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ABSTRACT--The ideal boundary of a discontinuity is defined 
as that boundary along which there is no stress concentration. 
Photoelastically an isochromatic coincides with the ideal 
boundary. This property is used to develop experimentally ideal 
boundaries for some cases of technological interest. The 
concept of 'coefficient of efficiency' is introduced to evaluate 
the degree of optimization. The procedure to idealize boundaries 
is illustrated for the two cases of the circular tube and of the 
perforated rectangular plate, with prescribed functional 
restraints and a particular criterion for failure. An idear design 
of the inside boundary of the tube is developed which decreases 
its maximum stress by 25 percent, at the time it also decreases 
its weight by 10 percent. The efficiency coefficient is increased 
from 0.59 to 0.95. Tests with a brittle material show an 
increase in strength of 20 percent. An ideal design of the 
boundary of the hole in the plate reduces the maximum stresses 
by 26 percent and increases the coefficient of efficiency from 
0.54 to 0.90. 

Introduction 
Some fifty years ago, the subject of stress concentrations 

deserved a great deal of interest from scientists and 
engineers. Changes in the uniform shape of a component 
disturb the stress distribution, and most of the time 
increase the maximum stress. This fact was likely to have 
an influence on failure and excited the imagination of  
theoreticians first, and experimentalists later, to find 
means to determine the value of the- increase in stress. 
Kirsch ' was probably the first one who obtained a 
meaningful answer to the problem when he presented the 
equations giving the stress distribution around an empty 
circular hole. Today, several handbooks summarize the 
findings on stress concentrations and make them available 
to engineers in an easy-to-use form. Among the most 
popular, the books by Peterson 2 and Roark 3 can be 
mentioned. 

Scientists and engineers, after worrying about the 
increase in stress associated with changes in shape, are 
beginning to consider now the possibility of controlling 
those changes to minimize the stress and optimize the 
shape. It seems logical in the development of these studies 
that the optimization of shapes has to follow the knowledge 
of the stress concentrations. The subject is of  particular 
importance today when mankind will be making a strong 
effort to save energy and materials. The methods and 
criteria to be presented in this paper arc general, but the 
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n e w  examples of  application have been selected less for 
the technological importance than as illustrations and 
means of  exciting the imagination of designers and 
students. 

Previous Contributions 

Optimization of the shape of  fillets and holes in stress 
fields has interested few people so far. One of  the first 
references, by implication, can be found in a discussion 
by Richmond' of a paper by Mindlin. It is pointed out 
that, if a square tunnel with rounded corners is present in 
a semi-space, there is a particular value of  the radius of 
the fillets at the corners of the square that will optimize 
the stress distribution. Whether the value of the radius is 

smaller or larger than D D being the side of the square, 
6 '  

the stress concentration will increase. 
An important contribution was made in an early paper 

by Berkey 5 who studied systematically the stress con- 
centration associated with elliptical fillets with the 
purpose of reducing the concentration at a shoulder. The 
attempts by Baud 6 and by Lansard 7 should be mentioned 
in spite of the unfortunate reference to a nonexisting 
analogy. Some further reference to the problem is implied 
in a section in Peterson's handbook 8 when the study of 
concentrations associated with noncircular fillets is 
introduced. 

Kuske' refers to the problem but it is in Heywood's '~ 
books that the subject has been dealt with more extensively, 
and in a more practical way. 

Sometime ago, the first author used the concept of an ideal 
fillet, defined it as a fillet without stress concentration and 
related it photoelastically to the coincidence of the 
boundary with an isochromatic fringe. Some references 
can be found in a book, ~2 reports and early papers. "-'~ 
Recently, Francavilla e t  al. ~' attempted the optimization 
of fillets using finite-element methods. The geometries 
they obtained, however, show some stress concentration. 
In this paper, besides reviewing the problem of the 
optimization of holes and fillets, the concept of efficiency 
factor will be introduced, and attempts will be made at 
optimizing complete boundaries, even those subjected to 
stresses of opposite signs. 

