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ABSTRACT--The use of intefferometric moira and hole 
drilling to determine residual stress has been well reported 
and accepted for stress fields whose principal directions can 
be predicted well enough to permit the moir~ grids to be 
aligned with the principal strain axes. When the principal 
strains do not align themselves with the grid axes, a third strain 
component can be obtained by working with the diagonal pitch 
of the moir6 grid, but this requires resetting the optical bench 
to the lower frequency. Diffraction efficiency is lost, with an 
additional loss in sensitivity. In this paper, the authors deter- 
mine the shear strain component by observing the rotation of 
the moir~ fringes in close proximity to the hole. The results 
of experiments on a specimen containing a model residual 
stress distribution are presented and compared with the the- 
oretical prediction. Finally, the isothetic contours, based on 
elastic theory, were computed and plotted for several cases to 
verify this proposition. These results and the expected resid- 
ual stress distribution are also compared to the experimentally 
obtained moira fringes. 

KEY WORDSnResidual stress, moir~ interferometry, hole 
drilling 

Fabrication and processing operations often introduce 
residual stresses to structural components. Operations in- 
volving localized heating (e.g., welding), differential thermal 
expansion (e.g., heat treatment of composites) or plastic de- 
formation (e.g., forming) create internal stresses that may be 
retained in the finished component. These stresses can be 
desirable (e.g., cold-worked holes) or undesirable (e.g., weld 
cracking). Measurement of the magnitude and direction of 
residual stresses is often necessary because the stresses can 
influence the service life of a component. X-ray diffraction, 
ultrasonic birefringence, Barkhausen noise and mechanical 
techniques are all used to measure residual stresses. 1 Of the 
mechanical techniques, hole drilling is routinely used. 2 

In the hole-drilling method, a small, shallow hole (~, 1 
mm diameter by 1.5 mm deep) is drilled in the sample, and the 
local displacement of the surface, in response to the material 
removal, is measured, usually with strain gages. Because 
drilling the hole releases local stresses, the adjacent sur- 
face undergoes displacements in response to the new stress 
equilibrium, and measurement of these displacements allows 
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the calculation of the state of stress that existed prior to the 
drilling operation. Displacements and strains in the direction 
normal to the surface are usually ignored in this measurement. 
The ASTM standard fully describes the use of strain gages for 
this measurement. However, the use of strain gages is disad- 
vantageous. Displacements cannot be measured at the edge 
of the hole, and the location of the hole is critical. The strain 
gages measure strain over a particular gage length, which is 
usually several diameters away from the edge of the hole. 

Moir6 interferometry 3-5 is an alternate technique for the 
measurement of the surface displacements caused by hole 
drilling. In this technique, a fine, linear diffraction grating 
is attached to the sample surface, the hole is drilled, and the 
surface displacement is measured from the molt6 fringe pat- 
tern created by interference between the sample grating and 
a reference grating. 6'7 The advantages are that displacements 
can be measured at the edge of the hole and the location of 
the hole is not critical. The technique is also insensitive to 
out-of-plane displacement. The sensitivity of the displace- 
ment measurement depends on the line density of the grating 
according to the relationship 

Ux = f N x ,  (1) 

where Ux is the displacement in the x-direction, f is the 
frequency of the reference grating and Nx is the fringe or- 
der. For instance, with a reference grating frequency of 2400 
lines/ram, the sensitivity of the displacement measurement 
is 0.417 Ixm per fringe order. The fringe order can be inter- 
polated to one-tenth of an order if necessary, this displace- 
ment would represent a strain of approximately 4 x 10 -5 
if it were measured over the hole diameter of 1 mm (i.e., 
e = A l / l  = 0.1 • 0.417txrrdmm). For typical aluminum 
alloys, an elastic strain of this magnitude represents a stress 
of approximately 3 MPa (0.4 ksi), which is excellent sensi- 
tivity. The relationship between the principal residual strains 
(~1 and E2) and the strain components obtainable from the 
moir6 fringes (ex, ~y and ~xy) are given by 

ex + ey -4- + Y 
el ,2  - -  2 - -  " (2) 

When an assumption of a state of elastic plane stress is made, 
the relationship between the principal strains and the corre- 
sponding principal stresses is given by 8 

E 
Cl - - -  (El + re2) (3) 

1 - v 2 

Experimental Mechanics �9 271 



E 
~2 -- 1 - v 2 (e2 + vel). (4) 

When the moir6 grids are aligned with the principal strain 
directions, there is no shear component (Yxy), and the prin- 
cipal strains are obtained by the Ex and ey strain components 
obtained from the moir6 system with the reference fringes 
aligned with the specimen grid axes. When the principal 
strains do not align themselves with the grid axes, a third 
strain component can be obtained by working with the di- 
agonal pitch of the moir6 grid. For our optical system, this 
requires resetting the optical bench to the lower frequency. 
Doing this results in a loss of diffraction efficiency, produc- 
ing poorer images, and the reduced pitch produces a loss in 
sensitivity. 9 It should be noted that other more complex op- 
tical arrangements can be employed to overcome the need to 
reset the optical bench. 9 

During the course of our experiments, we noticed that 
when the grid was not aligned with the principal strain axes, 
the moir6 fringes rotated in the immediate vicinity of the hole 
boundary. This led to an investigation into the relationship 
between moir6 fringe orientation and principal strain direc- 
tion. This paper will present the results of this investigation 
and show that the complete state of stress can be determined 
from an analysis of the two orthogonal moir6 fringe images. 

