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ABSTRACT--Two-parameter methods of fracture analysis for 
determining the stress-intensity factor from photoelastic 
isochromatic4ringe data were critically reviewed. The 
methods of Irwin, Bradley and Kobayashi, and Smith were 
developed in detail and differences in the three approaches 
were noted. Theoretical fringe loops were generated for a 
.crack of length 2a in a semi-i.nfinite plate with biaxial loading. 
These fringe loops were used to compare the three analysis 
methods and to determine the accuracy of each method. 

All three methods give a close estimate of the stress- 
intensity factor, with the Bradley-Kobayashi differencing 
procedure providing the most precise estimate of K. However, 
if measurement errors become excessive (larger than 2 
percent) the differencing procedure magnifies these errors 
and the original method proposed by irwin is the recommended 
approach. 

The two-parameter methods can be employed to determine 
K to within _+5 percent, provided the angle of tilt of the 
isochromatic-fringe loop is 73 < 0m < 139 deg. If 8,,, is outside 
this range, the two-parameter methods should not be employed. 

Introduction 
Post' and Post and Wells 2 in the early 50's were the 

first investigators to show the application of photoelasticity 
to fracture mechanics. Irwin 3 in a discussion to Ref. 2 
showed that the stress-intensity factor K could be 
determined from a single isochromatic-fringe loop at the 
tip of the crack. With the Irwin method, the stress-intensity 
factor K and a uniformly distributed stress ~ox are 
functions of the radius rm of the fringe loop and 0m the 
angle associated with the tilt of the loop as defined in 
Fig. 1. 

Since this work in the early 50's, Bradley and KobayashP 
and C.W. Smith ~ have modified lrwin's method. Bradley 
and Kobayashi redefined the relationship between tro~ and 
K which resulted in a simplified relation for K in terms of 
the fringe-loop parameters rm and 0r~. Kobayashi and 
Bradley then introduced a differencing technique involving 
measurements of 0 and r on two fringe loops in an 
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attempt to avoid difficulties associated with the singular 
terms in Irwin's solution. 

Smith omitted one term in one of Irwin's equations and 
measured the position r of the fringe loop at 0 = n/2  
(along a line perpendicular to the crack extension). Smith 
then employed a differencing technique similar to that of 
Bradley and Kobayashi to uncouple K and cro~ in the 
analysis. The data are then statistically conditioned using 
results from several pairs of fringes to improve the 
accuracy of the K determination. 

The primary objective of this paper is to review these 
three methods of analysis. The review is critical in that 
limitations of the two-parameter method are indicated. 
Also, these three methods are compared with exact 
theoretical results obtained for a central crack of length 
2a. Comparisons are made to show the effect of errors 
in the measurement of both rm and 0m. 

Two.parameter Methods of Analysis 

Irwin's Method 
Irwin 3'6 showed that the stress-intensity factor K could 

be determined from the isochromatic-fringe loop at the 
tip of the crack illustrated in Fig. 1. Irwin began by 
writing the cartesian components of stress ~ ,  ~ and 
rxy in the local neighborhood (r < < a) of the crack tip 
a s  : 

K cosO(1  - s i n O  s i n ~ _ )  _ O-o, 
~ -  2V~-T 

K cosO (1 + s i n O  s i n ~ _ )  (1) 
Oy -- 2X/~ ~ 

K �9 0 0 30 rxy - ~ sm~-- cos~- c o s - - 2  

This representation (except for the Oox term) is the exact 
solution for the case of the semi-infinite crack subject to 
biaxial loading. The ao~ term was subtracted from the 
expression for trx to prqvide another degree of freedom so 
that the analytically determined fringe loop could be 
brought into closer correspondence with the experimentally 
observed loop. 

