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ABSTRACT--A double-exposure moir~-interferometry tech- 
nique for topographic contour measurement of an arbitrarily 
curved object is presented. A curved surface coated with light- 
sensitive material is exposed twice in a volume of virtual 
gratings formed by the interference of two coherent light 
beams split from a laser. An adequate rotation of the curved 
surface relative to the virtual grating between the two exposures 
produces moir~ fringes which reveal topographic contour, or 
contour under some conditions, of the surface, The advantage 
of the present method in comparison with others is that it 
offers both reasonably good fringe quality and easily adjustable 
high sensitivity. The sensitivity of the technique is shown to 
be from the order of micrometer to that of millimeter depend- 
ing on the frequency of the virtual grating and the amount of 
the relative rotation. This technique was successfully applied 
to the topographic contour measurement of a cylindrical shell 
with and without a diametrical point loading. 

The principle of this paper and some early results were 
presented at the SPIE conference held at Dearborn, MI on 
June 27-30, 1988 and appeared in its proceedings. 1 

Introduction 
Some of the existing methods for measuring topographic 

contours include the shadow moir4 method, ~,3 the projec- 
tion " " moire method, '  the holographic method 5 and the 
laser-speckle method3 The main disadvantage of shadow 
and projection moir4 methods is the lack of  sensitivity; of 
the holographic method, the sophisticated optical arrange- 
ment; of the laser-speckle method, the poor fringe quality. 
In the present work, a double-exposure moir~-interfero- 
metry technique is described for topographic contour 
measurement which offers both high sensitivity and good 
fringe quality. 

Moir~ interferometry 7 as a highly sensitive displacement 
measuring method is widely used in experimental-mechanics 
research. However, it has been limited so far to in-plane 
problems except when it is combined with the holographic 
method. 8,9 The disadvantage of such a combination is 
twofold: First, it makes the corresponding optical arrange- 
ment very sophisticated; Secondly, it cannot offer good 
quality fringes compared with those by classic moir~ or 
moir~ interferometry methods because of the speckle 
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effect. This drawback can be overcome by the present 
technique which shall be called 'Double-exposure Moir~ 
Interferometry' in the following discussion. 

Like any other moir~ method, double-exposure moir6 
interferometry also needs two sets of gratings to form 
moir6 fringes. These two sets of gratings are all formed 
on a specimen surface, which is coated with a light 
sensitive medium, by exposing the specimen to a volume 
of  virtual gratings formed by the interference between 
two intersecting coherent light beams split from a laser. 
If the specimen rotates an adequate angle relative to the 
virtual grating between the two exposures, then the two 
sets of gratings formed on the specimen surface will 
interfere to form moir6 fringes which reveal the topo- 
graphic contour of the object. Specimen deformation 
between the exposures will produce moir6 fringes too, 
making the deformation also measurable by this technique. 

The scope of  this paper will include discussion on the 
fringe-forming mechanism; topography-evaluating method; 
the sensitivity and range of  measurement; the condition 
under which this method provides contour; and some 
experimental demonstrations. 

Fringe-forming Mechanism 
When two collimated coherent light beams split from a 

laser meet in space as shown in Fig. 1, they interfere 
constructively and destructively such that the light- 
intensity distribution is uniform in planes with surface 
normals in the plane formed by these two beams and 
perpendicular to line O C .  Therefore, a volume of  dark 
and light sheets in the common space of those two beams 
is formed and called a virtual grating which will cast 
gratings on any objects in the volume. According to the 
geometry shown, the pitch p of such a grating in an 
arbitrary plane r is 

X (1) 
P - sin iA + sin i~ 

or 

x (2) 
P - 2sinc~cosO 

where p is the grating pitch in the r plane, X is the wave- 
length of  the illuminating light source; ~ is half the 
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Fig. 1--An optical configuration for 
moir~ interferometry 
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illuminating angle between the two light beams; and 0 is 
the angle between the normal direction of  the specimen 
surface and the bisectional direction O C  of the two light 
beams. When 0 = 0, which corresponds to symmetric 
illumination (iA = iB = a) ,  we have 

