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ABSTRACT--Photoelastic data are combined with the finite- 
element method for stress solutions over regions partially 
bounded by free surfaces and axes of symmetry. Least- 
squares solutions are obtained without presumed values of 
applied forces at element nodes and without isoclinic data. 
Varied example problems are used to compare the results to 
independent photoelastic and finite-element solutions and to 
theoretical stress values. 

Introduction 
Numerical methods can provide valuable assistance for 

obtaining photoelastic solutions. For plane problems, to 
determine the state of stress at a point, three independent 
data values are needed; with two values available in the 
photoelastic data. One general method for solving for the 
stress values consists of  inclusion of stress-equilibrium 
and static-equilibrium equations.' When placed in finite- 
difference and summation form, these equations contri- 
bute to an overdetermined problem which may be solved, 
using least-squares, for stresses over the region. 

Finite-element methods have also been used to assist in 
solving the problem. Lukas 2 has used a finite-element 
method to solve the strain-compatibility equation (in 
terms of stress) for the sum of the principal stresses over 
the region of  interest, providing a third data value at each 
element. Chambless, Swinson, Suhling and Turner 3 have 
used a weighting procedure to include selected photoelastic 
data as constraints in the finite-element solution. 

The approach used in this paper provides simplifications 
and advantages when compared to either of the methods 
used separately. A solution region will be bounded on 
most sides by free surfaces and lines of symmetry. Photo- 
elastic data from these boundaries will be used to obtain 
additional displacement equations which eliminate the 
need to specify applied node forces. Static-force equilibrium 
is also used. Isoclinic data are not needed for the solution. 
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The method is applied to three problems to compare with: 
(1) theoretical stress values, (2) finite-element results, and 
(3) least-squares photoelastic results. 

Finite.element Relations 
The relationships between load, displacement, stress 

and strain in the finite-element construction are briefly 
given to aid in understanding the inclusion of  the photo- 
elastic information. 

The region for stress analysis is subdivided into triangular 
elements' as seen in Fig. 1. (Subdivided regions are shown 
in each of the example problems.) Each element is pre- 
sumed to experience a state of  stress and strain which is 
constant over the element. The elements are interconnected 
at their nodes, which transmit forces in two orthogonal 
directions; the same directions as the operational node 
displacements. The node displacements are related to the 
element strains using the simple strain-displacement 
relations together with an assumed element displacement 
field which assures the constant state of strain. For the 
displacement field for the triangular element: 

u ( x ,  y )  = ao + al x + a2 y 

v ( x ,  y )  = bo + bx x + b~ y 

(1) 

The strain-displacement equations give 

Ou Ov 
e x -  3 x  - a l  cy = 3 y  = b2  

Ou Ov 

v . =  o--}-- + ~ - -  = ,~2 + a, 
(2) 

For an element of  given geometry, the coefficients aj, b~ 
may be solved for in terms of the unknown displacements 
using eqs (1) at each of the three nodes. These expressions 
for aj, b~ are then used in eqs (2) to express the state of 
strain in terms of the node displacements u~, v,. Or, 
succinctly stated, 

= [ B V  (3) {e} = [B] or {c}r v 
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Linear-elastic material properties are used to obtain the 
element state of stress: 

E (e, + v e~) (4) 
a y =  l _ v 2  

E 
rx, = 2(1 + ~) qc~y 

or {a} = [D] {e}. Thus for each element, the' state of  
stress is given in terms of  the node displacements which 
are yet unknown: 

(5) 

Solution for the displacements proceeds from a con- 
sideration of the virtual work produced by the forces at 
the element nodes and the strain-energy experienced by 
the element. For the strain energy: ~ U  = I, e r a d V  
where V is the volume of the element: V = A t with the 
plane area and the thickness equal to A and t. For the 
virtual work, 

3 r 

, . 1 =  
i=1 V Fx 

Equating the strain energy to the virtual work and 
remembering the constant state of strain, 

~ F~ u {.} { V} [B]r[D] [B] {v  

which may be reduced to 
(6) 

v F, 

where K is the element stiffness matrix: K = [B]~[D] [ B] (V). 
Using eqs (7) it is possible to specify a consistent combina- 
tion of six-node displacements and/or forces, and solve 
for the remaining forces and displacements. 