For the purpose of completeness, it should be mentioned 
that another approach has been followed sometimes, 
with the same objective of increasing strength by decreasing 
weight. It consists in adding new discontinuities to the 
original one. So it can be shown that a row of holes, or 
fillets may produce a smaller stress concentration than a 
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Fig. 1--1sochromatics obtained for the 
original and optimized designs of a fi l let 
contour. (When an isochromatic lies 
along the length of a fillet, the fi l let 
geometry is optimum) 

single hole, or fillet. One of the first contributions to this 
method was made by Thum and Svenson. ~7 Further 
studies can be found in other papers by the first author '8''9 
and more recently by Erickson and Riley. s~ The scope of 
this paper is limited to the optimization by changing the 
contour of the discontinuity. 

Approach to the Solution 
It is possible to use a computer and an appropriate 

program to develop a contour that will minimize the 
stress as was done in Ref. 16. It seems more efficient, 
however, to use photoelasticity. Two-dimensional photo- 
elasticity is very well developed by now, and the machining 
of models and the photographing of records can be done 
as routine operations in well-organized laboratories. The 
optimization can be accomplished by manual filing of 
boundaries as suggested in Ref. 12. 

The proposed method has already been applied to the 
solution of two problems of technological interest: (1) 
the tip of the several rays of stars in perforated solid- 
propellant grains used for rocket propulsion, and (2) the 
transition between the blade and the dove-tail joint in 
a turbine. 

The tip of the star in solid-propellant grains was 
originally designed either with one circular fillet tangent 
to the two sides of each ray or with a flat bottom connected 
through two small circular fillets to the sides of each ray 
(Fig. 1). In the first case, the maximum stress, given in a 
photoelastic model b y  the maximum order of the iso- 
chromatic fringe, is at the axis of the ray. In the second 
case, left side of Fig. 1, the maximum stress takes place at 
the corners. It can be observed that, at these points, both 
the fringe order and the density of the fringes are higher. 
A very small amount of material at the boundary of the 
fillet is subjected to a very high stress. 

The second example refers to the transition between the 
blade and the dove tail that joins it to the rotor of the 
turbine. It was originally designed using circular fillets, of 
relatively large radii in this case, as shown on the left of 
Fig. 2. The isochromatic pattern in the photoelastic model 
indicates dense fringes with a high order at the bottom of 
the fillet. 

The appearance of isochromatic fringes at the boundary 
of ideal fillets is shown on the right side of Figs. 1 and 2. 
The deciding characteristic is that a fringe coincides with 
appreciable length of the boundary of the fillet. When the 
boundary intersects another fringe, the latter is of a lower 

Fig. 2--1sochromatics about a poorly 
designed fi l let and a nearly ideal f i l let 
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order. Strain and energy, therefore, are not concentrated 
on a small portion of the boundary but distributed on a 
long part of h. An even more striking example is shown in 
Fig. 3 which represents the tip of a star in a solid-propellant 
grain. 

The transformation of the shape from the original 
design to the optimum design shown on the right side of 
the figures can be done in a relatively short time with a 
hand' file. The operator starts removing material by filing 
off zones of low stress. This decreases the order of the 
fringe at the zone of concentration and increases it at the 
zone of low stress. If the operation is conducted in a 
large-field diffused-light polariscope, the operator can 
watch the transferring of fringes as he files and, in a short 
while, reaches the moment when one single fringe coincides 
with the boundary of the model. The manual operation 
of filing may introduce some local irregularities as shown 
in Fig. 1. If more precision is desired, a second model 
should be machined as shown in Fig. 2, with a fillet 
shape corresponding to the one obtained by filing and, if 
necessary, further refinement can be obtained by applying 
the same operation of filing to the second model. In the 
two cases reported above, the optimum shape is obtained 
after only slight changes in geometry. 

From a practical point of view, a further consideration 
should be made. It has been found that, frequently, the 
optimum fillet shape can be fitted with two or more 
circles so that neighboring circles have common tangents. 

Criteria 
The definition of the problem requires the specification 

of the constraints imposed by the design. In the two cases 
mentioned above, the optimization was obtained with 
very little change in geometry. That was all that was 
permitted by the functional requirements. Of course, the 
optimization problem may have several answers if the 
functional requirements permit appreciable changes in 
design. 