X (3) P = P *  = 2 s i n a  

where p .  is the grating pitch in the 7to plane (surface 
normal O C )  and it is a constant once the optical system 
is fixed. Equation (2) can be simplified by utilizing the 
relation given by eq (3), yielding 

p -  P .  (4) 
cos 0 

The corresponding grating frequency is 

f _  1 _ cos 0 
P Po 

(5) 

Equations (4) and (5) show that grating pitch p and 
frequency f in the 7r plane will change as a function of  
angle 0, indicating that two sets of gratings with a 
different number of gratings could be registered on a 
certain region of an object if there is a change in 0 between 
the two gratings' registration. The change in 0 could be 
due to a rotation of  the specimen relative to the virtual 
grating. 

I f  a curved surface coated with a light-sensitive medium 
undergoes the same procedure, then the two sets of gratings 
will interfere to form a fringe pattern on the specimen 
surface. This fringe pattern reveals the surface topo- 
graphic contour via some mathematical expressions which 
shall be derived in the later sessions. This is the principle 
of  topographic contour measurement by double-exposure 
moir6 interferometry. 

Measurement of Uniform Deformation 
Double-exposure moir6 interferometry may be used for 

the measurement of uniform radial expansion or shrinkage 
of cylindrical surfaces even without any rotation between 
the two exposures. A cylindrical surface is exposed to the 
virtual grating as shown in Fig. 2. Suppose there are n 
gratings formed on arc ~f. Then, for some reason, the 

po 

a ; 

h~/ '  

d 

Fig. 2--Uniform radial expansion of a cylindrical shell 

shell expands from f ~  to ga^h with point f moving to g 
and point c to a. Because of  the expansion, arc f~whiCh 
has already been exposed to a total number of  n gratings 
now is e x p a n d e d t o  arc g~ and becomes capable of 
registering a total number of  m gratings. The difference 
in grating numbers will create fringes which are related to 
the amount of shell expansion. 

Obviously, the grating pitch on the shell surface is a 
function of  angle 0. However, the projection of  surface- 
grating pitch on the vertical line e~t is the same, i.e., 
pitch p . .  By following a similar analysis as that for the 
shadow-moir~ technique, '~ we can write the number of 
fringes formed on arc ~ as 

N p .  = m p , - n p ,  = e a -  d c  = A R s i n r  (6) 

Dividing both sides of the above equation by sin q~ yields 

A R -  N p ,  (7) 
sin 

At a given point a,  po is a constant and N can be deter- 
mined by the fringe pattern obtained. In order to evaluate 
AR,  we must know the value of  0 which depends on how 
the fringe pattern is being recorded. If th.e optical axis of 
the recording lens coincides with line gdO,  then arc g~ 
is recorded as line ~-~ which is defined as x. The following 
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relation exists of interest. Using the conventional moird fringe analyzing 
method and denoting n p .  by x,  we get 

sin ~ - x (8) 
R + A R  

Solving for AR from the above two equations, we get 

A R -  R N p .  (9) 
x - N p .  

For the case of  uniform shell shrinkage, the initial radius 
i s R  = O a ,  x = d c  and s i n ~  = x / R .  Substitute these 
into eq (7), we get 

A R  = N R p .  (10) 
x 

N in eqs (9) and (10) is ordered in such a way that it is 
zero when x = 0 and it increases for shell expansion while 
decreases for shrinkage, making AR bear the right sign. 
To evaluate AR,  one just has to choose a fringe, number 
it, measure its x coordinate, then substitute them along 
with the values of R and p ,  into eq (10). 

Because x can be almost as large as R and N can be as 
small as one, AR has nearly the same magnitude as that 
of pitch p~ While the magnitude of the latter can be as 
small as that of the wavelength of the illuminating light 
source indicating that the sensitivity of this method is 
quite high. The lower limit of sensitivity of this technique 
depends on the requirements on the density of fringes and 
the radius of the shell. Suppose N / x  = 10 (fringe spacing 
is 0.1 mm) and R = 100 mm, then the lower limit is 
1000p.. Noting that the value of  p ,  is generally about one 
micrometer, the measurable shell radial deformation 
range is approximately between one micrometer to one 
millimeter. 