For the stress analysis over the region, force equilibrium 
is used at all nodes. At each node, two orthogonal 
equilibrium equations are written. They include force 

Y 

U 

Fig. 1--Triangular element 

contributions for each element connected at the node, but 
they are written in terms of the node displacements using 
eq (7). The loading system of applied forces is placed at 
certain of the nodes. Displacement constraints are placed 
at certain of the nodes; usually boundary nodes. Thus a 
system of equations is obtained over the entire region in 
terms of  the unknown node displacements. This linear 
system of equations is solved for the displacements. For 
each element the node displacements are then used with 
eqs (5) to obtain the state of stress. 

Photoelastic Information for Finite- 
element Analysis 

At a point in a plane model, photoelastic data are used 
in two commonly recognized stress-optical equations, 

1,7  r,,  = ~-  sin 20 

N f  
a,- tr~ = -/ cos20  

(8) 

where f is the stress-optical material constant, 0 is the 
isoclinic angle (or principal-stress direction) and N is the 
compensated isochromatic fringe order. The information 
given in these two linear equations can be used to supple- 
ment the finite-element equilibrium equations. When 
placed into displacement form, eqs (8) can be added to 
the equations of  force equilibrium at the nodes to obtain 
an overdetermined system of equations. A least-squares 
solution is then used. 

Photoelastic data are straightforward to obtain along 
solution region boundaries which are free surfaces or lines 
of  symmetry. For such locations, the principal directions 
are known and it is not necessary to determine isoclinic 
angles. There is an attendant simplicity in obtaining 
compensated fringe orders at these locations. The over- 
determined system is produced when data from these 
boundary locations are placed into the appropriate dis- 
placement equations. 

Due to the excess amount of  information in hand, it is 
not necessary to use applied node forces. Presumed values 
of these loads are ordinarily placed in the selected node 
force-equilibrium equations, but with the present method 
equilibrium equations may simply be omitted at these 
nodes. It is possible to introduce the overall loadings 
using static-equilibrium equations. 

The displacement photoelastic equations are developed 
next, followed by a static-equilibrium equation. 

Displacement Equations for Photoelastic Data 

Free Boundary of Region 
Along a free boundary the stress component normal to 

the boundary and the surface shear stress are both zero. 
The tangential stress may be written in terms of  the iso- 
chromatic fringe order, 

N f  
G T  - -  

t 

For the plane model the tangential boundary strain (Fig. 2) 
may be written 

A s  ar N f  
eT . . . .  (9) 

s E E t  
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Kinematic considerations for small changes of a short- 
line length, s, with end points (x,, y,)  and (x2, y2) give 

As = ( a u )  cos r + (Av) sin 46 (10) 

where A u  = u2 - u, and A v  = v2 - v , ,  cos 46 = (x2 - x , ) / s ,  
sin 46 = ( y2  - y O l s  and s = [(x~ - x , )  ~ + (y~ -y,)~]'[~. 
Subscripts (1) and (2) refer to the nodes in Fig. 2 only. It 
is assumed that the rotation of  s is negligible. Equations 
(9) and (10) may be combined to give 

s,  
( u = , - u ~ , )  cos 6 + ( v 2 , - n ~ , )  sin ~ = -~ 

(11) 

Line length, s , ,  is one side of free boundary element i. In 
eq (11), the displacements are unknown. All other para- 
meters are given experimentally or in the element geometry. 