The maximum shear stress rm is expressed in terms of 
the cartesian stress components as : 

(2r,,) 2 = (o'y - o-x) 2 + (2rxy) 2 (2) 

From eqs (1) and (2), it is apparent that 
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Fig. 1--Character ist ic  geometry of the 
isochromatic-fringe loop at the crack lip 

K 2 2%xK 3~ 
(2T')Z -- 2nr sinZ0 + ~ sin0 sin + O'ox z 

(3) 

Next, Irwin observed the geometry of  the fringe loops 
and noted that : 

0T,n 
= 0 (4) 

a0  

at the extreme position on the fringe loop where r = r," 
and 0 = 0m. Differentiating eq (3) with respect to 0 and 
using eq (4) gives 

- K sin 0," cos 0," 
O--ox - -  

�9 30m 3 30, .  
2 ~ . ,  (COS0," sm T + ~ -  sin0," c o s ~ - )  

(5) 

The two unknown parameters K and Crox are determined 

from the complete solution of  eqs (3) and (5) as : 

- 2T,. COS 0,. 
O - o x  cos(3O.,/2) [cos20," + (9/4)  sin20,,,] ' /2 

(6) 

and 30,, 

- + ( 2 2tan 2 
sin 0,. 3 tan O.. )~] -1 /2  ( 1 + 3 tan 0 - - - - - ~ )  

(7) 

Results for the normalized stress parameter (Oo/2X,.) 
obtained from eq (6) are shown in Fig. 2 as a function of  
0., over the physically admissable range of  60 < 0,. < 180 
deg. Similarly, results for the normalized stress-intensity 
factor K / 2 T , . ~ , .  are shown in Fig. 3 as a function of  
0,,, over the range of  69.4 ~<0,. ~< 148.8 deg where K is 
positive. 

To further establish the range of  0,,. over which the 
Irwin method is applicable, an analysis of  the central- 
crack problem (i.e., a crack of  length 2a in an infinite 
plate with biaxial loading at the boundaries) was 
performed.  In the analysis of  the central-crack problem, 
the far-field stress perpendicular to the crack was or = cr 
(tensile) and the far-field stress parallel to the crack was 
c~ = (1 + x )o  where the constant x was varied f rom 
+ 2.0 to - 4 . 7 5 .  Stress parameters r , . / o  and a stress ratio 
x were selected and a corresponding normalized fringe- 
loop radii r,"/a and tilt angles 0,. were determined as 
shown in Table 1. The parameter "r, . /a is proport ional  to 
the fringe order N associated with the loop since 

N f  o (8) 
"r,,, - 2h 

where fo is the material-fringe value 
h is the model thickness 

Values of  x , . / o - o f  2, 2.5 and 3 were used to generate 
analytical fringe loops of  appropriate size. 

Next, the normalized stress-intensity factor K/2T,.2X/~-r.. 
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Fig. 2- -Normal ized stress 
parameter (Oox/2r,") as a function 
of tilt angle Or,, 
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was computed from : 

K/2rm 2 ~ "  = 1/2(v,./~) ~4(r,./2a) (9) 

since K = k / ~ o  for the central-crack problem. This 
normalized stress-intensity'factor is also shown in Table 1. 

By using eq (7) together with the values of r,. and 0,. 
from Table 1, it was possible to compute another 
normalized stress-intensity factor based on Irwin's two- 
parameter method. Comparison of the two normalized 
stress-intensity factors in Table 1 permit the error in the 
determination of K to be evaluated. This error is shown 
as a function of 0,. in Fig. 4 for the different ratios of 
T., / cr. 

Inspection of Fig. 4 shows that the two-parameter 
method of Irwin will predict K to within +5 percent 
providing 73 < 0,. < 139 deg and to within _+2 percent 
providing 73.5 < 0" < 134 deg. Outside these _ 5 percent, 
the error increases rapidly and the two-parameter method 
is not applicable. 

The size of the fringe loop relative to the crack length 
in this comparison is small. Inspection of Table 1 with 
73 </9., < 139 deg shows that r,./a <~ 0,03 for the larger 
angle and r,./a <~ 0.065 for the smaller angle. The smaller 
the value of r,./a consistent with the precise measurement 
of r,. gives more accurate predictions of K. 

Bradley-Kobayashi Method 
Bradley and Kobayashi '.7 modified Irwin's analysis by 

substituting the following expression for aox into eq (3) 

dK (10) (70x -: 

where 

d = o'oJo" (11) 

and o-is the far-field stress perpendicular to the crack. 
This substitution permits K to be factored from eq (3) to 
give : 

2rt r K2 + ~ 3~02 (2r,.) 2 = (sin20 2d sin0 sin + 2r62) 
17/ 

(12) 

Differentiating eq (12) with respect to 0 and using eq (4) 
gives 

\ / 2 r "  _ - sin 0., cos0,. 
d V a . 30 , .  3 30 , .  

cos0,, s m - - ~  + ~- sin0" cos 2 

(13)  

Then, substitution of eq (13) into eq (12) leads to : 
3e,. 