The above derivation was made under the condition 
that the fringe pattern was recorded when the shell is at 
the deformed state. The same analyzing method can also 
be applied to the case that the fringe pattern is recorded 
when the shell has resumed its original dimension after 
the two exposures, only to yield slightly different 
expressions. 

Measurement of Surface Topography 
Double-exposure moir6 interferometry can be used 

directly for measuring topographic contour. A specimen 
coated with photosensitive material is first exposed to a 
volume of virtual grating and then it is exposed to the 
same virtual grating again after either the optical system 
or the specimen is rotated a certain angle. These two 
exposures will make two sets of gratings on the specimen 
surface. They will in general interfere with each other to 
form a moir~ fringe pattern which is related to the topo- 
graphy of the specimen through certain mathematical 
expressions. 

The form of such expressions depends on the way the 
optical system or specimen is rotated and the setup of the 
coordinate system. Three cases and the corresponding 
topography-evaluation expressions will be studied in the 
coming sessions followed by a discussion. 

Rotating the Optical System 

Suppose the optical system is rotated clockwise an 
angle ct in the X -  W plane (Fig. 3) between the two 
exposures. Without losing generality, point e is chosen to 
be the origin of the coordinate system and a is the point 

N p .  = m p o -  n p ,  = x c o s  a + w s in  a - x (11) 

Solving eq (11) for w, 

N p ~  + x(1 - cos c~) 
W = 

sin 
(12) 

where N is the fringe order at point a and it is zero when 
X = w = O .  

Applying the same analysis for the left part of  the X 
axis, we get the following expression. 

N p o  - x(1 - cos c~) 
w = (13) 

sin 

Note that x is the length of m p o  and should be positive 
for both sides of the X axis. We conclude that the w 
evaluation expression is slightly different for the different 
sides of the X axis. This difference can be negligible 
because the term x ( 1 -  cos a)  is very small compared 
with N p .  for small a ,  making the fringes represent con- 
tours of equal w coordinates, which will be discussed later. 

If  the fringe pattern is recorded via a lens with its 
optical axis coinciding with the W axis, then x in the 
above expressions can be measured from the photographed 
fringe pattern. The values of po and ~ are also known 
from the optical setup and the amount of rotation. 
Therefore, w can be evaluated. 

For the case that the optical system rotates counter- 
clockwise, the w evaluation expressions will be the same 
as eqs (12) and (13) except that the sign of the term 
x(1 - cos ct) will be just the opposite. 

Rotating the Specimen 

More often than not, it is easier to rotate a specimen 
rather than the optical system between the two exposures. 
Because of  the nature of  relative motion, we do expect 
to see the same expressions as eqs (12) and (13). However, 
we will go through the derivation for rotating a specimen 
about an arbitrary point in the following discussion. 

Curve a ~ c  on an arbitrary object rotates an angle 
counterclockwise about point O to a'--"7~c ' as shown in 
Fig. 4. The difference in grating numbers 'yields the 
following relation. 

N p o  = m p o  - n p o  = x - c 'b sin (O - a )  (14) 

npo (=) 

. . . . . .  ~ I , - . . . . c  X 

~ ! ,'I/ 
x . ~  p, i I '  1,7i: I /  

a 

Fig. 3--Rotat ing the optical system 
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Noting that sin (0 - ~) = sin 0 cos a - cos 0 sin c~; 
c b  = c ' b ' ,  and c b s i n O  = x ,  c b c o s O  = w ,  we 

can i'ewrite eq (14) as 

w = N p o  - x( l  - cos c~) (15) 
sin a 

The term x(1 - c o s  c0 bears a negative sign because the 
rotation of  the specimen is counterclockwise and the 
coordinate system is fixed at the final position of the 
object (Fig. 4). If we change the direction of rotation or 
the side of the X axis under investigation, we shall get the 
same result as that discussed in the previous sessions. 

The fact that the expressions derived for the general 
case are the same as those for special cases indicates that 
the rotating object and its center of rotation have no 
effect on the evaluation of topography. While the rotating 
direction or the change in the part of  the X axis will only 
change the sign of a term in the expression. 