Experimental Procedure 

The test specimen chosen for this experiment was an alu- 
minum disk (7075-T6, 100 mm outer diameter x 25 mm 
inner diameter x 12.5 mm thickness) with an interference 
plug inserted into the center hole. A diametral interference 
of 0.059 mm was chosen to provide internal stresses that were 
entirely elastic. A 25 mm x 25 mm grid with a density of 
600 lines/ram was bonded to the right-hand side of the disk, 
and a 25 mm x 25 mm grid with a density of 1200 lines/mm 
was bonded to the left-hand side of the disk. A number of 
holes were then carefully drilled into the disk at locations 
where the grids were aligned with the principal strain axes 
(Yxy = 0) and at locations in which a general state of strain 
would exist ('Yxy ~ 0). Figure 1 shows the gridded disk and 
test holes. Table 1 lists the coordinates of the holes in the test 
disk. 

The application of interferometric moir6 and hole drilling 
to the determination of residual stress involves several distinct 
tasks. These can be conveniently separated as (1) preparation 
of specimen grids, (2) specimen gridding, (3) hole drilling, 
(4) specimen interrogation and (5) determination of residual 
stresses from interference fringes. 

Preparation of Specimen Grids 

The preparation of the master grids used an optical setup 
similar to that shown in Fig. 2, except that an unexposed pho- 
tographic plate was placed on the rotary stage instead of the 
test specimen. The plate was first exposed with the stage 
set at 0 deg. The stage was rotated precisely 90 deg, and 
the plate was exposed a second time. The result is a crossed 
grating with the chosen frequency. The frequency of the test 
grid was established by first placing a 300 lines/mm ruled 
grating at the location where the photographic plate would 
be exposed. The mirrors are coarsely adjusted by aligning 
them so that the first-order diffracted beams from each leg of 

Fig. I--Interference disk with rnoira grids and drilled holes 

the light path coincide. Final adjustment is made by imaging 
the resulting moir6 created by a reference grating and the in- 
terfering laser beams on a screen, then fine tuning the mirrors 
to produce as clear a field as possible. This technique allows 
the interference fringe frequency to be adjusted to the desired 
frequency, 600 lines/mm, with an error of less than one fringe 
per 25 mm. The same procedure was followed later in the 
project, using a 600 lines/mm ruled grating to produce master 
gratings with a density of 1200 lines/mm. 

Specimen Gridding 

The application of the grid to the test specimen followed 
the procedures published by Post. 3 Basically, the exposed 
and developed crossed grating was coated with a thin gold 
plating by vapor deposition. This was then bonded to the 
test specimen using a two-part epoxy adhesive. After the 
epoxy adhesive cured, the photographic plate was pried off 
the test specimen. The bond between the gold plating and the 
photographic emulsion was generally weaker than the bond 
between the epoxy and the gold plating, and the prying off of 
the photographic plate left the gold plating with the crossed 
phase grating on the surface of the test specimen. As can 
be seen in Fig. 1, the test specimen has been instrumented 
with two gratings. Initially, the specimen was gridded with 
a 600 lines/mm grating. After analyzing a number of holes, 
we wanted to know if better accuracy could be obtained with 
a grating of higher density. Thus, the second side of the test 
specimen was instrumented with a grating of 1200 lines/mm. 

Hole Drilling 

The residual stresses are made apparent by drilling a small 
diameter hole into the disk through the phase grating. The 
residual stresses in the material surrounding the hole cause 
this material to deform locally in response to the new, stress- 
free boundary at the edge of the hole. It is important that the 
drilling operation be done in such a manner as to avoid the in- 
troduction of new residual stresses produced by the drilling, 
or distortion of the gold-plated epoxy phase grating by heat- 
up during drilling. The following process produced holes 
with a sharp fringe definition at their boundaries. The hole 
was started with a number 1 center drill. This was followed 
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TABLE 1--COORDINATES OF HOLES IN TEST DISK 
Hole Diameter 

