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ABSTRACT--A new version of a moir6 microscope is pre- 
sented that embodies the theory of optical moir6 interferome- 
try. To interrogate the deformed specimen grating, the device 
uses a transmission diffraction grating that allows for a sim- 
ple and quick change of the virtual reference grating vector 
without disturbing the optical alignment of the other compo- 
nents in the optical train. To analyze deformation from the 
acquired moir6 interference fringe patterns, the displacement 
light-intensity moir6 optical law introduced by Sciammarella is 
revisited. The analysis of deformation is consistent with the 
continuum principles of finite deformation and can readily be 
used to obtain micro-mechanical quantities of interest such 
as the local strains, stretches and rotations. 
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Introduction 

Moir6 interferometry, or more precisely moir~ interfer- 
ence fringes, has existed in the field of optics since 1874. 2 
Approximately 50 years ago, its application as a measur- 
ing tool for displacement analysis was developed. 3 The most 
common form of this technique has been the geometric in- 
terference moir6, 4-7 which is still the easiest form of this 
technique to implement. For a long period of time, the ap- 
plication of moir6 fringes to the analysis of displacement 
was hindered by the precision that could be achieved in the 
measurement of displacements. Because the smallest dis- 
placement that could be detected is dependent on the pitch 
of the grid used, in order to increase the sensitivity of the 
moir6 method it is highly desirable to increase the frequency 
of the grid lines. With the advent of lasers and very precise 
methods to produce submicron scale diffraction gratings, the 
theory of geometric interference moir6 has been extended to 
optical interference moir6, which involves length scales and 
resolutions achieved with optical interference. 

The moir6 microscope, which is an implementation of 
optical interference moir6, is a relatively new apparatus and 
is currently being used as a research tool to study local- 
ized deformation conditions and/or microscopic events. The 
method uses an optical microscope to achieve the desired spa- 
tial resolution for micro-mechanics studies. Shield and Kim 8 
introduced an optical interference moir6 microscope with an 
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ability to vary the virtual reference grating in order to main- 
tain a fringe spacing for maximum accuracy. Han and Post 9 
extended the sensitivity of moir6 interferometry by an order 
of magnitude using an immersion interferometer and opti- 
cal/digital fringe multiplication. Recently, Zou et  al.1~ de- 
veloped a multipurpose macro/micro moir6 interferometer 
capable of both macro and micro measurements simultane- 
ously. The experimental technique of electron beam moir6 
was introduced by Dally and Read 11 for determining micro- 
mechanical deformation. 

For finite deformation studies, there is a practical limi- 
tation to the frequency of grid lines that can be used. Sci- 
ammarella and Durelli 12 and Sciammarella, 1 in an attempt to 
increase the sensitivity of the technique without increasing 
the frequency of the moir6 grid lines, introduced a displace- 
ment light-intensity moir6 optical law for the analysis of 
discrete geometric and optical moir6 fringes. Theoretically, 
the algorithm has a tremendous potential for increasing the 
resolution by which the displacements can be calculated from 
the moir6 interference fringe pattern. In recent years, as digi- 
tal image processing has become easily accessible, numerous 
image-processing methods have been developed to comple- 
ment interferometric measurement techniques. For example, 
a series of fringe or phase-shifted interferograms are used to 

13 compute fringe order at every pixel in the field or to provide 
a contour map with discrete fractional fringe orders. 14 

Motivated by these developments and realizing the need 
to extend moir6 to finite elastic-plastic deformation, a new 
version of the optical moir6 microscope developed is pre- 
sented. This optical device allows for simple and quick sen- 
sitivity adjustment without disturbing the optical alignment 
of other components in the optical train. This is achieved 
by employing a transmission diffraction grating to create a 
variable virtual reference grating vector for the interroga- 
tion of the deformed surface grating. Besides being useful 
in generating u and v displacement field interference fringe 
patterns, the change in magnitude, as well as the direction of 
the virtual reference grating vector, facilitates the generation 
ofmoir6 fringes with gradual changes in slope even for cases 
in which sharp transitions/localization in surface deforma- 
tion are present. Also, an interactive image-processing pro- 
gram based on a digital implementation of the displacement 
light-intensity law introduced by Sciammarella 1 is developed 
within the MATLAB programming environment. The defor- 
mation analysis is consistent with the continuum principles 
of finite deformation and can readily be used to obtain local 
micro-mechanical quantities of interest such as the defor- 
mation gradient tensor, the Almansi strain tensor, principal 
stretches (and their directions) and the finite rotation tensor. 
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Theoretical Formulation 
To relate moir6 interference fringes to deformation anal- 