Using a Periphery Camera 

So far only the conventional, camera has been utilized 
for fringe-pattern recording. The disadvantages of using 
such a camera for fringe-pattern recording on a curved 
surface is that not all points could be focused sharply 
because w and hence the objective distance changes from 

mp 

t up 

b'(o) i ~ . ~ _  x 

- - /  

Y ' O  

Fig. 4--Rotating the specimen about an 
arbitrary point 
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Fig. 5--Sensit ivi ty versus rotated angle at 
various fringe spacings 

point to point making the determination of  the x co- 
ordinate erroneous. Besides, w variation induced perspec- 
tive effect also introduces error. Errors like these may be 
negligible for slightly curved surfaces but must be taken 
into consideration for cylindrical or conical surfaces with 
small radii. 

In order to reduce this kind of error, a so called 
periphery camera" may be used for fringe-pattern record- 
ing on cylindrical, conical or near cylindrical, near conical 
surfaces. A periphery camera is capable of  developing the 
circumference of a cylindrical or a conical surface into a 
plane. In doing so, x in the above expressions will be 
replaced by another variable l which is a direct measure 
from the fringe pattern photographed by the periphery 
camera. For a cylindrical surface, l = R ~ ,  x = R sin cb 
and sin 4, = sin ( l / R ) .  Thus, eq (15) can be rewritten in 
terms of  I as 

N p ,  - R sin ( I / R ) ( 1  - cos c~) 
w = (16) 

sin 

In the following discussion, all the fringe patterns were 
recorded by such a periphery camera. 

Further Discussion 

Equations (12), (13) and (16) describe fringe equations 
for the topographic contours instead of contours because 
they are dependent on the x coordinate. They represent 
contour only if the second terms in the numerators are 
negligible compared with the first terms N p .  yielding 

w -  Npo  (17) 
sin 

As shall be seen, such an approximation is valid for small 
rotating angles and small fringe spacing. 

The sensitivity of  this technique is determined by the 
difference in w between two adjacent fringes. Taking 
eq (15) as an example, the sensitivity is given by 

A w  = w ( N +  I ) - w ( N )  = p . - A x ( l - c o s c t )  
sin c~ 

(18) 

where AX is the difference in x between two adjacent 
fringes (fringe spacing in the X direction). 

Apparently, p .  and ct all influence the sensitivity. Pitch 
p .  is normally about the order of micrometer and takes a 
fixed value once the optical arrangement is fixed. Then 
the most easily adjustable factor is angle a .  Figure 5 
shows the relation between A w (logarithmic scale) and a 
numerically calculated according to eq (18) where the 
grating pitch p .  is taken to be 2.0 tzm. The solid line 
represents the sensitivity for w contour [eq (17)] defined as 

Aw - P~ (19) 
sin ct 

The sensitivity Aw evaluated for different values of fringe 
spacing AX is also plotted in Fig. 5. It is seen that for 
small ct values the sensitivity is almost independent of  
Ax. When cr _< 1 deg, for Ax < 1 mm, the error in sensi- 
tivity caused by using contour expression [eq (19)] in- 
stead of topographic contour expression [eq (18)] is less 
than eight percent. 

Figure 5 also shows that the sensitivity can be adjusted 
to the order of  micrometer by making the rotation angle 
be about 3.5 deg for Ax = 1 ram. The lower limit of  the 
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Fig. 6 - -Topograph ic  contour  study o l  a 
cylinder. (a) Topographic contour  fr inge 
pattern (R = 25.4 mm, p. = 0.7 #m, 

= 0.17 deg); (b) compar ison 
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sensitivity, as shown in Fig. 5, can go as much as a few 
millimeters for sufficiently small angle rotations. 

Equation (15) can be rewritten as 

w = N p ~  (1 - cos cx)x/N (20) 
sin a 

where x / N  is the average fringe spacing. Noting that eq 
(20) is analogous to eq (18), we can conclude that Fig. 5 
and the result of the above error analysis discussion can 
be readily applied to the comparison between topographic 
contour [e.g., eq (16)] and w contour [eq (17)] as well. 
Thus, the fringes obtained by the present technique 
approximately represent contours of equal w coordinates 
for small angle rotations (c~ < 1 deg). 

