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ABSTRACT The complete orthotropic elastic-stiffness ma- 
trix of unidirectional, Borsic-filoment-reinforced aluminum 
composites was experimentally evaluated for three different 
volume fractions by ultrasonic velocity measurements on thin 
plates. Longitudinal- and shear-velocity measurements were 
made in appropriate symmetry directions by direct contact 
or liquid-immersion techniques. The elastic constants deter- 
mined by this pulsed through-transmission method were in 
agreement with micromechanical theories based on the prop- 
erties of the constituent materials. Agreement was also 
found between engineering constants determined by mechan- 
ical testing and those calculated from the ultrasonic data. 
Finally, measurement of the ultrasonic-wave velocity has 
also been shown to be a rapid nondestructive-test method for 
determining filament-volume fraction in a fabricated part. 

Introduction and Background 
The high specific s trength and stiffness of certain 
fiber-reinforced metals make these materials  at trac-  
tive for use in aerospace applications. However, be- 
fore these composite systems may be employed in 
s tructural  applications, the elastic properties must  be 
accurately determined for design purposes. This need 
is accentuated by the anisotropie mater ia l  properties 
which result  when h igh-modulus  filaments are in-  
corporated into a low-modulus  matrix.  

If the reinforcing filaments are unidirect ional ly 
aligned in the matr ix  such that  three mutua l ly  per-  
pendicular  planes of twofold symmetry  are produced, 
the composite is said to be orthotropic and is char-  
acterizable by nine independent  elastic constants. A 
composite in which two of the symmetry  planes are 
equivalent  exhibits te t ragonal  symmetry,  and elastic 
deformation may be described by six independent  
elastic coefficients. A unidireet ional ly  f i lament- re in-  
forced composite containing a random array of fibers 
may be considered to be macroscopically isotropie in 
the plane perpendicular  to the fiber direction. The 
mechanical  response of a composite exhibit ing such 
transverse isotropy may be characterized by five in-  
dependent  elastic constants. The assumption of t rans-  
verse isotropy is often made for convenience in  de- 
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sign with unidirect ional  f i lament-reinforced compos- 
ites. The elastic stiffness matrices for composite 
materials exhibi t ing orthotropic, tetragonal  and 
t ransversely isotropic symmetries are the same as 
those for single crystals and may be found in Ref. 1. 

All of the independent  elastic constants for aniso- 
tropic materials may be determined experimental ly  
by a series of mechanical  tests or by u l t rasonic-wave-  
propagation techniques. 1 The ultrasonic technique is 
more straightforward exper imental ly  and also offers 
a means of nondest ruct ively  measur ing the moduli  of 
fabricated s tructural  shapes. This enables comparison 
of actual values with design objectives in finished 
parts. The elastic constants resolved ul trasonical ly are 
comparable to those determined through mechanical  
tests, providing the ultrasonic wavelengths used are 
much larger than the dimensions of the consti tuent 
mater ial  phases and smaller than the dimensions of 
the specimen. In  this investigation, the ul t rasonic-  
wave-propagat ion technique has been used to deter-  
mine the elastic moduli  for Borsic-fiber-reinforced 
a luminum composites. 

The complete matr ix  of independent  elastic con- 
stants may be found for this ease by measuring the 
ultrasonic wave velocity in the symmetry  directions 
of the composite. The elastic properties of the com- 
posite may be evaluated as a function of f i lament- 
volume fraction by conducting the exper iment  on 
specimens of various fiber contents. The engineering 
constants such as the Young's moduli, shear moduli  
and Poisson's ratios may then be determined from 
the measured independent  elastic constants. 

