (1) 

where cos0i, i = 1, 2, 3 . . . . .  are the direction cosines of the 
illumination vector. The unit reflection vector reR can be 
obtained by adding the vectors Io and )~pne: 

rPR = Io + ~pnp, (2) 

where ),p is a multiplier that can be computed from Fig. 2 
by applying the cosine law, 

IrpRI 2 = k2p InpI 2 - 2)~p(np �9 It) -t- 11ol 2 , (3) 

where, indicates the scalar product of the two vectors and I I 
indicates the magnitude of the vector. From (3) and recalling 
that It  and rpR are unit vectors, 

2(np.  Io) 
~,e = InpI 2 (4) 

The normal np is given by 

nv = grad So(x, y, z). (5) 

Then, considering (4), 

2grad So �9 Io 
)~p - (6) 

Igrad Sol 2 " 

The vector position of R is given by 

rR = rp + dpRrpR, (7) 

where den is the distance between the points P and R. The 
distance dpR can be computed in the following way. The 
triangle P PPR is a right triangle, therefore, 

dp 
dpR -- rpR �9 rpp, (8) 

P 
So 

/ Lpnp 

Fig. 2--Determination of ~.p 

where dp is the distance P PP. Defining Dp by the following 
equation, 

rPR �9 rp W = Dp, (9) 

eq (7) can be written as 

rR = rp + b--;pde [It + ~p grad So] . (10) 

Quantifies similar to those defined for point P can be defined 
for point Q: 

rOT = Io + Xano (11) 

2[grad Sd. Io] 
)'Q = Igrad Sdl 2 (12) 

DQ is defined by the following equation: 

DQ ---- rQT �9 rQQ~, (13) 

where rQQ, is the vector corresponding to the perpendicular 
line from point Q to the plane ~t. The distance between point 
Q and the plane ~ is called d O. We can write an equation for 
point Q similar to (10) for point P: 

do [Io -t- ~.a grad Sd] rT = rQ -I- ~ (14) 

The change of the position of the image point caused by the 
deformation of the image is 

rT -- rR = rQ - rp 

] + ~Q grad Sd -- dp~.p grad So �9 
L Q Dp 

Equation (15) provides the displacement of a point of a grat- 
ing projected on a plane via reflection from a surface after 
the deformation of the surface. This equation is referred to as 
a global coordinate system. The displacement is a function 
of the grating position, the surface position, the image plane 
position and the gradients of the surface before and after 
deformation. The displacements obtained from this equa- 
tion can be introduced in the moir6 equations to obtain the 
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expressions corresponding to the moir6 fringes defining the 
slopes of the surface. This can be done in a limited number 
of simple geometries, for example, a cylindrical surface. The 
difficulty involved in handling eq (15) in a general case can 
be understood with the following argument. If the contour of 
the projected grating is a rectangle, the resulting image after 
reflection on an arbitrary shell is an irregular polygon with 
four curved sides. 

Simplification of the General Equation 

In this research, we studied the bending stresses of a glass 
door that had the shape of an arbitrary shallow shell. To make 
eq (15) manageable in the short time period given to find a 
solution, a local formulation was chosen. 

One wants to relate the displacements defined by the vec- 
torial eq (15) to the rotations of the local coordinate system 
with origin at point P, the point under observation. Assum- 
ing infinitesimal rotations, the rotation vector is defined by 
the following equation: 

r = qgxe x + ~Oyey + ~0ze z. (16) 

Of the three components of the rotation vector, ~Ox, 9y are 
the only components that can be determined by reflection 
moir6. The third component can not be obtained; however, 
in the present study this component is not required. The 
theory of bending of plates and shells needs only the slopes 
or rotations of the local base vectors ex, ey. These vectors 
must be contained in the plane tangent to the surface at the 
observation point. 

Figure 3 shows the schematic representation of the optical 
setup, whereas a schematic of the portable optical bench used 
is shown in Fig. 4. The origin of coordinates is at point P as 
seen below. The illumination beam and the reflecting beam 
are contained in the xz  plane. The z-axis is of the direction 
of the normal to the surface at P. The image plane is selected 
normal to the z-axis. For this coordinate system, 

Xp ~ XQ = 2cos0. (17) 

Furthermore, 

Dp ~- DQ = COS0 (18) 

and 

dp -~ dQ = d. (19) 

Fig. 3--Local coordinate system for the analysis of reflection 
moir6 
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Fig. 4--Portable optical bench 
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Finally, (15) simplifies to 

rT -- rR = rQ -- rp + 2d[grad S d - grad So]. (20) 

To perform the local analysis, the surface near P must be 
described as a function of the coordinates x, y in the tangent 
plane. Assuming infinitesimal deformations, the deforma- 
tion of the surface is given by w(x,  y). Consequently, 

Sd(x, y) = So(x, y) + w(x ,  y). (21) 