Line of Symmetry 

Along a horizontal line of symmetry, the principal 
stresses are the coordinate normal stresses, ax and or,. 
Equations (8) reduce simply to 

N f  ~ - - ~ = - -  
t 

For the strains, from eq (4), 

1 + 1 + ~  ~ P = ( - - -g - - )  ( ) 
e = -  ~, - E (12) 

An isosceles triangle is taken for the element, i ,  with 
base, e, along the axis and height, h, to the vertex (Fig. 3). 
For the horizontal direction, 

~: -- ( a e ) l e  = ( u 2 , -  u , ) l ( x 2 , - x , , )  

For the vertical direction, considering an identical sym- 
metric element below the element shown, 

ey = [ v 3 , - ( - v s , ) ] / 2 h ,  = v 3 , / h ,  

Subscripts 1, 2 and 3 refer to the nodes given in Fig. 3. 
Equation (12) may be rewritten 

e, e, (1 + v) C-~:--/N'f) 
Uai-- t, txl = ~ Val -- E (13) 

A similar equation may be written for an element along a 
vertical line of symmetry. 

Photoelastic equations (11) or (13) are written for every 
appropriate element. 

S t a t i c . e q u i l i b r i u m  E q u a t i o n  

Static-equilibrium equations relate the total applied 
loads in the horizontal and/or vertical directions to the 
loads produced by stresses along appropriate solution 
lines. These may be the lines of symmetry. For equilibrium 
considerations the free-body diagram consists of the solu- 
tion region with two of the region boundaries being the 
lines of symmetry. Static-equilibrium equations are useful 
in least-squares photoelastic solutions, and one of them 
can often be used in the problem at hand. Because the 
applied loads at the nodes are not present, these equations 
are not redundant. 

For force equilibrium in the vertical direction, the 
static-equilibrium equation may be written 

nt 

r . f ,  = ~ t r , , e , t  
. =  t 1 

where n, is the number of elements along the line of 
symmetry. The side of the triangle along the line of 
symmetry is e,. The external vertical loads total ]~F,. 
Using eqs (4) to obtain a displacement equation, as 
previously done for the photoelastic equations, 

(1 - ~2 ~ "' [ v3, ( u 2 , -  u , , )  
y .  •Fj, = i=1 ~ " W  -it- ~. e, ] (14) 

In this equation the subscripts 1, 2 and 3 refer to the 
nodes in Fig. 3 for element, i, along the line of symmetry. 

S o l u t i o n  P r o c e d u r e  

A solution region for the model is chosen which is 
bounded mostly by lines of symmetry and free boundaries. 
For the example problems to be described, the regions 
are essentially four-sided. Two edges of  the region are 
lines of symmetry, one each vertical and horizontal. 
Various free surfaces are used, one of these being a third 
edge of  the region. The fourth edge of the region closes it 
within the model and is opposite the line of symmetry 
which may be called the 'baseline'. The region is sub- 
divided into triangular elements with elements of  smaller 
size clustered at stress concentrations in the usual finite- 
element manner. Isosceles triangles are used along the 
lines of  symmetry. 

Photoelastic data-displacement equations [eqs (11) or 
(13)] are constructed using nodes of  elements along the 
free boundaries and lines of  symmetry. A static-equilibrium 
equation is constructed along the baseline. Force-displace- 
ment equilibrium equations are constructed at all nodes, 
except those along the region boundary which is opposite 
the baseline. Neither photoelastic nor equilibrium equa- 
tions are written along this boundary. The system of 

S 
X 

Fig. 2--Boundary 
element 

3 A  

Fig. 3--Element on line of 
symmetry 
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equations produces an overdetermined solution for all 
node displacements. 

Precautions 

There are two important considerations for including 
the photoelastic and static-equilibrium equations with the 
finite-element equations. These are concerned with 
ordering of the principal stresses along the free boundary 
and line of symmetry and with weighting of the equations. 

Equation 11 presumes a tensile tangential stress and 
eq (13) presumes that tr~ > a,. If these situations are not 
present the signs of the right sides of these equations 
should be changed. 