2tan - - -  
_~__2___2 ) a~ )21 ,,2 + 2nk'/2-hT~ (2T")(1 + [1 + (3t  0 K =  

sin 0,. 3 tan 0,. ;. 
(14) 

where the plus sign is selected when 69.4 < 0,. < 148.8. 
Comparison of eqs (7) and (14) shows that the Bradley- 

Kobayashi method is identical to the Irwin method in 
predicting K from photoelastic data. 

The Bradley-Kobayashi method gives the appearance of 
being a three-parameter method since eq (10) for Oox 
contained both d and x/a- in addition to K. However, the 
two parameters d and a can be reduced to a single 
parameter by letting 

TABLE 1 - -COMPARISON OF THE NORMALIZED 
STRESS-INTENSITY FACTOR 

~m/o 

3.0 

2.5 

2,0 

K" ~ "  8=(degrees) r m / a  ~ m  2'm ~ m  aK--~ percent ) 

143.47 .250 0.46 0.24 -91.7 

143. l �9 096 O. 48 O, 38 -25.3 

140.04 .042 0.66 0,57 -15.8 

139.4 .032 0.89 0.66 - 4.5 

137.74 .026 0.76 0,73 - 4.1 

136.04 .022 0.82 0,8 - 2.5 

129.72 .015 0.97 0,96 - 1.0 

121,45 .012 1.07 1 ,O6 - 0.9 

118.18 .012 1.09 1,08 - 0.9 

107.2 .012 1.099 1.09 - 0.8 

99.78 .012 1.08 1,07 - 0.9 

88.19 .015 0,98 0.97 - 1.5 

84.24 .017 0.91 0.9 - l.l 

79.92 .022 0.8 0.79 - 1.3 

76.01 .035 0.638 0.63 - 1.3 

74.52 .047 0.55 O. 55 O 

73.21 .065 0.45 0.46 2.2 

71,96 .098 0.34 0.38 10.5 

71.29 .125 0.27 0.33 18.2 

70.51 .165 0.17 0.29 41.4 

69.53 .226 0.02 0.25 92.0 

142.06 .101 0.58 0.44 -25.0 

140.69 ,063 0.62 0,56 -10.7 

139.02 .046 0.70 0.66 - 6.1 

137.08 .035 0.78 0.75 - 4.0 

134.91 .029 0.85 0.83 -2.4 

129.76 .022 0.92 0.9 -2 ,2 

111.21 .017 0,97 0.96 -1.5 

102.21 .017 1.02 1.01 - I  .5 

90.85 .02 1.01 1.00 -I. 5 

83.45 .026 0.89 0,88 -I .I 

78.72 .036 0.76 0.75 -1.3 

76.44 .047 0.66 0.65 -1.5 

74.57 .066 0.55 O, 85 0 

73.74 .08 0.49 0.5 2 .0  

72.92 .099 0.43 0.45 4.4 

72.11 .126 0.35 0.4 12.5 

71.19 .166 0.85 0.35 28.6 

70.62 .200 0.18 0.32 43.8 

140.43 .110 0.64 0.53 -20.8 

138.42 .070 0.73 0.67 - 9.0 

135.96 .052 0,82 0.78 - 5.1 

133.12 .041 0.9 0.87 - 3.4 

189.82 .035 0,97 0.95 - 2.1 

121.76 .028 1,07 1.05 - 1.9 

111.59 .026 1,10 1.09 - 0.9 

95.61 .029 1,05 1.04 - 1.5 

84.85 .038 0.92 0.90 - 2.0 

78.66 .057 0.76 0.74 - 3.0 

77.17 .068 0.69 0.68 - 1.5 

74.65 .I01 0.56 0.56 0 

73.5 .128 0.48 0,49 2.0 

72.33 .168 0,37 0.43 14.0 

71.0 .229 0.23 0.37 37.8 

�9 Jrwin's two parameter l~thod 

�9 * Exact, from the central crack problem 
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Fig. 3 - -Norma l i zed  stress-intensity factor K/2T,.~.~/2~-rm as a function of tilt angle ~?., 
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Comparison of eq (17) and eq (6) shows that the Bradley- 
Kobayashi fitting parameter O'ox is identical to the Irwin 
Cro~ and that the two methods are exactly the same. 