ysis, we appeal to the basic principles of classical contin- 
uum mechanics. Figure 1 shows, schematically, the contin- 
uum mechanics representation of the deformation process, 
in which a vector dX, represented by the letters A and B 
in the undeformed configuration, is mapped during the de- 
formation to a new vector dx, represented by the points A ~ 
and B t in the deformed configuration. The specimen grating 
in the undeformed configuration can be represented by the 
reciprocal specimen grating vector, G. The direction of the 
vector G is perpendicular to the specimen grating lines, while 
its magnitude is determined by the reciprocal of the pitch of 
the specimen grating in the undeformed configuration. Thus, 
for a constant linear specimen grating, the magnitude of the 
vector G is given by 

1 
IGI = ~ ,  (1) 

where D is the pitch of the undeformed specimen grating. 
In view of eq (1), the number of grid lines of the specimen 
grating intercepted by the vector dX in the undeformed con- 
figuration is given by G �9 dX. 

Like the reciprocal specimen grating vector, the reciprocal 
reference grating vector, g, is defined to be perpendicular to 
the reference virtual grating lines, and its magnitude is equal 
to the reciprocal of the pitch of the reference grating lines, d, 
that is, 

1 
Igl = ~. (2) 

Thus, the number of  reference grating lines intercepted by the 
vector dx in the deformed configuration is given by g. dX. 

In accordance with the principles of the geometric moirr, 
the number of moir6 fringes intercepted by the vector dx in 
the deformed configuration is given by the difference in the 
number of the virtual reference grating lines and the specimen 
grating lines in between the points A / and B'. For one-to-one 
deformation mapping, the number of specimen grid lines in 

between the points A 1 and B' is the same as the number of  
grating lines in between the points A and B in the undeformed 
configuration, that is, G.dX. Thus, the number of fringe lines 
df  intercepted by the vector dx is given by 

df  = g.  d x -  G .  dX. (3) 

In eq (3), the reciprocal grating vectors g and G are known a 
priori. By selecting a vector dx in the deformed configuration 
and counting the number of fringes intercepted by the vector 
dx, the unknown vector dX can be determined. Once the 
vectors dx and dX are known, the deformation gradient tensor 
F can readily be calculated. 

Unlike the geometrical interference moirr, the theory of 
optical interference moir6 relies on the theory of light diffrac- 
tion. More specifically, the technique relies on measuring the 
change in the phase of light beams diffracted from a specimen 
grating. Figure 2 illustrates the basic principle behind the 
optical interference moir& Two collimated but nonparallel 
beams of laser light are passed through a lens that redirects 
them along directions denoted by propagation vectors k O) 
and k (2) to form an illumination volume at the specimen sur- 
face. Upon interaction with the deformed specimen grating, 
each of these input beams results in a set of diffracted beams. 
Only the Mth diffraction order corresponding to the k (1) in- 
put beam and the Nth diffraction order corresponding to the 
k (2) input beam are shown. Many other diffraction orders are 
present and can be used to produce moir6 interference fringes 
at the image plane. Typically, -4-1 diffraction orders are used 
for interference. 

The irradiance I(x) corresponding to the interference of 
the selected diffraction orders is obtained by taking the dot 
product of the resultant electric field, ER, and its complex 
conjugate, I~R. For the present case, ER can be written as 

1p(1) ~(2) ER = ~M q- r~N ' (4) 

where v(1) represents the electric field vector for the Mth ~M 
diffracted beam corresponding to the k (1) input beam and 
E(2) is the electric field vector for the Nth diffracted beam N 

DEFORMED CONFIGURATION UNDEFORMED CONFIGURATION 

REFERENCE GRATING 

Fig. 1---Schematic of the continuum mechanics representa- 
tion of the deformation process showing the reference and 
the deformed configurations 

Diffracted Beams Selected 
for Interference 

I [ ~2) ~ ~  Objective il Lens 

Propagation Vector f ~ o r  k , ~  /w// Propagation Vector for 
1, k (1) 

/7 Input Beam 2, k (~ \ ~ _  Region of 
Interrogation 

Surface of the Deformed 
Specimen with a Cross 
Grating 

Fig. 2--Schematic illustrating the basic principle of optical in- 
terference moir~ 