Micromechanical theories predicting the Mastic con- 
stants of fiber-reinforced composites are general ly 
based upon the relative quantities, geometries and 
elastic properties of the const i tuent  materials.  In  par-  
ticular, Behrens 2 has predicted the elastic constants 
of a f i lamentary composite having a rectangular  fiber 
array by considering the phase velocity of an u l t ra -  
sonic wave travel ing through the ma te r i a l  Behrens '2 
calculations are based upon the assumptions that  the 
fibers are arranged in rectangular  cells which repeat 
through the lattice and that  a theoretically perfect 
bond exists at the f iber-matr ix  interface. A perfect 
bond implies that there is no discontinuity of stresses 
or displacements across the interface. In this manner, 
Behrens gives general averaging rules for the nine 
independent elastic constants for a composite of or- 
thotropic symmetry. 
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The formulas are not in explicit form for these 
n ine  elastic constants; however, if a tetragonal  sym- 
met ry  is present  in the composite, the calculations can 
be simplified by using the Wigner-Sei tz  approxima-  
tion, which is a method established in quan tum me-  
chanics for the calculation of electron wavefunctions.8 
The Wigner-Sei tz  approximation assumes that  the 
periodic elemental  cell of a composite with two con- 
st i tuents of tetragonal  symmet ry  may  be approxi-  
mated by a circular e lementa l  cell. This allows the 
introduct ion of polar coordinates which greatly sim- 
plifies the functions of the elastic constants which are 
complex in Cartesian coordinates. As a result, the 
elastic constants can be expressed in terms of radial  
functions alone. In tegrat ion of the radial  functions is 
then easily made and the six independent  elastic con- 
stants for te t ragonal  symmet ry  can be wr i t ten  in 
explicit  form as a function of the elastic constants of 
the two components of the composite and the fiber- 
volume fraction. 

Heaton 4 has also predicted the elastic constants of a 
unidirect ional  f iber-reinforced composite of te trag-  
onal symmetry  by calculating the microscopic stress 
and displacement fields which result  from constraints 
on a uni t  cell subjected to finite strains. The assump- 
t ion of a perfect bond at the f iber-matr ix  interface is 
also necessary for the calculations of Heaton. The two 
theories agree very  well  for the range of volume 
fractions valid in Heaton's calculations, but  the ex- 
plicit expressions given by Behrens are more easily 
used and cover the entire range of f iber-volume frac- 
tions possible. Other authors  5"s have also proposed 
theories for the prediction of the elastic properties of 
composites from the elastic properties of the com- 
ponents;  however, their  theories include only com- 
posites of higher symmet ry  than te t ragonal  sym- 
metry, such as ones which are t ransversely  isotropic, 
hexagonal  or having random fiber arrays. Because of 
the greater  u t i l i ty  of the theory of Behrens and its 
lower symmetry  considerations, the values measured 
in this study wil l  be compared with the theoretical 
values predicted from Behrens '  expressions which are 
found in Appendix  A. 

The most h ighly  developed me ta l -ma t r ix  composite 
system of practical use for s t ructural  applications at 
this t ime is boron or Borsic*-reinforced a luminum.  
The B-A1 composite system has a high strength and 
stiffness-to-weight ratio and may  be fabricated by 
convent ional  p lasma-spraying  and hot-pressing meth-  
ods. Because B-A1 is being applied to s t ructural  ap- 
plications at the present time, it is appropriate to 
more ful ly characterize its deformation behavior by 
de termining  the complete mat r ix  of elastic constants 
for the composite as a function of f iber-volume frac- 
tion. The engineer ing constants of Young's modulus 
and Poisson's ratio will  also be calculated from the 
elastic constants and compared to recent  mechanical-  
test results. 

Description of Material 
Composite plates of unidirectional ,  Borsic-fiber- 

reinforced a luminum were produced by diffusion 
bonding plasma-sprayed monolayer  tapes at 10 ksi 

* Borsic is the registered trade name of the silicon carbide coated 
boron fiber made by Hamilton-Standard Division of United Aircra# 
Corporation, 

Fig. 1--Specimen of Borsic-aluminum composite 
plate in the final machined shape 

Fig. 2--Photomicrograph showing the 
4.2-mil Borsic-fiber distribution for the 
0.13-volume-fraction specimen 

Fig. 3--Photomicrograph showing the 
4.2-mil Borsic-fiber distribution for the 
0.54-volume-fraction specimen 

and 555~ for 5 min. A l u m i n u m  alloy 1100 was chosen 
as the mat r ix  and 4.2-mil-diam Borsic fibers as the 
reinforcement.  Details of the fabricat ion process are 
given by Hoover, et al. 9 Three plates with different 
f iber-volume fractions were fabricated for this study. 
The volume fractions of the plates were altered by 
varying  the fiber spacing and matr ix  thickness in the 
monolayer  tapes. By chemically analyzing pieces cut 
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from the fabricated plates, the f iber-volume fractions 
were determined to be 0.13, 0.34 and 0.54. The plates 
were then machined by gr inding with a diamond 
wheel into rectangles of approximately 2.25 in. by 
2.75 in. Corners at a 45-deg angle were then grouhd 
off the rectangles which resulted in the specimen 
shape as shown in Fig. 1. The 45-deg cuts were made 
in order to measure the ul t rasonic-wave velocity on 
the diagonal of the plate. The thicknesses of the three 
plates were 0,237, b.153 and 0.118 in. for the low to 
high f iber-volume fractions respectively. Photomicro- 
graphs of the fiber distr ibution present  in the 13- and 
54-volume-percent  fiber specimens are shown in Figs. 
2 and 3. 