Number (mm) X Y R 0 
1 1.63 9.53 0.00 9.53 0.0 
2 1.60 15.88 0.00 15.88 0.0 
3 2.49 25.40 0.00 25.40 0.0 
5 1.63 35.05 12.7 37.08 20.2 
6 1.63 31.75 -19.05 37.08 -31.0 
8 1.63 19.25 -11.13 22.23 -30.0 
10 1.63 6.83 -19.38 20.55 -70.6 
11 1.63 16.31 15.62 22.58 43.8 
12 1.63 41.05 -5.54 41.43 -6.5 
13 1.63 41.33 4.70 41.58 7.7 
14 1.63 -15.88 0.00 15.88 0.0 
15 1.63 -25.40 0.00 25.40 0.0 
16 1.63 -35.05 0.00 35.05 0.0 
18 1.63 -10.21 0.00 10.21 0.0 
19 1.63 -3.18 15.88 16.18 101.0 
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TABLE 2--SUMMARY OF RESIDUAL STRESS MEASURE- 
MENTS IN A SAMPLE OF ANNEALED 7075 ALUMINUM 

Radial Stress Tangential Stress 
(MPa) (MPa) 
12.91 10.92 

-9.40 -20.43 
8.90 0.11 

by peck drilling with a number 55 drill (1.32 mm diameter). 
The peck drill was set for 0.13 mm depth increments to a final 
depth of 2.54 mm. This was followed by peck end milling 
using a 1.60 mm diameter end mill. Again, the peck incre- 
ments were set for 0.13 mm depth increments to a final depth 
of 1.78 mm. All drilling operations were accomplished at 
1500 rpm with water soluble oil cooling. Finally, the surface 
was rinsed with methanol and blown dry with shop air. To 
validate our drilling procedure, which was performed on a 
shop type milling machine, a sample of 7075 aluminum in 
the annealed state (residual stress free) was grated. Three 
holes were drilled and analyzed. Table 2 presents the results 
of these measurements. The average error for the six stress 
components was 10.4 MPa, with a standard deviation of 6 
MPa. There was no systematic error that would imply the er- 
rors were produced by a residual stress created by the drilling 
process. 

Specimen Interrogation 

An optical table, shown schematically in Figure 2, was set 
up using a helium- neon laser with a wavelength of 632.8 nm. 
The optical bench was set such that the angle between the in- 
terfering beams produced a vertical interference pattern with 
a density of 1200 or 2400 lines/mm. The fringe pattern of 
the interrogation interferometer was set for twice the fre- 
quency of the pattern used to produce the phase grating on 
the test specimen, since the optical moir6 pattern was created 
between the first-order diffracted beam from the sample grat- 
ing and the optical fringe pattern created by the intersecting 
beams in front of the sample. The interrogating interfer- 
ometer was calibrated with precision 600 or 1200 lines/mm 
linear phase gratings. The test specimen was positioned in 
the interferometer on a vertically mounted, motor-driven, ro- 
tary stage. The x-displacement fringes and y-displacement 
fringes were formed separately after rotation of the stage by 
90 deg. The interference fringes were viewed andrecorded by 
a CCD video camera. A suitably equipped desktop computer 
was linked to the CCD camera to permit storage, printing and 
processing of the camera image. 

Determination of Residual Stresses 

When the principal residual strains are aligned with the 
orthogonal rulings of the phase grating, the shear strain (Yxy) 
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equals zero, and the two strain components obtained from the 
x-displacement and y-displacement images are sufficient to 
determine the principal residual strains. Let us consider the 
drilled hole as the equivalent of a pair of overlapping, orthog- 
onal strain gages, with a gage length equal to the diameter of 
the hole, from which we can extract two displacements, Ux 
and Uy. The change in hole diameter was converted to en- 
gineering strains, ex and ey, by dividing by the original hole 
diameter. From these, the two principal residual stresses were 
found [eqs (1)-(4)]. In principle, there should be no fringes 
visible in regions where there is no local displacement, that 
is, far from the hole. However, it is apparent from Figs. 3(a) 
and 3(b) that a uniform fringe pattern often covers the field 
of view and is distorted in the vicinity of the hole. The back- 
ground fringe pattern is caused by a slight mismatch between 
the fringe spacing on the specimen grating and the optical ref- 
erence pattern. The quantity of mismatch fringes that would 
be present in the gage length used to calculate strain must be 
subtracted out during the computation process. The first step, 
then, is to determine the sign of the mismatch fringes, that is, 
whether the mismatch fringes represent an apparent compres- 
sive (negative) or an apparent tensile (positive) strain. The 
test specimen is mounted on a precision rotary stage, and 
this determination is accomplished by physically rotating the 
specimen a small amount and observing the direction of rota- 
tion of the fringes, as shown in Fig. 4. For the interferometer 
system shown in Fig. 2, if the moir6 fringe pattern rotates in 
the same direction as the specimen, then the density of the 
specimen grating is higher than the reference grating. ~1 The 
result is an apparent compression, and the mismatch fringes 
are assigned increasingly negative orders as the coordinate 
becomes more positive [x when determining ex as shown in 
Fig. 3(a), and y when determining ey as shown in Fig. 3(b)]. 
The mismatch fringes shown in Figs. 3(a) and 3(b) were de- 
termined to be compressive fringes. An accurate value of 
the image magnification is also required to analyze the fringe 
pattern. This was obtained by including a reference scale in 
the image as shown in Fig. 5. 