An improved design, obtained following the procedure 
outlined above, always brings the stress-concentration 
value down. However, it may not always be clear whether 
the design is optimum. It is proposed here that the 'degree 
of optimization' be evaluated quantitatively as a coefficient 
of efficiency, k.~j. For the case where the tangential stress 
o, is of the same sign all along the boundary, ke~ can be 
defined as 

s o, ds f 
k ,~s =lSo(S, - S o ) o : , ,  

where a.~ represents the maximum allowable stress and S, 
and So are the limiting points along the boundary. For the 
case of both tensile and compressive stresses, koj~, is 
computed as a weighted average of the efficiency factors 
along the tensile and compressive portions of the boundary. 
Taking the weighting factor in terms of boundary lengths 
yields 

S 2 
SI 

o,* ds  l o2 ds  f 
l So $1 - So s, S~ - S,  

k ~ss - + 
(S ,  - So)o.~. S~ - So (S~ - S,)o-.e~ S~ - So 

�9 _([s' o: ds "~ d~ 
1 I sl o? 

k~tJ = S~ S~  <'~ ~ S~ *.~ + - 
- -  O . f f  

where the positive and negative superscripts refer to tensile 

and compressive stresses, respectively. 
A coefficient of efficiency equal to one is a limiting case 

and corresponds to a boundary without stress concentration, 
subjected everywhere to the same stress. The circular hole 
in a hydrostatic field is an example. The closer k,j~ is to 
one, the more efficient the design. 

The criteria for optimization will depend on the 
criterion for failure. If the boundary to be optimized is 
subjected to both positive and negative stresses, the 
integration along the boundary should be conducted using 
absolute values for the stresses. If the component is 
designed for a material that has the same allowable maxi- 
mum stress under tension as under compression, the 
ideal shape would have equal values for both peak stresses, 
the tensile and the compressive. If, as is the case for 
brittle materials, the maximum allowable tensile stress is 
only a fraction of the maximum allowable compressive 
stress, the ratio between the two peak stresses in the 
optimum design would be the same as the ratio of the two 
allowable maximum stresses. 

The redesign of a circular tube or ring, to optimize the 
inside boundary, will be used as example of the appli- 
cation of the criteria and the procedure mentioned above. 
The problem has application in the field of tunnel and 
pipe design, but it will be presented mainly as an academic 
problem to illustrate the method. It will be assumed that 
the material to be used in the manufacture of the tube has 
the same maximum allowable tensile and compressive 
stresses. Another example to be shown will be the case of 
a thin straight bar of rectangular cross section. The bar 
has a transverse circular hole and is subjected to axial 
loading. The optimization will be conducted for a different 
allowable stress in tension and in compression. 

The Ring Under Diametral Compression 
The circular ring subjected to diametral compression 

has been the object of many experimental analyses (see, 

Fig. 3--Example of a fi l let of opt imum shape. The magni- 
tude of the boundary stress is proportional to the distance 
between the boundary and the white line 
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Fig. 4--Opt imizat ion of the inside boundary of a circular 
ring subjected to diametral compression 

among others, Ref. 21). In a future paper, it is planned to 
study parametrically the properties of the ring as the ratio 
between the outside and inside diameters varies and to 
attempt optimization of the inside boundary for the 
whole range of thickness. In this paper, the procedure will 

ID be illustrated for the case ~ = 0.53. The constraints of 

the problem are : (a) the outside boundary has to be kept 
circular; (b) the inside boundary has to clear the circle of 
diameter 0.53 OD; (c)the allowable maximum stress for 
tension is the same as for compression. 

Optimization of the Ring 
Two stress-concentration factors (taking the average 

o, over the horizontal section of symmetry as reference) 
are of particular interest. The one of compression takes 
place at the intersection of the inside boundary with the 
horizontal axis and the one of tension at the intersection 
of the vertical axis with the same boundary. For the 

ID = 0.53 ring, these factors are 6.0 and 6.6 respectively. 
OD 
The efficiency coefficient is 0.587. 

Following the procedure of removing material from 
low-stress regions, the shape shown in Fig. 4 was developed. 
Photoelastic analysis of the pattern indicates that both 
stress-concentration factors have decreased to 5 and the 
efficiency coefficient has increased to 0.952. The tensile 
stress concentration which is the governing one in many 
designs has been decreased by nearly 25 percent. The 
saving in the weight of the material used is 10 percent. 