Bradley and Kobayashi were concerned with errors 
produced in determining K when 0,, was close to either 
69.4 or 148.8. In these regions, small errors in measuring 
0,. produce large errors in K. In order to minimize these 
errors Bradley and Kobayashi used two fringe loops with 
eq (12) to obtain : 

K = 2 2 V T n - ~  (r2 - r , ) / ( / ' 2  rv'h~t + f l  rVgT2 (18)  

where 

f = [sin20 + 2 d ~ s i n 0  s in (30 /2 )  + 2rd2/a]  "2 

(19) 

It is of  interest to note the variation of the  Bradley- 
Kobayashi normalized stress parameter 6 ~  which 
is shown as a function of 0,, in Fig. 5. The parameter 
d ~  is small (i.e. less than 0.2) for 82 < 0,,, < 113 
deg; however, the term cannot be neglected in comparison 

TABLE 2 - - T H E O R E T I C A L  FRINGE-LOOP G E O M E T R Y  

Kh/fo = 1.535x/i-n (7.736x/mq-n), a = 3 in (76.2 mm) 

Fringe r m  Om r at O = rt/2 
Order ,  olr,,, x 

N (in.) (mm) deg (in.) (mm) 

1 1 0.0 0.3757 9.54 93.59 0.3775 9.46 
2 1/2 0.0 0.0938 2.38 90.92 0.0935 2.36 

to sinZ0,, in comput ingf  from eq (19). 
The value of d ~  is relatively insensitive to small 

changes in 0,, over this range of tilt angle. This result 
confirms the  observation by Bradley and Kobayashi that 
small changes in d do not markedly affect K for 90 < 0,, 
< 120 deg. Kobayashi and his associates ~.9 often simplify 
eq (19) by setting d = 1 when applying this differencing 
t'echnique; however, this simplification has never been 
justified. 

SchroedI-Smith Method 
Schroedl and Smith ~ determine the fringe order of the 

isochromatic loops along the line defined by 0 = 90 deg, 
and accordingly eq (3) reduces to : 

K 2 Koox 
(2x') 2 - 2rrr 2 + ~ + Crox 2 (20) 

Solving eq (20) for K and retaining only the positive root 
from the quadratic formula gives 

K = X/-dT[(Szm x - O'ox2) 1/2 - o-o~] (21) 

I t I I 
I0 20 30 40 

I I t I I I I 
50  60  70 8 0  9 0  "~, , , , ,  I I0 120 130 140 

ANGLE OF TI 

6' = d/V-~ 

Then eq (10) becomes 

Crox = d 'K/V-Y-  

Substituting eq (15) and eq (13) into eq (16) gives 

- K sin 0~ cos&, 
O~ox = 

Fig. 5--Bradley-Kobayashi normalized stress parameter ~5~/2rm2a as a function of tilt angle Om 
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TABLE 3--COMPARISON OF THE TWO-PARAMETER 
METHODS FOR DETERMINING THE STRESS-INTENSITY 
FACTOR 

Method N Eq No. (Kh/fo)* Z~K/K(percent) 

Irwin 2 7 1.5546 1.28 

Irwin 1 7 1.5912 3.68 

B-K 1 and 2 18 1.5331 -0112 
S-S 1 and 2 23 1.5278 - 0.47 

* Exact vai'ue of (Kh/fo) 1.5350 

Smith simplified eq (21) by neglecting ~o. 2 relative to 8x., 2 
to obtain 

K = V-ffF[x:2 (2T,.) - O-od (22) 

By adopting the Bradley-Kobayashi differencing technique, 
Smith uncouples the K and o'o. relation. Using x,. from the 
i th and j,h fringe loops gives 

K = ~ (2Tm)i -- (2"r,.)j (23) 

1 - -  ( r i )  1 / 2  
rj 

Smith and Schroedl compute K from eq (23) for all 
possible permutations of pairs of fringe loops and from 
these values of K they determine the average and standard 
deviation. The values of K outside _+ one standard 

deviation limits are eliminated and K.. .  is recomputed 
from the remaining values of K. The accuracy of this 
method has been discussed '~ and prediction of K to + 5 
percent is anticipated if the fringe loop radii ri and rj are 
measured without error. 