As noted previously, when the principal strains are not 
aligned with the orthogonal rulings of the phase grating, the 
two strain components obtained from the x-displacement and 
y-displacement images are not sufficient to determine the 
principal residual strains. A third piece of data is required. 
Let us examine closely the fringe images immediately adja- 
cent to the hole boundary in Figs. 6(a) and 6(b). In Fig. 6(a) 
(the x displacements), we observe that between the +1 and 
- 3  fringe orders, the fringes are discontinuous through the 
hole. If we mark the intersections of the first discontinu- 
ous fringe on each side of the hole with the hole boundary 
(i.e., locate the points of algebraic maximum and minimum 
tangential displacement) and draw a diametral line bisecting 
these marks, there appears to be a symmetry to the fringe 
intersections with the hole boundary. In Fig. 6(a), this line 
is at an angle of -27  degrees to the x-axis. If we repeat this 
process for the y displacements, we observe the same phe- 
nomena for the -1  to +1 fringes. In Fig. 6(b), the bisecting 
line is at an angle o f - 3 2  deg to the x-axis. The average of the 
two angles is -29.5 deg. The measurement of fringe rotation 
was done manually, using a protractor, with an accuracy of 
approximately one-quarter degree. It appears that this angle 
is the same as the location angle of the drilled hole, relative to 
the x, y coordinate system established by the moir6 grating 
bonded to the surface of the disk. Consider the circular disk 

(a) 

(b) 
Fig. 3--Moir~ fringe image of the (a) x displacements (radial), 
hole 2, and (b) y displacements (tangential), hole 2 

Fig. 4---Determination of moir@ fringe signs 
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Fig. 5--CCD camera image, camera magnification (a) 

of outer radius C, with a concentric circular hole of radius B 
(see Fig. 7). A circular plug of radius B + A was shrunk into 
the disk, A being the magnitude of the radial interference�9 
The result is a radial residual stress field ~rl and a tangential 
residual stress field a2 throughout the test specimen. 1~ Note 
that (~1 and ~2 are also the principal stresses. 

In the disk, for B < R < C, where R is the radial distance 
from the center of the disk, the theory of elasticity gives 

c a B (  c 2) 
0"1 = 2C " C" 1 - (5) 

EAB( C 2) 
or2= 2C " C "  l + ~ - g  . (6) 

Both cq and 02 are functions of the distance R from the center 
but are independent of the angular coordinate. The theoretical 
principal residual stresses cited in this paper were calculated 
using eqs (5) and (6). Thus, the theoretical principal strain 
angle will equal the polar coordinate angle of the hole, and 
the an~le of fringe symmetry is equal to the principal strain 
angle. 1~ If the angle of fringe symmetry, as determined from 
the moir6 images, is used with the x and y strain components 
to calculate the shear strain [eq (7)], then the principal strains 
can be determined [eq (2)]. Once the principal strains are 
found, the principal residual stresses can be determined from 
eqs (3) and (4): 

Y x y  ---~ {Ex - -  Ey } tan 0. (7) 

This process is best illustrated in Table 3, which is the solution 
of the principal residual stresses for hole 8 [Figs�9 6(a) and 
6(b)]. Following this procedure, the symmetry angles for 
the off-axis test holes in the specimen were measured and 
compared with their actual location in the specimen. The 
results are given in Table 4 and show good correlation. 

Computational Simulation of Moir6 Fringe Patterns 

To further test this hypothesis, a study was conducted in 
which the moir6 fringe patterns were simulated and plotted 
mathematically. 

(b) 
Fig. 6~Moir~ fringe image of the (a) x displacements (radial), 
hole 8, and (b) y displacements (tangential), hole 8 

Equations for the Infinite Plate with a Hole 

The solution for the stress fields for an infinite plate with 
a hole under uniaxial tension ol (i.e., o2 = 0) is obtained 
from the linear theory of elasticity. 12 Using the equations for 
the stress fields, along with a coordinate transformation, a 
change of variables and the principle of superposition, the 
stress fields for the general biaxial problem, in which both or1 
and o2 are nonzero, are easily solved. The radial stress err, 
tangential stress cr 0 and shear stress Xr0 are 

G r ~ -  - -  E ] Ib l (ql + 02) b2 (~ -- G2) 1 -- 
2 . 1 - - ~ - g +  2 " ~-~ 

�9 3b 3 
- r2 j .cos20 

(8) 

[ b 2 ] (Ol ~ 2 ) [ 1 +  (0"1 + 0"2) | + -- -- 3b4 ] 
eO = 2 " 7 g 2 " -~-'J 

�9 cos 20 (9) 
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TABLE 3--SOLUTION OF PRINCIPAL RESIDUAL STRESSES FOR HOLE 8 
General data 