352 �9 Vol. 40, No. 4, December 2000 



corresponding to the k (2) input beam. The resultant irradi- 
ance, or power, at the specimen is given by 

I (x) = ER" I~R. (5) 

Following Shield and Kim, 8 the expression for irradiance 
I(x) can be written as 

(2) /~/ )(x)I I(X)=I(M1)(X)+IN ( X ) + 2  I(M 1 (NZ)(x)cos~(x), 
(6) 

where l(M 1) A(M1) 2 I (2 )A(N2)  2 ~--- ' N = and 

/{k (1) - k(2)) �9 x \  + 2x(M - N ) G .  (X - Xo) + qbo. q,(x) 
% 

(7) 

In eq (7), X is the material point corresponding to the point x 
in the deformed configuration, Xo is a reference point on the 
specimen grid and dpo represents the relative phase difference 
between the two input beams k (1) and k (2). 

In view of eq (7), the fringe number f ,  at a location x in 
the deformed configuration, can be written as 

(k(U - k(2)) 
f - f o =  2x . x + ( M - N ) G . ( X - X o ) ,  (8) 

where fo = dpo/2rt. Equation (8) has the same form as the 
equation for geometric moirr, and it becomes identical to 
eq (3) if the effective reciprocal grating vector, ~, and the 
effective specimen grating vector, G, are defined such that 

k 0) _ k(2) 
- and (~ = (N - M)G, (9) 

2n 

respectively. 

Deformation Analysis Using Moir6 Interference 
Images 

The ultimate goal of the moir6 microscope is to interro- 
gate the specimen in situ or after deformation to obtain a 
full-field measurement of the deformation field. Because it 
is desirable to use the moir6 microscope apparatus to study 
finite elastic-plastic deformations, a formulation consistent 
with large deformation is required. Also, since the moir6 
fringes are recorded on the deformed configuration, a Eule- 
rian material description is the preferred choice. 

To carry out the finite deformation analysis, we must cal- 
culate the deformation gradient tensor F from the moir6 in- 
terference fringe patterns. To obtain the components F, two 
effective virtual reference grating vectors, !~ r and ~(2), and 
two effective specimen grating vectors, (~(1) and 1~(2), are 
required. The use of two specimen grating and two virtual 
reference grating vectors can be interpreted in physical terms 
as the illumination of a crossed specimen grating with two 
different orientations of the virtual reference grating. From 
here onward, for the sake of convenience, the hats will be 
dropped while writing the vectors ~ and (~. 

Taking the gradient ofeq (8) with respect to the coordinate 
x in the deformed configuration yields 

0f  O) = g~l) _ F-TG(1) (10) 
0Xj ji --i 

0f(2) = g~2) _ F-TG(2) (11) 
0Xj ji --i �9 

Next, defining a second-order specimen grating tensor P as 

i-, (1)a-,(1) f2(2) f-,(2) 
I"ik ~---"'i "~ + ~ i  ~k ' (12) 

and a second-order tensor H by 

njk .~_ (g(1) O0~dl. ))G~I)..}_ ( g ( 2 ) ~ f ( 2 )  ~ 

(13) 

the deformation gradient tensor F can be expressed as 

F = H-TI "r. (14) 

Equation (14) relates the deformation gradient tensor to the 
effective specimen grating vector G, the virtual effective ref- 
erence grating g and the measured fringe gradients with re- 
spect to the deformed configuration. 

Once the local deformation gradient tensor is obtained, the 
local left Cauchy Green tensor, B, can be calculated using 

B = FF z. (15) 

Because the tensor B is symmetric and positive definite, a 
unique positive definite and symmetric tensor V (also known 
as the left stretch tensor) exists such that 

V 2 -~- B. (16) 

In view of the spectral theorem,15 the spectral decomposition 
of B yields 

B = kl 2 ~;1 | ~1 + ~.~ ~2 | li2, (17) 

where Xi are the eigenvalues of the tensor B and represent 
the two principal stretches and 1~1 and ~2 are the correspond- 
ing eigenvectors representing the principal stretch directions. 
Then, in view of the square root theorem, 15 the spectral de- 
composition of the right stretch tensor V can be written as 

V = )'.1 ~l @ ~1 + )'-1 ~2 @ ~2. ( 1 8 )  