Comparison of the Three Methods 
The results from an exact analysis of the central-crack 

problem provided the analytical basis for comparing the 
three methods. Two theoretical fringe loops, with N = 1" 
and 2, were generated for a crack length 2a = 6 in 
(152 mm), In this case, Kh/f,,  was taken as 1.535 1vTn-7 
(7.736 mx/m-m) to give crN/x,. = 1. The geometry 
parameters describing these loops r,. and O,. and r at 
O = n/2 are given in Table 2. 
These parameters were used in eqs (7), (18) and (23) to 
compute Kh/fo for the three methods as shown in 
Table 3. 

The  comparison of the results for Kh/fo obtained by 
using the approximate methods of Irwin, Bradley and 
Kobayashi, and Schroedl and Smith, show that all three 
methods provide solutions which are very close to the 
exact value of Kh/fo. Provided that no errors are made 
in the measurements of r,. and 0,,,, the Bradley and 
Kobayashi eq (18) predicts the most accurate values, the 
Schroedl-Smith method is slightly less accurate, and 
Irwin's method has the largest error when compared to 
the exact results from the central-crack problem. 

The error introduced by Kobayashi's practice of setting 
d = 1, when using eq (12) to determine K from a single 
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Fig. 7 - - C o m p a r i s o n  of er rors  in K 
as a funct ion of measurement  
error  ,:X0,,, 
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0 m = 9 0 . 9 2 *  

fringe loop, was also evaluated using the data from Table 
2. It was found that eq (12) gave Kh/f,, = 1.1194 which 
is in error by - 2 7 . 0 7  percent. Thus, it is evident that 
the simplification of  eq (12) by setting d = 1 leads to 
significant errors in determining K. 

If an error is made in the measurement of  r , , ,  then an 
additional error results in determining K for all three 
methods.  The error in determining K as a function of  the 
deviation in the measurement Arm of  the N = 2 fringe is 
presented in Fig. 6 for the three different methods. It is 
evident from these results that the two differencing 

m e t h o d s  lead to larger errors since the differencing 
procedure amplifies the relative error. 

If  an error is made in the measurements of  0,,, the 
methods of  Irwin and Bradley and Kobayashi propagate 
this error as shown in Fig. 7. l rwin's  method introduces 
more error for positive /~0,, errors due to the initial 
positive error in K when A0,, = 0. For the same reason, 
Irwin's method introduces less error for negative A0,, 
errors providing A0,, > - 3 deg. 

Conclusions 
The two-parameter  methods  are all applicable for 

determining K in the range 73 < 0,,, < 139 deg provided 
r m / a  < 0.03. If no measurement  errors are made in r,,, or 
Ore, the two parameter methods will predict K with an 
accuracy of  _+ 5 percent. 

When two or more fringe loops occur at the crack tip 
and the radii can be measured with better than 2 percent 
accuracy, then the Bradley-Kobayashi  shear-stress 
differencing method provides the most accurate results. 
When the measurement errors exceed 2 percent, the 
differencing technique magnifies these errors and Irwin's 
method produces more accurate estimates of  K. The Irwin 
method is slightly more sensitive to errors in the measurement 
of  0,, than the Bradley-Kobayashi  method.  

The errors in 0,, determination can be eliminated in 
the differencing methods of  Schroedl and Smith and 
Kobayashi and Bradley since any fixed value of  0 can be 
employed. However,  at least part of  this advantage is 

offset by the error introduced i n  making the second r 
measurement.  (Note that the results of  Fig. 6 are for an 
error introduced in only one r measurement). 

If only one fringe loop is available for analysis, lrwin's 
method must be used because it is the only method which 
can analyze a single fringe loop; Recall that the single- 
fringe-loop analysis obtained from the Bradley-Kobayashi  
method was shown to be identical with Irwin's method. 
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