Experimental Procedure 
Two separate through- t ransmiss ion methods for 

measuring the wave velocity in  the appropriate  sym- 
metry  directions of the specimens were used. One 
technique was the s tandard ultrasonic pulsed 
through- t ransmiss ion method 10 where two opposing 
transducers of the same frequency are placed in di- 
rect contact with two parallel  faces of the specimen 
with a coupling medium (Dow Corning 276-V9 resin).  
These 0.5-in.-diam transducers were sealed in cases 
to provide a flat wear plate between the t ransducer  
and the specimen face. A zero-time reference mark  of 
the first half-cycle peak of the RF signal was obtained 
on the oscilloscope by directly coupling two t rans-  
ducers to each other. The specimen was then placed 
between and coupled to the two transducers with the 
same coupling medium as before. The t ime delay of 
the peak of the first half cycle of the RF signal was 
then read directly from the oscilloscope. A t ime-  
mark  generator was used to regular ly  calibrate the 
oscilloscope sweep-t ime base to insure reading the 
delay time with a max imum error of one percent. 

This method was used for longi tudinal  and shear-  
wave velocity measurements  made in the 1, 2, 3 and 
45-deg directions (in the 2-3 plane) which correspond 
to all parallel  faces shown in Fig. 1. The longi tudinal  
velocity values in these directions were measured at 
frequencies of 2.25, 5 and 10 MHz; in the 1 direction, 
an addit ional measurement  at 30 MHz was made. The 
frequency was varied in order to investigate the effect 
of the thin dimension of the plates on the measured 
wave velocities. At 10 MHz, the th ickness- to-wave-  
length ratio was as low as 3 in the worst case (i.e., the 
measurement  in the 3 direction of the th innes t  plate) .  
Measurements of the wave velocities at 5 and 2.25 
MHz which decreased the th ickness- to-wavelength  
ratio by a factor of 4 resulted in only a 3-percent  
difference between the measured velocities. The use 
of frequencies higher than 10 MHz was not possible 
except in the 1 direction because of excessive at-  
tenuat ion of the acoustic wave. 

The shear-wave-veloci ty  measurements  were not 
made at frequencies higher than 2.25 MHz, however. 
This corresponded to a th ickness- to-wavelength  ratio 
as low as 1.5 in the worst case. Because the longi tudi-  
nal  wave velocities did not show more than 3-percent 
change with the th ickness- to-wavelength  ratio as low 
as 0.7 at 2.25 MHz, it is assumed that  the shear -wave-  
velocity measurements  would be wi thin  the same 
experimental  error. In  some directions, however, the 
ultrasonic waveform was distorted and the first half 

cycle of the wave was not well defined. The difficulty 
defining the first half cycle of the wave is believed 
to be the source of some of the 3-percent  spread in 
the measured values. The source of the distortion is 
unknow n  but  it could have been part ial ly due to the 
generation of plate waves in addition to volume 
waves. It is felt that the 3-percent  spread in the mea-  
sured values over the range of frequencies used is 
not sufficiently serious to invalidate the p lane-wave 
assumption. The p lane-wave  assumption is thus taken 
to be valid for this technique in the plate directions, 
par t icular ly  at the 10-MHz frequency. 

The second technique which was used to measure 
the longi tudinal  and shear velocities in the directions 
45 deg to the 1-3 and 45 deg to the 2-3 axes was that  
described by Markham. ~1 The velocity values in these 
directions must  be known in order to calculate the 
total number  of independent  elastic constants. The 
method is an ul t rasonic-pulsed through-t ransmiss ion 
method with the specimen immersed in a liquid be- 
tween two opposing transducers  which are some dis- 
tance apart. The method allows one to measure both 
longi tudinal  and shear-wave velocities in  a wide 
range of directions on a single specimen without  
having to cut the specimen normal  to these propa- 
gating directions. 