Once the local deformation gradient tensor F and the local 
left stretch tensor V are known, the local rotation tensor R 
can be conveniently calculated by employing the left polar 
decomposition theorem, 15 that is, 

R = V-IF.  (19) 

Also, once the local deformation gradient tensor is known, the 
finite deformation Almansi strain tensor E A can be calculated 
using 

E A = L [ I -  (F. FT) -1] 
2 

(20) 
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Description of the Moir~ Microscope 

The configuration of the moir6 microscope is shown 
schematically in Fig. 3. A 5 mW He-Ne laser (a) is used 
for system illumination. The beam is filtered, expanded and 
collimated to produce a source with no wave front distur- 
bances. Next, a primary lens (b) is used for two purposes: (1) 
to ensure a collimated beam at the specimen for illumination 
and (2) to make the task of masking the unwanted diffraction 
orders much easier by focusing the beams diffracted by the 
transmission grating. The primary lens is placed such that 
its distance from the objective lens is equal to the sum of 
the focal lengths of both lenses. This ensures that the beams 
upon going through the focal point of the primary lens re- 
main collimated after entering the objective lens. The next 
component in the optical train is the transmission diffraction 
grating subassembly (c). The transmission diffraction grat- 
ing employed has a frequency of 12 lines/ram and is used 
for creating the two input illumination beams, k (1) and k (z). 
The use of the transmission grating subassembly makes it 
possible to adjust the sensitivity of the moir6 apparatus con- 
tinuously and without disturbing the optical alignment of 
the other critical elements in the optical train. This is ac- 
complished by simply translating the transmission grating 
forward or backward along the system optical axis, which 
changes the angle that the input beams make with the optical 
axis and, hence, changes the magnitude of the effective vir- 
tual reference grating vector, g. In addition, the transmission 
grating subassembly is allowed to rotate about the optical 
axis of the objective lens, which results in a change in the 
direction of the vector g. Thus, besides generating the u and 
v field fringe patterns, the change in magnitude of the vir- 
tual grating vector facilitates maintaining an optimum fringe 
spacing for maximum accuracy, whereas the change in di- 
rection of the virtual grating vector facilitates the generation 
ofmoir6 fringes with gradual change in slope even for cases 
in which there are sharp transitions (locatizations) in surface 
deformation. Next, the input beam mask (d) is used to al- 
low only the necessary diffracted beams to pass. This mask 
consists of a thin piece of metal painted black to absorb any 
light that might otherwise diffract or scatter. In the present 
configuration, the mask is used to block the zeroth order and 
all the higher order diffraction beams, except the :kl-order 
diffracted beams. Next, the input beams (i.e., the +l-order 
diffracted beams) enter the objective lens at (f) and are redi- 
rected to form the illumination volume near the specimen 
(g) surface. The illumination beams, after diffraction by the 
deformed specimen grating, travel back toward the objective 
lens (f) and are redirected toward the iris at (h) by the use of 
the cube beam splitter at (e). The iris is then used to select the 
desired diffraction orders for forming the moir6 interference 
images and acts as a filter for the other diffraction orders. 
Thus, the illumination from only the desired diffraction or- 
ders reaches the image plane at (i). A Sony SSC-C374 CCD 
camera, placed at the image plane, is used to collect the moir6 
interference fringe pattems for input into the image acquisi- 
tion system. The magnification of the image can be changed 
by simply moving the camera closer to or farther away from 
the iris. The output of the digital camera is connected to an 
image acquisition system that allows images to be stored and 
manipulated on the computer, The image acquisition sys- 
tem (j) consists of a 200 MHz Pentium processor PC with 
a frame-grabber card. The frame-grabber card stores each 

frame as a 512 x 480 array of 256 gray levels. An additional 
monitor is used for real-time viewing of the image, selection 
of regions of interest and scaling. To increase the sensitivity 
and fringe contrast, a phase shift wedge is placed in any one 
of the two legs of the illumination beams (described in detail 
in the results section). Once the image is digitized and saved 
as a file, it is loaded into an image-processing software based 
on MATLAB for deformation analysis. 

Calibration of the Moird Microscope 

A crossed diffraction grating with a frequency of 185 
lines/mm was used for calibrating the moir6 microscope. 
During the calibration process, the distance between the 
transmission diffraction grating and the objective lens, as well 
as the angular orientation of the transmission grating with re- 
spect to the optical axis, is related to the magnitude and the 
direction of the effective virtual reference grating vector, g. 