For a fiat plane, Aw is zero and p~ = p cos cx, eq (18) 
becomes 

Ax = P* = P*------P~P (21) 
1 - cos a p - po 

This is exactly the same as the expression for fringe- 
spacing evaluation of a mismatch fringe pattern of 
classic moir~ method.'~ 

Experimental Investigation 
The validity of the above derivation was verified by 

some experiments carried out on cylindrical shells with 
and without diametrical loading. The specimens were 
prepared according to a procedure described elsewhere 12 
except that no aluminum coating was applied to the 
present work. 

Figure 6(a) (R = 25.4 mm, p,  = 0.7 /zm, c~ = 0.17 
deg, Aw = 230 #m) is the fringe pattern of a uniform 
cylinder recorded by a periphery camera where the 
horizontal axis is no longer x but rather arc length L The 
small circles in Fig. 6(b) are w coordinates calculated by 
eq (16) based on the fringe pattern obtained [Fig. 6(a)]; 
while the solid line represents w coordinates calculated 
according to the measurement of shell geometry by 

w = R(1 - cos 0) (22) 

Apparently, the experimental results agree well with the 
calculated one. 

Figures 7 and 8 show some experimental results for 
nonuniform cylindrical shells. Figure 7 is the moird fringe 
pattern of a cylindrical shell with some initial imperfec- 

Fig. 7 - -Topograph ic  fr inge pattern of a shell wi th some imperfect ion 
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tion. Figure 8(a) (R = 50.2 mm, p .  = 1.66 #m, a = 
0.6 deg, s = 157 /am) is the fringe pattern of a shell 
under diametrical point loading. 

Applying this double-exposure moir6-interferometry 
technique twice, once before and once after a specimen 
is deformed, one will get two sets of moird fringe patterns 
respectively. Comparing these two, one can find the w 
displacement due to the load alone. Figure 8(b) is such a 
comparison where the dots represent the w coordinates of  
a shell with the diametrical load and the solid line repre- 
sents that without. The difference in w gives the displace- 
ment due to the loading alone. Therefore, surface-topo- 
graphic contour or w displacement, no matter it is tmiform 
or not, may be measured by  double-exposure moire" 
interferometry. 

Conclusion 

An experimental technique, along with some theoretical 
derivation and experimental verification, for the determina- 
tion of topographic contour, or contours of equal w 
coordinates for small angle rotations, based on a double- 
exposure moir6-interferometry technique, is presented. Its 
applications to the accurate determination of shell uniform 
radial deformation and of topography of  arbitrarily 
curved surfaces are demonstrated. 

The sensitivity of the technique is shown to be from t h e  
order of  micrometers to that of millimeters. It can be 
easily adjusted by controlling the amount of  rotation of  
the specimen relative to the optical system between the 
two exposures. Within a certain rotating limit, which is 
about four deg for the test conditions in the present 
work, the larger the rotated angle, the higher the sensitivity 
and vice versa. 

The w evaluation expression is independent of  the 
rotating object and its rotating center between the 
exposures. However, the change in rotating direction or 
the side of the X axis will alter the sign of  a term in the 
expression. This difference is negligible for small angle 
rotations. 

The fringe pattern produced by this method in general 
yields surface-topographic-contour because the co- 
ordinate x is involved in the expressions for the w 
coordinate evaluation. However, for very small angle 
relative rotations, this involvement is negligible indicating 
that the moir~ fringes obtained by this technique represent 
contours of equal w coordinates. 

The major drawback of  this technique is that sometimes 
it is difficult to record the fringe pattern with the same 
contrast on the whole specimen surface because of  the 
grating diffraction effect. Besides, in si tu adjustment of 
fringe density such as that of the shadow moir~ method is 
not possible with the present technique. This means that 
either a rough knowledge about the curved surface or a 
trial and error process is needed before a satisfactory 
fringe pattern can be obtained. 
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