The stress distribution over the inside boundary for the 
circular ring and for the optimized geometry is shown in 
Fig. 5. 

The empirically developed inside geometry has been 
fitted with a combination of circles of different diameters 
and common tangents at the points of intersections. The 
geometry of the optimized shape is shown in Fig. 6. 

The improvement obtained in the strength of rings 
designed using optimized inside boundaries has been 
determined by breaking three plain circular rings and 
three optimized rings, made of 0.5-in.-thick Homelite- 
100 plates. The increase in strength was 20.6 percent. The 
range of values of each set of measurements was limited 
by a variation of + 6 percent of the average. 

The Perforated Plate Under Axial Loading 
In industrial applications, a plate may have to be 

perforated for different reasons: to permit the passage 
of another component (a bar for instance) or to make the 
plate lighter, and still sufficiently rigid. In the case of 
walls, or tunnels, the perforation is a passage. Frequently, 
the geometry given to the perforation is circular but, for 
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functional requirements,  the perforation may be square 
or rectangular. 

The maximum stress on the edge of  the circular hole 
takes place at the transverse cross section and, for the 
very wide plate, its order is 3 when the stress on the gross 
area is taken as reference. A stress of  opposite sign, of  
order 1, on the edge of  the hole takes place at the 
longitudinal axis. As the width of  the plate decreases 

Fig. 7--Opt imizat ion of the boundary of a hole in 
a rectangular plate of f inite width subjected to 
axial load 

Fig. 8--Stress tangential to the 
boundary of an optimized hole 
in a plate subjected to axial 

D loading ( ~  = 0.6) 
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Fig. 9 - -Nond imens iona l i zed  geometry of the 
opt imized hole in a plate subjected to axial 

loading ( u  = 0.6) 

in relation to the diameter of the hole, those values of 
stresses increase. If material used for the plate is metal, 
and the plate is subjected to axial tensile loading, points 
on the edge of the boundary near the transverse cross 
section are much closer to failure than those near the 
longitudinal cross section (unless buckling is involved). If 
the problem is a tunnel under compressive load, and the 
material used is brittle, the points at the longitudinal 
axis may fail under tension, much before those at the 
transverse axis would fail under compression. Similar 
considerations can be applied to the square hole, the 
situation being more complicated because of the possible 
appearance of concentrations at the corners. 

The optimization of this type of discontinuity depends 
on the relation between the width W of the plate and the 
diameter D of the hole, and on the relative allowable 
stress of the material under tension and compression. The 
optimization procedure will be illustrated for the case 

D = 0.6. The constraints of the problem are: (a)the 
W 
inside boundary has to lie in between the circle of 
diameter D and the square of side D;  (b) the allowable 
maximum stress for compression is 2.3 times the allowable 
stress for tension (case of some brittle materials). 

Optimization of the Hole In the Plate 
The stress-concentration factors (taking the average ay 

over the transverse gross area as reference) are of particular 
interest. The one at the transverse axis is 5.1 for the 
circular hole, and 3.77 for the optimized hole; the one at 
the longitudinal axis is 2.2 for the circular hole and 1.63 
for the optimized hole. The maximum stresses have been 
reduced by 26 percent. The size of the hole has been 
increased by 22.8 percent. 

The efficiency coefficient of the circular hole is 54 
percent. The efficiency coefficient of the optimized hole 
is 90 percent. 

Conclusion 
It has been shown that tw0-dimensional photoelasticity 

can be used effectively to optimize the boundaries of 
plates loaded in their plane. The concept of 'coefficient of 

efficiency' has been introduced to evaluate the degree of 
the optimization. Two illustrative problems have been 
solved: a circular tube (or ring) under diametral com- 
pression and a perforated plate loaded axially. The 
efficiency coefficient of the tube has been increased from 
0.587 to 0.952, and the one of the plate from 0.54 to 
0.90. In both cases, the maximum stress has been decreased 
by about 25 percent. The weight of the ring has been 
reduced by 10 percent - and the size of the hole of the 
plate has been increased by about 23 percent. The 
increase in the strength of the ring made of a brittle 
material was 20.6 percent. 
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