The first step in the calibration process is to align the spec- 
imen and the virtual reference grating such that a null field 
is obtained. Next, by systematically translating and rotating 
the transmission diffraction grating, that is, by changing the 
input vectors k (1) and k (2), various virtual reference grating 
vectors are generated. Corresponding to each virtual refer- 
ence grating vector, a fringe pattern depicting carrier fringes 
is obtained. These carrier fringes are the result of a mis- 
match between the virtual reference grating vector and the 
undeformed specimen grating vector. For calibration pur- 
poses, the spacing and the direction of the carrier fringes are 
related to the linear position and the angular orientation of 
the transmission diffraction grating. 

The creation and the mapping of the input beams are 
shown schematically in Fig. 4(a). The variable d represents 
the distance of the transmission diffraction grating from the 
objective lens. The remaining calibration variables are de- 
fined as follows: [31 is the angle of the Jth-order diffracted 
beam from the transmission diffraction grating, a is the dis- 
tance between the input beam and the optical axis at the ob- 
jective lens, If  is the focal length of the objective lens and A 
is the excess distance from the focal length of the objective 
lens at which the input beams intersect the optical axis due 
to the nonparallelity of the input beams with the optical axis. 
Figure 4(b) shows schematically the two input beams along 
the vectors k (1) and k (2), which interfere to form the virtual 
reference grating vector. In view of eq (9), the magnitude of 
the virtual reciprocal grating vector can be expressed as 

2 sin 
Igl -- - - - -  (21) 

From Fig. 4(b), the input angle ct can be expressed as 

a - h  o tani (T ) 
where 

(22) 

a =dtan l3 j  and h = lftan[3j.  (23) 

Thus, in view of eqs (21) through (23), the magnitude of 
the reference grating reciprocal vector can be represented in 
terms of the known quantities, that is, the distance between 
the transmission grating and the objective tens d, the focal 
length of the objective lens ly and the diffraction angle 13j. 
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Fig. 3--Schematic of the moir6 microscope 
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(b) 
Fig. 4--(a) Geometric representation showing the mapping of 
the input beams on the specimen surface, (b) vectorial repre- 
sentation showing the interference of the two input beams to 
form the reference grating vector 

340 i~m 

(a) (b) (c) 
Fig. 5- -  Moird interference fringe pattern showing carrier 
fringes corresponding to J = 4-1 and a transmission grat- 
ing with a frequency of 12 lines/mm: (a) d = 300 mm and 
0 = 0 deg (null field), (b) d = 320 mm and 0 = 0 deg, (c) 
d = 340 mm 0 = 0 deg 

340 p,m 

(a) (b) (c) 
Fig. 6--Moir~ interference fringe pattern showing carrier 
fringes corresponding to J = 4-1 and a transmission grat- 
ing with a frequency of 12 lines/mm: (a) d = 300 mm and 
0 = 90 deg (null field), (b) d = 320 mm and 0 = 90 deg, (c) 
d = 340 mm 0 = 90 deg 

Figures 5(a) to 5(c) show the carrier fringes corresponding 
to d = 300 mm,  d = 320 m m  and d = 340 mm,  respec- 
tively, for J = -4-1, 0 = 0 deg and a transmission grating 
with a frequency o f  12 lines/ram. The distance d = 300 m m  
corresponds to the null-field condition, that is, g(1) = GO). 
Figures 6(a) to 6(c) show the carrier fringe patterns corre- 
sponding to d = 300 ram, d = 320 m m  and d = 340 mm, 
respectively, obtained by rotating the virtual reference grat- 

ing vector g(1) by 90 deg. Again, d = 300 m m  corresponds 
to the null-field case. 

Experimental Results: Digital Data Processing and 
Deformation Analysis 

The specimen used to demonstrate the digital image- 
processing and deformation analysis capabilities o f  the moir6 
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Copper.-~ /1-- Region of 
Solder ~ ~ . , ~ / / ~  Analysis 
Copper---~ ~"" I 

4 
Fig. 7--Schematic of the copper-solder-copper sandwich 
specimen employed in the experiments 

50 ~rn 
(a) (b) 