Image hole diameter = 19.56 
Actual hole diameter = 1.60 mm 
Image magnification = 12.22 
Moir6 density (lines/mm) = 1200 
Moir6 sensitivity (mm/fringe) = 8.33 E - 04 
Young's modulus = 70,97 GPa 
Poisson's ratio = 0.33 

X-displacement image 
Number of mismatch fringes = -10  
Mismatch image distance = 80.01 mm 
X Mismatch (fringes/mm) = -0.12498 
X -  fringe number = 1 
X+ fringe number = - 3  
X displacement (mm) = -0.001296 
X strain = -0.00081 

Y-displacement image 
Number of mismatch fringes = -10  
Mismatch image distance = 74.17 mm 
Y Mismatch (fringes/mm) = -0.13483 
Y -  fringe number = -0.2 
Y+ fringe number = 0.5 
Y displacement (mm) = -0.001614 
Y strain = 0,0010291 

Principal strain angle 
Average principal strain angle = 
Shear strain = 

Principal strains 
e 1 = 0.001144 
e 2 = -0.000946 

Principal stresses (MPa) Experiment 
1 = 66.29 
2 = -45,23 

Theory Error 
64.71 -1.58 

-43.92 1.31 

TABLE 4--COMPARISON OF EXPERIMENTALLY MEASURED PRINCIPAL STRAIN ANGLES WITH A THEORETICAL PRIN- 
CIPAL STRAIN ANGLE 

Predicted Measured Angle Principal Strain 
Hole Principal of Symmetry from Angle from 

Number Strain Angle Moir6 Images Calculated Plots 
5 20 23 20 
6 -31 -29  -31 
8 -30  -33  - 3 0  
11 44 45 44 

(Ol - 02) 1 - 1 + . sin 20, (10) 
= 2 " 7 7 r J  

where r is the radial distance from the center of the hole, 0 is 
the angular polar coordinate and b is one-half of the diameter 
of the hole. 

Equations (8)-(10) are combined with the isotropic, linear, 
elastic, plane stress version of Hooke's law and the geomet- 
rically linear strain-displacement relations, and the resulting 
equations are integrated. This results in the displacement 
fields u~ 1) and u~ 1) in the r, 0 polar coordinate system: 

u ~ l ) = b .  Ol+O'2 [ r b ]  
2 - - - ~ - "  ( 1 - V ) b  + ( l + V l r j  + 

b ' ~  [ 2 - - - ~  or b r ~b 3] �9 (1 +v)z-  + 4 - -  (1+v)--7  .cos20 
r 

(11) 

u(~ I) - b "  O1 - 02 [ r b 
= 2--E--- " L(1 + v)7 + 2(1 - v ) -  O r 

(12) 

+ (1 + u)~-g �9 sin 20, 

(1). where Ur Is the displacement in the radial direction and u(n 1) 
v 

is the displacement in the tangential direction. The super- 
script (1) is used to distinguish this solution from the one 
presented in the following section. 

A local, Cartesian x, y coordinate system can be identi- 
fied, which has its origin at the center of the drilled hole; 
its x-axis is parallel to and pointing in the same direction as 
the X-axis of Fig. 8 and its y-axis is parallel to and pointing 
in the same direction as the Y-axis of Fig. 8. The transfor- 
mation equations relating the local polar coordinate system 
r, 0 of the drilled hole to this local, Cartesian x,  y coordinate 
system are 
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0" 2 = 

( c2) E A  B 1 +  
2 C  " C  " 

i 
/ 

G I = G  2 = - 

, 1 / O" 1 �9 �9 1 -  , = T E E  
I 

! 

E z l .  1 - 
2B 

Fig. 7~Residual stress fields in a circular, shrink-fit test 
specimen 

x = r cos(O - 9) (13) 

y = r sin(0 - 9)- (14) 

Note that ~o amounts to being the angle of  orientation of the 

0) in axes of  principal stress. The displacements u (1) and Uy 

the directions of  the furrows of  the diffraction grat ing-- that  
is, in the x-  (or X-) direction and the y- (or Y-) direction, 
respectively---can be calculated from the following transfer- 
marion equations: 

(1) (1) cos(O 9 ) -  u~ 1) �9 sin(O ~o) (15) U x -~ U r �9 - -  

U(y ~) = u~ O) �9 sin(0 - qg) + u~ 1) �9 cos(0 - ~o). (16) 

Equations for the Infinite Plate without Any Holes 

The diffraction grating is applied to the test specimen, 
which has an existing state of  residual stress. In other words, 
the grating is applied after the plug is shrink fitted into the disk 
of  the test specimen, and therefore the grating does not man- 
ifest the displacements that any point in the disk undergoes 
due to the introduction of  residual stresses. What the grating 
will detect are the additional displacements introduced when 
the small hole is drilled and residual stresses in the vicinity of  
the hole are redistributed. However, the displacement fields 
of  eqs (1 I),  (12), (15) and (16) are absolute displacements, 
not the additional, relative displacements measured by the 
diffraction grating. Thus, what is required are the absolute 
displacement fields that the points in the area of  the hole make 

Y 

Shrink-Fit 
Plug 

Drilled Hole 

G 2 

Grating 

9 

X 

"~ ~ ~ ~ I  1 

I ~ : ~ ! ~ i  

Fig. 8~Shrink-fit test specimen and drilled hole coordinate 
systems 

with the introduction of residual stresses, but before any holes 
are drilled. 