The signs of the stresses, in either" case, may be deter- 
mined readily using a supplementary retarder. ~ In many 
problems the signs are intuitively apparent, especially on 
free boundaries. 

Least-squares solutions require that attention be given 
to equation weights to assure the intended influence for a 
given equation in the solution and to avoid inadvertent 
weighting.' Increased weighting is produced by multiplying 
both sides of an equation by a coefficient greater than 
unity, and weighting is reduced by using a low weighting 
coefficient. A high magnitude weighting coefficient pro- 
duces a relatively close fit of the solution to the equation 
where this coefficient is used, at the expense of a poorer 
solution fit to equations with low weights. In the limit, a 
weight of zero removes an equation. For relatively equal 
influence, the relative magnitudes of coefficients should 
be adjusted to be about the same in the various equations. 

As written in this paper, the photoelastic equations 
have coefficients of order unity. In comparison, the static 
equilibrium-equation coefficients are divided by element 
length, and the finite-element equations have coefficients 
of order E. The coefficients in the static-equilibrium 
equation should be multiplied by an average element 
length and those in the finite-element equations should be 
divided by E to prevent inadvertent weighting. 

The subject of equation weights is discussed more 
completely in Ref. 6, which gives a procedure for deter- 
mining them and shows the effects of adjusting weights 
in photoelastic solutions. 

Appl ica t ion  

The combined method is demonstrated in application 
to three problems. The problems enable comparison to 
closed form theoretical stress values, to straightforward 
photoelastic stress results and to finite-element results. 

The problems contain relatively small numbers of ele- 
ments. They were solved using a personal computer and 
are intended to demonstrate the method and to compare 
it with other methods of stress analysis. The method 
could also be used in larger problems containing more 
and smaller elements, with improved accuracy. 

The first problem consists of the disk in diametral 
compression. The photoelastic dark-field fringe pattern 
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Fig. 4--1sochromatics and finite-element grid 
for quadrant of disk in diametral compression. 
Disk has diameter of 5.08 cm 
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Fig. 5--Comparison of combined method results with 
theory for disk in diametral compression; 7 = ylRd, 
normalized stress = M(2t Rd), Rd is the disk radius. The 
thickness is t. R denotes the horizontal location 
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Figs. 6 and 7--Finite-element grids (a) and isochromatic fringe patterns (b) for tensile specimen with central hole 
(Fig. 6) and notched specimen (Fig. 7), each under the influence of total load, P. Stress results (c) include least- 
squares photoelastic results (marked tangentially), combined method (marked as in Fig. 5) and finite-element results. 
Results are given for y = 0.25 cm. Locations of combined method and finite-element resuits are shown in (a). 
Overall width of each specimen is 6 cm. Along line of symmetry width, w = 4.1 cm. Distances are given in 
centimeters. Normalized stress = ~1 ( P / wt  ) 
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is shown with the subdivided finite-element region super- 
posed on it in Fig. 4 for the region of  the disk being 
studied. 

The discretization produces 40 elements from 28 nodes. 
There are no steep stress gradients in this problem, and it 
is possible to subdivide the region into elements of 
approximately the same size. For convenient theoretical 
comparison they are mostly aligned in eight rows parallel 
to the horizontal diameter. Nodes at the bottom of the 
region or baseline, along the horizontal diameter, are 
constrained in the vertical direction. Nodes on the 
vertical diameter (right edge of region) are constrained 
horizontally. Photoelastic data are taken for the seven 
elements on these diameters and for the two elements 
along the free boundary (left side of  the region). 

Results are compared with theoretical stress values 7 in 
Fig. 5 for the first and fourth rows. For the most part the 
results are good in this region, especially for the largest of  
the three stress components, oy. At the sixth row (not 
shown), values of a, and r,,  deteriorate. 