Fig. 8--(a) u-field and (b) Vmfield moir6 interference fringe 
patterns obtained after loading the copper-solder-copper 
sandwich specimen in shear 

microscope comprises a thin layer of solder sandwiched be- 
tween two copper plates, and is shown schematically in Fig. 7. 
The solder layer is loaded primarily in shear by displacing the 
top copper plate approximately parallel to the lower copper 
plate. Because the flow stress of solder is much lower than 
that of the copper plates, the solder deforms plastically in be- 
tween the copper plates. Prior to the deformation, a crossed 
grating is applied to a lapped and polished face of the speci- 
men using the replication technique) In this process, silicon 
rubber submaster grating is replicated from master gratings 
with a frequency of 185 lines/mm. A pool of liquid adhesive 
(PC-10, Measurements Group) is poured on this submaster 
grating mold. The submaster mold is then pressed against the 
specimen. Because silicon rubber is a nonstick material, the 
mold and specimen can be separated easily after the adhesive 
solidifies, leaving behind a crossed diffraction grating on the 
specimen surface. 

Figures 8(a) and 8(b) show the u and v field moir6 inter- 
ference fringe patterns, respectively, obtained after loading 
the composite specimen. From these images, it is difficult 
to carry out the deformation analysis with sufficient accu- 
racy, since these interference images have too few moir6 
fringes. To overcome this difficulty, the virtual reference 
grating vector, g, is varied to add carrier fringes to the in- 
terference images. As discussed in the previous section, the 
virtual reference grating vector can be varied (1) by translat- 
ing the transmission along the optical axis of the apparatus, 
(2) by rotating the transmission grating about the optical axis 
and (3) by providing a combined translation and rotation to 
the transmission grating. 

Figures 9(a) and 9(b) show the u-field moir6 interference 
images for six different virtual reference grating vectors ob- 
tained by translation and rotation of the transmission diffrac- 
tion grating along the optical axis. The distance d = 300 mm 
and 0 = 0 deg [see Fig. 9(a)] corresponds to the initial null- 
field configuration, that is, g = G. Figure 9(b) corresponds 
to d = 306.5 mm and 0 = 0 deg, while Fig. 9(c) corre- 
sponds to d = 313 mm and 0 --- 0 deg. By changing the 
magnitude of the g vector (i.e., by only translating the trans- 
mission diffraction grating), a significant number of cartier 
fringes were added to the null-field moir6 interference image. 
Figures 9(d) and 9(e) show the moir6 interference images 
obtained by only rotating (no translation) the transmission 
diffraction grating. Figure 9(d) corresponds to d = 300 mm 
and 0 = 1 deg, whereas Fig. 9(e) corresponds to d = 300 mm 
and 0 = - 1 deg. Figure 9(f) is obtained by providing a com- 
bined translation and rotation to the transmission diffraction 

(a) (b) 50 ~m 

(o) (d) 

(e) (f) 

Fig. 9--u-field moir~ interference fringe patterns for six differ- 
ent virtual reference grating vectors obtained by translation 
and rotation of the transmission diffraction grating along the 
optical axis corresponding to ] = -4-1 and (a) d = 300 mm 
and 0 = 0 deg (null field), (b) d = 306.5 mm and e = 0 deg, 
(c) d = 3 1 3 m m a n d 0 = 0 d e g , ( d ) d = 3 0 0 m m a n d 0 =  ] 
deg, (e) d = 300 mm and 0 = -1  deg, (f) d = 306.5 mm and 
O = l deg 

grating, that is, d = 306.5 mm and 0 = 1 deg. Note that a 
combined translation and rotation of the transmission diffrac- 
tion grating results in a change of both the magnitude and the 
direction of the reference grating vector g. In all cases, that 
is, in Figs. 9(d) to 9(0, several carrier fringes were added to 
the initial null-field moir6 interference image. 
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(a) (b) 50 Fm 

(e) 

Fig. lO--Various steps in the digital processing of moira inter- 
ference fringe images: (a, b) moir6 interference fringe image 
intensity distribution shifted by r~, (c) resultant intensity ob- 
tained after subtraction of the images depicted in (a) and (b) 

In general, the intensity of the incident beams used in the 
formation of the moir6 interference fringe patterns is not uni- 
form over the entire interference volume. Also, the efficiency 
of the specimen grating is not uniform and can vary with posi- 
tion. These factors along with aberration of the optical imag- 
ing system result in a slowly varying intensity of the moir6 
interference image and can lead to substantial background 
noise. To minimize these effects from the moir6 interference 
fringe pattern, a relative phase of magnitude 7t is introduced 
between the two incident beams. 3'8 Figures 10(a) and 10(b) 
show two moir6 interference images obtained by employing 
incident beams with a relative phase of d~o and ~o + n, re- 
spectively. The subtracted image is shown in Fig. 10(c). The 
image subtraction process removes most of the background 
noise present in the images. 