According to the properties of the function gradient, (20) 
reduces to 

rT -- rR = rQ -- re  + 2d grad w ( x ,  y) ,  

resulting in the projection equation 

(22) 

0w 
XT -- XR = XQ -- xp  --1- 2d ~ (23) 

Ox 

and a similar equation for the y coordinate. From (23), 

OW XT - -  XR XQ - -  Xp 

Ox 2d 2d 
(24) 

One can neglect the second term of (24) because it is two 
orders of magnitude smaller than the first. Then, 

Ow dx 

ax 2d '  
(25) 

where, dx = XT -- xR. Equation (25) has the classical form 
derived in Ref. 1. Now, using the nomenclature of the moir6 
method, we can express the displacement dx: 

�9 x(X, y) 
dx = - -  p, (26) 

27t 

where qJx (x, y) is the modulation function. The modulation 
function represents the displacements that change the initial 
grating reflected on the nondeformed shell. This change is 
expressed as a phase angle. The quantity p is the pitch of the 
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grating. Finally, the change in slope of the surface is given 
by the following equation: 

too view 
f 

Ow gtx(X' Y) P (27) 
Ox -- 2 x  2d " 

Similarly, 

OW qlY(X' Y~) P (28) ~ l m  
0y -- 2re 2d'  

where O;y(X, y)  is the modulation function corresponding 
to the y-direction. Equations (27) and (28) can be used by 
differentiating them to compute the curvatures ~a~ d~ 

a2w 
K x -  OX 2 (29) 

2 W 654.7 ram 143.9 m m  

(30) ,OOJb,. I s  OY 2 

02W 
(31) 

r  3xOy" 

The curvatures can be replaced in the shell equations for 
bending. The membrane stresses can be obtained by printing 
a grating on the surface of the shell and observing the moir6 
fringes produced by the load. 

Generalization to Coherent Optics 

The above derivations are valid both for coherent and for 
incoherent illuminations. 

An analysis similar to the one carried out in Ref. 5 can 
be used in this case. The final expression will be identical; 
however, the wave analysis introduces two important aspects 
of the problem. 

One aspect is the fact that reflection moir6 is a wave front 
shear interferometry method. The second aspect has to do 
with the self-imaging property of gratings when illuminated 
with coherent light. Away from the plane of the grating, the 
grating reproduces itself 12 at distances given by 

K p  2 
z -- , (32) 

k 

where z is the distance along the normal to the grating, ~ is 
the wavelength of the light used and K = 1, 2, 3. The dis- 
tance between the grating that is projected and the reflecting 
surface must be an integer number of z computed in (32). In 
the following section, we apply the technique that has been 
presented above. 

Application of the Proposed Technique to the 
Analysis of a Shell 

The proposed technique was applied to the stress analysis 
of a tempered glass door. The door dimensions are shown 
in Fig. 5. The stresses caused by closing the door are of 
particular importance. These stresses were determined by 
applying a concentrated load on the handle that operates the 
door. 

side view 

orh=ndie 

Fig. 5--Geometry of the analyzed shell 

The optical measurements were carried out using a 
portable optical bench (see Fig. 4). The bench provides the 
direction of illumination and observation, schematically rep- 
resented in Fig. 3. A collimated light projects a cross grating 
on the door surface. The reflected image is captured in a 
translucent screen. A CCD camera that provides the input to 
the signal-processing system captures the image. The align- 
ment laser is used to set up the axis of the optical bench 
along the normal to the door surface. The frame supporting 
the door has leveling screws that can be used to give the door 
the required orientation at each of the measuring points. The 
door failure occurs in the process of closing. The process of 
closing the door produces two separated but related effects: 
(1) the glass door is forced to contact the rubber sealing of 
the frame, thus introducing boundary contact stresses, and (2) 
changes of curvature take place under the applied load. The 
measurements were carried out in the following conditions: 
door open, door closed and door closed and loaded. Because 
the curvatures are tensors, tensorial laws of superposition 
were applied to compute the final changes of curvature. 

A cross grating of four lines per millimeter was used. Be- 
cause the image of the grating could be observed directly, a 
reference grating was not used. 

The measurements provide results at a given point. Ac- 
tually, a small region of the shell was identified through a 
marking done before the measurement. Because the grating 
itself can be observed, the method presented in Ref. 11 was 
applied. The grating in the unloaded condition was recorded. 
The shell was loaded, and the position of the shell was mod- 
ified to ensure that the normal direction of the shell with re- 
spect to the optical bench was preserved. The small changes 
of direction of the normal were produced by the rigid-body 
motion of the shell that was elastically supported at its edges 
on rubber gaskets. The nondeformed and deformed grating 
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information was processed. The fast Fourier transforms of 
the gratings were computed. The x-direction and y-direction 
information was separated by filtering in the frequency space. 
The wrapped phases of the grating in the x- and y-directions 
were computed for the loaded and unloaded conditions. The 
wrapped phases were subtracted, yielding the wrapped-phase 
differences between the loaded and unloaded conditions. The 
derivatives of the phase changes were computed using the 
method described in Ref. 13. In this case, the observation 
that the cross derivatives computed from the carders in the 
x-direction and in the y-direction are equal indicates that the 
independently determined functions ~sx (x, y) and %~ry (X, y) 
are in good agreement within experimental error. 