The solution is simple. Using the notation defined pre- 
viously, the crx, CYy and Z x y  stresses are, for  an infinite plate 
without any holes and with a constant, biaxial stress field al  
and O"2,13 

cr x = G 1 COS 2 q9 + cr 2 sin 2 q9 

ay = Ol sin 2 r + o'2 cos 2 r 

Xxy  = (or2 -- Ol) sin ~o cos ~o. 

(17) 

(18) 

(19) 

Combining eqs (17)-(19) with Hooke ' s  law and the strain- 
displacement relations and integrating, the corresponding 

displacement fields U(x 2) and u~ 2) are 

.,x 2) = [o, - E cos 2 ~o + - -  or2 -- '~ 1 ~-  sin 2 ~0 x 

o2 - ol .. sin 2~o] y 
+ [ - T E - u  + ~) 

(20) 
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= F cr2 - ~1 .. sin 2~o/" + x 
A 

(21) 
ft. [0.1 -- ~90.2 0.2--x~1 ] sin 2 ~o q- E c~ ~p y" 

Using eqs (11), (12), (15), (16), i20) and (21), the dis- 
placements Ux and Uy that the diffraction grating sees are 

(1) (2) (22) U x ~ U x -- U x 

Uy = U(y 1) - uy(2). (23) 

The importance of the u(x 2) and U(y 2) correction terms may 
seem obvious, but initially this subtle point was missed, 
and eqs (11)-(16) were used alone in calculating the resid- 
ual stresses from the experiments and obtaining the iso- 
displacement contour plots. 

Iso-displacement Contour Plots and Optical Mismatch 

In summary, eqs (22) and (23) combine the solution for an 
infinite plate with a hole [eqs (11)-(16)] with the solution of 
an infinite plate without a hole [eqs (20) and (21)]. The re- 
suiting combined solution basically defines two complicated 
functions Ux and Uy in the independent variables x and y (or 
r and 0) and in terms of the parameters E, v, b, ~o, cr 1 and 
or2. Iso-displacement contour lines in the x - y  plane for given 
values of displacement ~q, c~2 . . . .  are defined by 

Ux (x, y)  = ctk (24) 

for displacements in the x-direction of Fig. 8, k = 1, 2 . . . . .  
and by 

uy (x, y) = c~k (25) 

for displacements along the y-lines of the diffraction grating. 
As described earlier, the moir6 interferometry hole- 

drilling experiments produce images of iso-displacement 
contours. It would, therefore, be useful to generate con- 
tour plots theoretically using eqs (24) and (25) and compare 
such theoretical contour plots with the moir6 images from 
the experiments. However, eqs (22) and (23) do not take into 
account the nonzero optical mismatch that is present in the 
moir6 images. 

The optical mismatch in the moir6 images arises from the 
mismatch between the spacing of the furrows in the diffrac- 
tion grating on the test specimen and the spacing in the vir- 
tual grating produced by the two interfering laser beams. In 
essence, mismatch is an optical phenomenon that does not 
reflect the reality of the state of deformation at the surface of 
the test specimen, but is superposed onto the contour plots 
that would be obtained with eqs (22)-(25). Thus, the optical 
system produces straight, equally spaced parallel fringe lines 
in the moir6 image even in the case of a test specimen with 
an undeformed diffraction grating, that is, before any holes 
are drilled. The mismatch, measured as the number of mis- 
match fringes per inch of image, can be changed by making 
adjustments in the experimental equipment. 

To avoid analytically formulating the mathematics of the 
optics of the moir6 interferometry equipment, we proposed 
that the mismatch be considered equivalent to two constant 
strain fields e MIsMATcH and e MISMATCH that can be linearly 
superposed into the theory of elasticity formulations. 

These mismatch strain fields are calculated as 

MISMATCH (X mismatch) (moir6 sensitivity) (26) 

eM[SMAa'Crl = (y  _ mismatch) �9 (moir6 sensitivity), (27) Y 

where the X mismatch is the number of mismatch fringes 
per inch counted along the X-axis and the Y mismatch is the 
number of mismatch fringes per inch counted along the Y- 
axis. Superposition of these mismatch strains results in eqs 
(22) and (23) being modified to 

Ux Ux (1) Ux(2) + ^MISMATCH = - ~x �9 x (28) 

Uy = U(y 1) (2) + ^MISMATCH 
- -  U y  ~,y " y. (29) 

When eqs (28) and (29) are used with eqs (11)-(16), (20), 
(21), (24) and (25) to generate the theoretical contour plots, 
excellent agreement is found between theory and experiment. 