Two additional problems are used to compare the 
combined method with finite-element results alone. Both 
are stress-concentration problems. They consist of  tensile 
bars, one containing a central hole (Fig. 6) and the other 
containing two notches at the edges (Fig. 7). The sub- 
divided finite-element regions are shown in Figs. 6(a) and 
7(a). These figures also show the applied loads for the 
finite-element method. For each problem there are 39 
elements from 29 nodes. 

Figures 6(b) and 7(b) show the dark-field isochromatic 
patterns with a small solution station grid used for least- 
squares photoelastic results. The results shown in Figs. 
6(c) and 7(c) compare the combined and finite-element 
methods with the least-squares photoelasticity values. 

The values are compared at three locations, which are 
shown on Figs. 6(a) and 7(a). Two locations (to the left) 
are each midway between two adjacent element centroids. 
Average stress values for the two adjacent elements are 
used for these locations. The third location is at an 
element centroid. The locations were chosen to be aligned 
with the central grid line of  the photoelastic solution. The 
comparison is favorable for the largest stress values, and 
in the subregion (to the left) containing small elements. 
Values become less accurate with large elements, as 
expected. 

Both problems show the essential similarity of  the com- 
bined method and the traditional finite-element method. 
The advantage of the combined method lies in the ability 
to concentrate on small solution regions where assignment 
of loads at nodes may be difficult. Such a region is used 
in the disk problem. 

Discussion of Method 

The purpose of  this paper is to show how photoelastic 
data may be combined with the finite-element method for 
stress analysis. The procedure has been applied using a 
personal computer. The program was adapted from that 
givdia by Brown? The least-squares reduction is described 
in Ref. 1. 

Variations in the method are possible which will be 
briefly discussed. Each of  them necessarily increases the 
effective size of  the problem. 

Improved strain (and stress) gradients may be obtained 
using a linear-strain triangle for the element? Such an 
element uses quadratic displacement functions for u and v 
instead of  the linear functions of  eqs (1). These functions 
each contain six unknown coefficients which are solved 

for in terms of  displacements at six nodes. These are 
located at the midpoints of triangle sides and at the 
vertices. Isosceles triangles used along the lines of  sym- 
metry will produce two photoelastic data locations. The 
photoelastic equation [eq (13)] for these locations presumes 
statements for strain which are identical to those produced 
by the quadratic functions, indicating that the linear-strain 
triangle can be employed directly. This is not possible for 
elements which use cubic or higher order functions as 
there are differences in the strain expressions between 
those used in the photoelastic equation and those produced 
by these functions. 

The second variation is to include photoelastic data at 
additional locations. This would improve the results, 
especially away from the lines of symmetry. To do this it 
is necessary to obtain photoelastic displacement equations 
written about element centroids using the general state of  
plane stress. Photoelastic data, including principal direc- 
tions (isoclinic data), are then taken at each location. Such 
method must be compared with the least-squares photo- 
elastic method' . '  which may offer advantages in organiza- 
tion and execution. 

It is possible to use different solution region boundaries 
for the combined method. Regions may be bounded 
entirely with external surfaces, and may include surface 
loads. It is possible to use internal boundaries which are 
not lines of symmetry. For this case it is necessary to 
use the general photoelastic equations and isoclinic data 
discussed in the preceding paragraph. It is important to 
establish a properly constrained finite-element problem. 
(Displacement constraints are provided along the lines of  
symmetry in problems containing them.) The static 
equilibrium equation(s) for such problems will include 
shear and normal stresses and likely will include contribu- 
tions from more than one boundary line. 

Conclusion 
A method has been presented and demonstrated which 

combines the finite-element method with photoelastic data 
for stress analysis using least-squares. The results obtained 
compare favorably with photoelastic results, finite-element 
results and theory. The method offers the advantage of 
simplified data measurement (no isoclinics) and local 
application to regions of  high stress. The method was 
applied using a personal computer. Variations of  the 
method are discussed. 
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