The stresses were computed by using the shell equations, 

- 2(I L ox= +  Ty= J 
(33) 

e h  
O'y- 2 ( 1 ~ 2  ) L OY 2 + v-~ffx2 j (34) 

Gh 02w 
Xxy = 2 0xOy' (35) 

where E is Young's modulus, h is the thickness of the glass 
and G is the shear modulus. Figure 6 shows a view of the 
actual setup. The membrane stresses were not measured, 
since the shell was very shallow and in the regions of interest 
the bending stresses were much higher than the membrane 
stresses. 

Results 

Figure 5 shows the region of maximum stresses located at 
the handle support area. The operating handle is supported 
at the hole shown in Fig. 5. Figure 7 shows the shell iso- 
statics in the region of interest. Figure 8 shows the principal 
stresses cri, and Fig. 9 provides an enlarged detail of the prin- 
cipal stresses Ol and the isostatics in the region of maximum 
stresses. In the above-mentioned figures, the distances are 
measured along the shell surface. The erl stresses are bend- 
ing stresses and occur on the outside face of the door. The 
stresses plotted in Figs. 7 through 9 correspond to the con- 
dition of door closed and loaded. The maximum stresses 

I,~mml 

~ _ . . 4 1 u l  lle I!il/i lw,lll liilli,~ll Id~alqm 

Fig. 7--1sostatics of the analyzed region 
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Fig. 8--Principal stresses oi 
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Fig. 9-Detail oftlae stresses oil and the isostatics 

Fig. 9--Detail of the stresses cq and the isostatics 

Fig. 6--View of the test setup 

occur along the line of contact of the glass with the hinge 
of the door. Figure 10 shows the maximum stresses along 
the hinge area. The line designated OL (open loaded) cor- 
responds to the total stresses resulting from closing the door 
with a force of 448 N (100 lbs). OU represents the stresses 
corresponding to the effect of conforming the glass door to 
the frame. Finally, UL represents the stress corresponding 
to the applied load and is the stress shown along the extreme 
left-hand line of Fig. 8. 
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Fig. 11--Comparison between the isostatics resulting from the stress analysis and the isostatics measured in a broken door 

Discussion and Conclusions 

The stress analysis conducted on the door showed that 
the region seen at the bottom of Fig. 9 is the region of 
highest stress. The highest stresses occur along the line 
where the glass door contacts the hinge that supports the 
door. The residual stresses in the glass were measured photo- 
elastically. Pieces were collected from a previously failed 
door and submersed in a liquid matching index for mea- 
surement. Computer-assisted photoelasticity was applied. 
In the region where the fracture of the door took place, the 
maximum residual stresses averaged 21.21 MPa (3038 psi). 
Adding the residual stresses to the minimum strength of the 
glass (41.9 MPa [6000 psi]), one obtains a modulus of rup- 

ture (63.11 MPa) that compares with the estimated maximum 
stress of the glass under service conditions (63.36 MPa). This 
result indicated that actual failure could take place in service 
if the appropriate adverse circumstances combine. Thus, the 
experimental results provided an explanation for the observed 
field failures. 

The cracked glass remaining at the region of support of 
the pull bar in doors broken under service conditions has 
the shape of the isostatics shown around the hole in Fig. 7. 
This hole is where the pull bar is connected to the door. To 
further relate the isostatic resulting from the experimental 
stress analysis to the broken specimens, measurements of the 
direction of the cracks with respect to the normal to the edge 
of the door were carried out. Figure 11 shows the results. 
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The determination of the direction of the isostatics from 
the broken door requires an explanation. It is a well-known 
fact that brittle materials break along lines perpendicular to 
the minimum principal stress a2; this is the principal behind 
brittle lacquers. The above conclusion is true without residual 
stresses. When residual stresses are present, the mechanism 
of fracture is more complicated. When a crack initiates in 
the direction perpendicular to the maximum tensile stress, 
the element of volume will experience a sudden expansion 
because of the relaxation of the compressive residual stresses. 
This causes a contraction in the perpendicular direction, and 
a crack propagates in this direction. Cracks in the direction 
of the tensile isostatics, as well as cracks perpendicular to 
this direction, were observed in the broken door. 

The preceding results indicate that the technique used in 
the current study provides satisfactory results, in that they are 
supported by observed facts. Several finite element solutions 
were run, and none provided good results. The difficulty 
in formulating an adequate finite element model lies in the 
elastic supporting condition at the edges of the shell and the 
unknown boundary conditions at the region of application of 
the load (the circular region shown in Fig. 9). 
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