One can envision plotting contour lines for the x displace- 
ment using 

Ux(1)(X, y) - Ux (2) (x, y) + e MIsMATcrt �9 x = ak, (30) 

which results from combining eqs (24) and (28), or 

Ux(1)(x, y )  - U(x2)(x, y )  = C~k, (31) 

which results from combining eqs (22) and (24), or simply, 

(1)(X, u x , y) = ctk. (32) 

Similar equations can be written for the y displacement. Note 
that in general, eqs (30)-(32) are very complicated. In certain 
cases, an analytical, explicit function f or g can be found such 
that y = f ( x ) ,  or x = g(y ) ,  identically satisfies one of eqs 
(30)-(32). 

One such case occurs when cq = (72, which is the situation 
throughout the plug of the circular test specimen. The contour 
line for eq (32) is given explicitly by 

I X 2 2EOtk b 2 (1 +V) ] 
-- (ff1+0.2)(1-~) " X 1-V .] + 

y = 4- x �9 [ 2EO~R __ X] 
L (0.1 -i-o2)(1-v) J 

(33) 

Equation (33) is plotted in Fig. 9 for 40 values C~k of the x 
displacement (k = 1 . . . . .  40). The constants used in Fig. 9 
are 0.1 = c~2 = -32831 psi, E = 10.3 x 106 psi, v ----- 0.33 
and b = 0.032 in. The contour lines for the y displacement 
in Fig. 10 are identical in shape to those of Fig. 9. This is 
because the state of stress is symmetric. In Figs. 9 and 10, 
the slopes of almost all of the contour lines shown approach 
either zero or infinity as x -+ -4-oo or y -+ 4-oo. 

Note from Figs. 9 and 10 that for certain values of ctk, there 
exist more than one contour line. This is shown more clearly 
in Fig. 11. Figure 11 was plotted for cq = 0.2 = 4506 psi, 
E = 10.3 x 106 psi, v = 0.30 and b = 0.030 in. This means 
that the x displacement does not monotonically increase as 
one moves away from the edge of the hole. Rather, it first 
decreases, reaches a minimum at a certain radial distance r*, 
and then increases. The location of this minimum value of 
U(x 1) as one moves along the x-axis--that is, for 0 = 99, can 
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Fig. 9--Theoretical contour plot for total X displacement ux O/ 
in the case of ~l = o;  = -32831 psi (without mismatch) 
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Fig. 10--Theoretical contour plot for total Y displacement U(y 1) 
in the case of crl = cr; = -32831 psi (without mismatch) 

be easily determined with calculus from eqs (11), (12) and 
(15) as 

1 + ,o 
r*=b  1-~"  (34) 

Note from eq (34) the role that the Poisson ratio plays in this 
phenomenon of multiple contour lines. According to eq (34), 
for v = 0.33, r = 1.41b, where b is the radius of the drilled 
hole, whereas for v = 0, there is no such relative minimum 
point. 

Radically different contour plots can be obtained with eq 
(31)�9 For the biaxial state of stress (r 1 = ~2, the explicit form 
ofeq  (31) is 

�9 - - X  , 

2EC~k 
(35) 

Equation (35) is plotted in Fig. 12 for 40 values ctk of the 
x displacement (k = 1 . . . . .  40). It can be shown that each 
contour line is part of a circle, which is tangent to the vertical 

X-Displacement Contours 
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Fig. 1 1 - - M u l t i p l e  contour  lines for total X d i s p l a c e m e n t  U(x 1) 
in the c a s e  of r 1 = cr 2 = - 4 5 0 6  psi (wi thout  m ismatch )  
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Fig. 12--Theoretical contour plot for relative X displacements 
[U(x 1) - U(x 2)] in the case of ~1 = (72 - -  --32831 psi (without 
mismatch) 

y-axis and has a radius p of 

(Crl + or2)(1 + v)b 2 
p = (36) 

4Eak  

The contour lines for the y displacement are plotted in Fig. 13, 
and are identical in shape to the x-displacement contour lines 
described by eq (35). 