In most conventional moir6 fringe analysis procedures, the 
moir6 fringes are reduced to simple black-and-white patterns 
(two-level binarization). Using the resulting binary image, 
the fringe centerlines are located and stored as line segments 
to be used later to determine the fractional fringe number on 
a regularly spaced grid of points. This discrete moir6 fringe 
analysis procedure has inherent shortcomings. First, the al- 
gorithm replaces any variation in phase in between the fringe 
centertines by a constant phase gradient. Second, in the re- 
gions that do not lie in between the moir6 fringes, that is, the 
region lying in between the image boundary and its neighbor- 
ing moir6 fringe, the phase information cannot be calculated. 
This problem becomes critical when the moir6 fringe den- 
sity in the image is sparse or the direction of the fringes in 
the moir6 interference fringe pattern is nearly parallel to the 
direction in which the phase gradient is being calculated. 

As mentioned previously, several methods including 
phase-stepping methods/algorithms have recently been de- 
veloped to extract the phase information from the moir6 
interference images. In the present investigation, the dis- 
placement light-intensity moir6 optical law put forward by 

Sciammarella 1 is revisited to obtain the displacement infor- 
mation from moir6 fringe patterns. Figure 1 l(a) shows a 
typical u field moir6 interference fringe pattern. Following 
Sciammarella, t the intensity I(x) corresponding to the im- 
age shown in Fig. 1 l(a) can be expressed in terms of the first 
harmonic as 

I(x) = A(x) + B(x) cos(~(x)), (24) 

where the spatial function A(x) represents the offset and B(x) 
represents the amplitude of the intensity variation. Next, a 
normalized intensity distribution I (x) is sought such that 

/ ( x )  --  I ( x )  - A ( x )  _ c o s ( ~ r ( x ) ) .  ( 25 )  
B(x)  

Once the normalized intensity distribution/(x) is obtained, 
the phase distribution ~(x) can be readily unwrapped such 
that 

~(x) = arccos (/(x)) . (26) 

To obtain the normalized intensity distribution/(x), the 
spatial functions A(x) and B(x) must be calculated from the 
moir6 interference fringes. To obtain the functions A(x) and 
B(x), Sciammarella 1 had related them to the transmission 
function of the superimposed grids and the characteristics of 
the optical system forming the image. It was assumed that 
the moir~ grid had ideal efficiency and that the optical system 
was free from aberrations and perfectly focused. 

In the present investigation, digital image analysis is used 
to obtain the functions A(x) and B(x) from the actual moir6 
interference images acquired during the experiment. In this 
approach, first the lines representing the loci of all the local 
maximum intensity points of each moir6 fringe and the lines 
representing the loci of all the local minimum intensity points 
of each fringe are digitally located. Next, two surfaces are 
calculated: surface H(x), which envelopes the loci of all the 
local maximum intensity points of the moir6 fringe pattern, 
and surface L(x), which envelopes all the local minimum 
intensity points. These surfaces are shown for the moir6 
interference fringe pattern in Fig. 1 l(b). To obtain these 
surfaces, the biharmonic spline interpolation algorithm 16 was 
used. For N data points in two dimensions, the problem is 
reduced to finding the biharmonic function w(x) that passes 
through the data points wi located at xi, that is, 

N 

j=I 
(27) 

and 

w(xi) = wi.  (28) 

In eq (27), V 4 is the biharmonic operator, ~ is the Kronecker 
delta, x is the position in the two-dimensional space and aj 
is the weight corresponding to the point xj .  The general 
solution is given by 

N 

w ( , )  = 

j= l  
(29) 
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(a) (b) 

(r (d) 

Fig. 11--Various steps in the moir6 interference image analysis procedure: (a) intensity of the u-field moir6 interference fringe 
pattern, (b) upper [H(x)] and lower [L(x)] surfaces that envelop the intensity profiles from above and below, (c) normalized 
intensity image obtained by employing eq (28) in text, (d) unwrapped phase obtained from the normalized intensity image in (c) 

where the biharmonic Green's function ~0 = 21xl(lnlxl - 1). 
etj are found by solving the linear system 

N 
w ,  = ( , , ,  - 

j= l  
(30) 

Once the envelopes H(x) and L(x) are obtained, the func- 
tions A(x) and B(x) are obtained at each pixel location of the 
moir6 interference fringe pattern by using 

1 
A(x) = ~(H(x)  -t- L(x)) 

1 
B(x) = : ( n ( x )  - L(x)). z 

(31) 

Using (27) in (25), the intensity distribution of the entire im- 
age can be normalized between 4-1. The normalized intensity 
image corresponding to Fig. 1 l(a) is shown in Fig. 1 l(c). 