Figure 4 is a schematic of the exper imental  appara-  
tus used with the Markham method. Ten-MHz, 3/4- 
in . -diam wel l -damped transducers manufac tured  by 
Panametrics,  Inc., were mounted  on opposite sides 
of a tank. One t ransducer  is used for t ransmit t ing  
the ultrasonic wave in the liquid and the other is used 
for receiving the wave. The specimen is mounted  on 
a goniometer holder which allows it to be rotated 
to any given angle relat ive to the sound beam and 
the angle can then be read from the gonimeter. With 
the specimen in place with its sides perpendicular  to 
the longi tudina l -wave sound beam in the liquid, a 
difference in the delay t ime for the ultrasonic wave 
to travel  between the two transducers will be ob- 
served and compared to the delay t ime for the ultra- 

LEVEL 
ADJUST]NG 

SCREWS 

TRANSMITTING ~ 
TRANSDUCER 

% 

SPECIMEN 

Fig. 4--Schematic of liquid-immersion through- 
transmission technique for measuring ultrasonic 
longitudinal and shear-wave velocities in off-normal 
directions of a thin specimen 
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sonic wave  to t rave l  be tween  the t ransducers  wi th  no 
specimen in the  sound path.  By using the difference 
in de lay  t ime observed on an oscilloscope, the  longi-  
tudina l  velocity,  VL, in the specimen is g iven  by  

1 
VL = (1) 

l/Vliq + htld 

where  Vna is the long i tud ina l -wave  veloci ty  in the  
liquid, d is the  specimen thickness and 5t  is the ob-  
served difference in de lay  t ime caused by  the speci-  
men  being inser ted  in the sound-beam path.  

For  the  specimen incl ined at an angle to the u l t r a -  
sonic path,  the longi tud ina l  wave  at  the spec imen-  
l iquid in ter face  spli ts  into a longi tud ina l  wave  and a 
shear  wave  in the  specimen as shown by  Fig. 5. The 
longi tudina l  wave  ref rac ts  at  an angle  given by  

VL sin r 
= (2 )  

Vnq sin 

where  r is the  re f rac ted  angle  for the  incident  angle  
i and VL is the l ong i tud ina l -wave  veloci ty  in the  direc-  
t ion r. The shear  wave  genera ted  in the  specimen at 
the l iqu id - spec imen  in ter face  propagates  in a differ-  
ent  d i rect ion r '  which  is g iven b y  a s imi lar  expression 

Vs sin r' 
(3) 

Vn~ sin i 

where  Vs is the shea r -wave  veloci ty  in the specimen 
in the direct ion r' for the  incident  angle  i. The shear -  
wave  mode again  converts  to a longi tudina l  wave  at 
the  second spec imen- l iqu id  in ter face  and a charac-  
ter is t ic  de lay  t ime for this case is observed on the 
oscilloscope. 

The  difference in de lay  t ime for the longi tudina l  
wave  wi th  and wi thout  the specimen in place  at an 
angle i is given by  

d d (  c~ ~ + sin~ tan  r ) (4) 
At -- VL Cos r Vliq 

f rom which  the ref rac t ion  angle  r is given by  

( s i n /  ) (5) 
r ---- t a n - *  ~t Vliq~-d'~- cos i 

S imi la r  expressions are  t rue  for the  shear  wave  where  
VL and r are rep laced  by  Vs and r ~. Therefore  by  

TRANSMITTING ~ RECEIVING 
TRANSDUCER ~ ~j/1 TRANSDUCER 

V \ / " ~ \  /SHEAR WAVE 

.. ~VU/~, ~ULV ..... ~ VliQui d 

Fig. 5--Refracted-longitudinal and mode-converted 
shear-wave propagation in the specimen and liquid 
between the ultrasonic transducers 

TABLE 1--MEASURED LONGITUDINAL AND SHEAR 
VELOCITIES IN IN./~S. IN THE 1-2 AND 1-3 PLANES 
FOR BORSIC-FIBER-REINFORCED ALUMINUM 
COMPOSITES 