Software for Generating Contour Plots 

In general, eqs (30)-(32) cannot be solved explicitly in a 
form y = f(x) or x = g(y), and special contour generation 
algorithms and software are required�9 Initially, a FORTRAN 
computer program was written on a workstation that would 
numerically calculate tables of (x, y) coordinates that satisfy 
either eq (24) or eq (25). These tables would in turn be plotted 
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Fig. 13--Theoreticalcontourplotfor relative Ydisplacernents 
(1) (2), 

up - uy l in the case of o 1 = o" 2 = -32831 psi (without 
mfsmateh) 

on a Macintosh computer. In the final version of this program, 
explicit, finite difference integration was used to obtain each 
contour line. Denoting eqs (24) and (25) collectively as 

h (x, y) = ctk, (37) 

the iterative, contour-generating equations were 

ah 

Xj+ 1 : Xj + ay �9 A s  (38) 
(a~_~hr)_...._2 + k ay .] 

a_k 
ax �9 As, (39) 

YJ+l = YJ -- ~(-~x)2 + {ah'~2kay } 

where j = 0, 1, 2 . . . . .  The partial derivatives Oh/Ox and 
Oh/Oy were evaluated at the point (x j, y j). [Note that ex- 
pressions for the eight partial derivatives of ur, uo, Ux and ur 
with respect to r and 0 are required to evaluate the four partial 
derivatives of Ux and Uy with respect to x and y in eqs (38) 
and (39).] The quantity As stands for the increment in the arc 
length of the contour line, chosen by the computer program 
to be a tiny fraction of the geometric dimensions of the prob- 
lem. The initial condition (xo, Yo) for eqs (38) and (39) would 
have to satisfy eq (37), and was determined by another algo- 
rithm. For each contour line k, eqs (38) and (39) would re- 
sult in a finite series of points (x0, Y0), (Xl, Yl), (x2, Y2) . . . .  
that would satisfy eq (37). The contour lines were plotted 
from a subset of points constructed by the computer program 
from each series, since typically the series generated by eqs 
(38) and (39) would contain thousands of points to maintain 
the accuracy of the numerical integration. Nevertheless, the 
computation times on the workstation were trivial. 

Note that an unsuccessful attempt was also made at us- 
ing the Newton-Raphson method to obtain contour lines for 
eq (37). In this approach, for a given finite set o fx j  (or yj), 
j = 0, 1,2 . . . . .  the nonlinear eq (36) in the variable y (or x) 
was solved holding x = xj (or y = y j ) ,  and we obtained the 

corresponding yj (or x j) after several iterations. The result- 
ing finite set of points (xj, yj), j = 0, 1, 2 . . . .  , would form 
a contour line k. 

Many interesting phenomena in the contour plots were 
discovered during this stage of the simulation/analysis effort, 
some of which proved too difficult to handle with the finite 
difference contour generation program. One such difficulty 
was the phenomenon of multiple contour lines described in 
the previous section. Eventually, the contour-plotting capa- 
bilities of the MATLAB program 14 were discovered, and an 
M-file in the MATLAB language was written for generat- 
ing contour plots of the complicated displacement functions 
discussed above. 

MATLAB has proven to be effective in generating the 
contour plots for the moir6 images in this work, and it is easy 
to use. The following information is included in the input 
data of the M-file: 

1. the range xp < x < Xq, yp < y < yq in the x-y plane 
over which the contour plots are to be generated; 

2. the number of grid points in the x-y plane defined 
through input variables Ax and Ay; 

3. the values of E, v, b, 9, ~rl, era, e MISMATCH and 
~MISMATCH. 

y 

(2) (2) 4. in eqs (28) and (29), whether Ux = 0 and uy = 0; 

5. in eqs (28) and (29), whether eMISMATCH _ 0 and 
~MISMATCH _~_ 0 ;  

6. the number ofcontour lines to be included in the ranges 
Xp < x < Xq, yp < y < yq (this defines the X mis- 
match and the Y mismatch); 

7. the values of ak in eqs (24) and (25). 

Once the MATLAB system and the M-file are called, 
prompts for the input described above are received on the 
monitor screen. The contour plots for the x and y displace- 
ments appear on the screen after a few minutes of computation 
on the workstation. 

Using MATLAB for eq (32), the contour plot of Fig. 14(a) 
for the total x displacement is obtained for the following 
constants: Ol = -43.99 MPa, or2 = 64.81 MPa, E = 71.0 
GPa, v = 0.33, b = 0.81 mm and ~0 = - 3 0  deg. These 
values correspond to hole 8, which was described earlier. 
Figure 14(b) is the analogous contour plot for the total y 
displacement, and both Figs. 14(a) and 14(b) were plotted 
for 40 values of the displacement. 

An example of the theoretical fringe patterns for hole 8 is 
presented as Figs. 14(a) and 14(b). An examination of the 
theoretical fringe patterns for holes 5, 6, 8 and 11, which were 
also off-axis holes, showed the average angle of rotation of 
fringe symmetry at the hole boundary to be closely equal to 
the principal strain angle. Table 4 shows a comparison of the 
theoretical principal strain angles obtained by the mathemati- 
cally generated plots and those measured in our experiments. 
The correlation was excellent. 

Conclusions 

The moir6 interferometric hole-drilling method can be ap- 
plied to cases in which the actual principal strain axes are not 
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Fig. 14--Theoretical isothetic contour plots of the X displace- 
ments (radial), hole 8, and (b) Y displacements (tangential), 
hole 8 

aligned with the installed grid axes. Grids of 1200 lines/mm 
or greater should be applied to the test article to maximize 
the resolution of  the system. 
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