Next, the phase is unwrapped by using eq (26) [shown in 
Fig. 11 (d)]. The gradient of the phase at each pixel location is 
obtained by numerical differentiation. To obtain the gradient 
of the phase at a typical point X (m, n), a user-defined 2N + 1 
point interval is chosen in either direction. The N used in 
current analysis is 5, so the gage length corresponds to 10 
pixels. Smaller intervals are used for points that do not have 

enough points on either side to form the X ( m -  N : m + N, n) 
intervals, for example, the points near the image boundary. 
To calculate the phase gradient in the desired direction, a best- 
fit straight line is fitted through the 2N + 1 points using the 
least squares principle. The slope of this line, also referred 
to as the regression coefficient, is the phase gradient. 

By the use of this algorithm, any variations in phase in be- 
tween the moir6 interference fringes is accurately accounted 
for in the deformation analysis. Also, the algorithm allows us 
to accurately calculate the phase in the regions in between the 
image boundary and the neighboring fringes. Figures 12(a) 
to 12(c) represent the contours of the components of the de- 
formation gradient tensor obtained using the phase gradient. 
As expected, the F11 and the F22 components are close to 
1 over the entire region of interrogation. The upper half of 
Fig. 12(b) corresponds to the relatively soft solder layer and 
shows considerable deformation. Once the components of 
the deformation gradient tensor are obtained, eqs (10) to (20) 
can be used to calculate the local micro-mechanical quanti- 
ties of interest, that is, the Almansi strain tensor, the principal 
stretches (and their directions) and the finite rotation tensor. 
Figure 13(a) shows the contour plot of the E 12 component of 
the Almansi strain tensor, E A. Note the inhomogeneity in the 
local deformation. Maximum plastic strains of 4 percent to 5 
percent were obtained. Figure 13(b) shows the contour plot 
of the local rotation of the material during the deformation. 
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Fig, 12--Contour plots showing the components of the deformation gradient tensor: (a) F11 component, (b) F12 component, 
(c) F21 component, (d) F22 component 

E12 
~ 0.0400 

0.0286 
o.o171 
0.0057 

m -0.0057 
"0,0171 

BB -0.0286 
BIB -0.o4oo 

0 
2.0000 
1.7143 
1.4286 
1.1429 
0.8571 
0.5714 
0.2857 
0.0000 

(a) 
50 ~m 

(b) 

1.0714 ~ 1.0714 
1.0429 1.0429 
1.0143 1.0143 
0.9857 0.9857 
0.9571 0.8571 
0.9286 0.9286 
0.g000 0.9000 

(c) (d) 
Fig. 13--Contour plots showing the components of the Almansi strain tensor: (a) E12 component, (b) contour plot showing 
the magnitude of the local material rotation in degrees, (c) contour plot showing the magnitude of the first principal stretch (the 
superposed vector plot shows the direction of the first principal stretch), (d) contour plot showing the magnitude of the second 
principal stretch (the superposed vector plot shows the direction of the second principal stretch) 
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Maximum local rotations of approximately 2 degrees can be 
observed. Figures 13(c) and 13(d) show the magnitude as 
well as the principal directions of  the first principal and the 
second principal stretches. The gray-scale levels represent 
the magnitude of  the principal stretch, while the dashed lines 
superimposed on the contour plots show the direction of  the 
principal stretch. 

Conclusions 

A new version of  a moir6 microscope is presented that 
embodies the theory of  optical moir6 interferometry. More- 
over, an interactive image-processing program is developed 
to acquire the moir6 interference images and carry out defor- 
mation analysis. The deformation analysis is consistent with 
the continuum principles of  finite deformation, and can be 
used to obtain micro-mechanical quantities of  interest such 
as local strains, stretches and rotations. 
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