II 

Fiber-volume Fraction 
,13 .34 ,54 

1-2 Plane Long. Shear Long, Shear Long. Shear 

1 0 ~ ,269 .132 .298 ,151 ,338 ,170 
30 .270 ,132 ,297 ,150 ,335 175 
35 ,270 ,133 .298 ,150 .335 .178 
40 ,270 .133 ,296 .151 ,335 ,182 
45 ,270 .134 .295 .153 .335 .185 
50 .270 .134 .296 ,153 ,333 ,185 
55 ,270 ,134 .296 ,153 .331 ,185 
60 .270 ,133 .296 .153 .331 .183 
65 ,270 .133 .294 ,151 .329 ,178 
70 ,270 .132 .290 149 .327 ,173 

2 90 .268 .135 .287 .147 ,312 .171 
1-3 Plane 
1 0 ~ ,269 ,135 .298 .159 .338 187 

30 .272 ,144 .299 .178 .348 .217 
35 .274 .146 .302 .182 .350 .217 
40 .275 .149 .305 .183 ,354 .219 
45 .277 .150 .309 .183 .360 .221 
50 .280 ,148 .316 .179 .365 ,218 
55 ,282 .144 ,318 ,175 ,375 ,213 
60 ,284 .142 .320 .172 .378 .207 
65 ,286 .140 .322 .167 .381 ,194 
70 .288 138 .323 .164 .382 .193 

3 90 .296 .143 .350 .161 .393 .189 

measur ing  i and ~t for the  longi tudina l  and shear  
waves, one can calculate  r and r '  f rom eq (5) and 
then VL and Vs from eqs (2) and (3). I t  should be 
noted that  the  use of eqs (2) and (3) wi th  eqs (4) 
and (5) assumes that  the energy  beam of the  u l t r a -  
sonic wave  t ravels  in the  same direct ion as the wave  
normal .  The two do not, in general ,  coincide in 
anisotropic m e d i a J  2 Al though  the de lay  t imes of the  
two are  equal  for wave  propaga t ion  be tween  para l le l  
specimen faces which are  perpendicu la r  to the  wave 
n o r m a l  the  pa th  length  of the energy beam is l a rge r  
since it is at  an angle  to the  wave  normal .  Hence, the 
veloci ty  associated wi th  the  energy beam is fas ter  
and is des ignated the  group veloci ty  of the sound 
waves. The sound-wave  veloci ty  in the  direct ion of 
the wave  normal  is  the  phase velocity.  The de lay  
t ime measured  by  the l iqu id - immers ion  technique is 
that  of the group veloci ty  th rough  the  specimen. The 
distance the wave  t ravels  th rough  the specimen, how-  
ever, is ca lcula ted  as if it  were  the  phase velocity.  
Since the specimen is t i l ted  at  an angle, the  ac tual  
pa th  of the  energy beam can be longer  or shorter  
than  that  ca lcula ted by  eq (4) depending upon the 
angle be tween  the wave  normal  and the e n e r g y - b e a m  
direction.  

To obta in  the  long i tud ina l -wave  veloci ty  and the 
shea r -wave  veloci ty  at 45 deg wi th  respect  to the 
specimen faces, the t ime -de l a y  difference for the  two 
waves  was measured  over  a la rge  range  of incident  
angles which gave re f rac ted  longi tud ina l  and  shear  
waves be low and above the  45-deg directions.  By 
calculat ing the  ref rac ted  angles and corresponding 
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velocity values for  a wide range of incident  angles, 
the velocity value at 45 deg could be ascertained 
easily. 

Results and Discussion 
The longi tudinal-  and shear-wave-veloci ty  values 

obtained in  the 1-2 and 1-3 planes are shown in 
Table 1. The values at 0 and 90 deg were determined 
by the direct-contact through- t ransmiss ion technique. 
AI1 other values reported in Table 1 were determined 
by the l iquid- immers ion through- t ransmiss ion tech- 
nique. The balance of the longi tudinal  and shear 
velocities measured by the direct-contact  through-  
transmission method is listed in  Table 2. 

The data show that  the longi tudinal -  and shear-  
wave velocities are isotropic in the 13-volume-percent  
fiber specimen in  the 1-2 plane. The Iongi tudinal-  
and shear-wave velocities in the 1-2 plane for the 
54-volume-percent  fiber specimen do not show this 
isotropy however, which indicates that  this specimen 
is more orthotropic. Examinat ion  of the fiber dis tr ibu-  
tions in Figs. 2 and 3 shows that this is an expected 
result. The assumption of tetragonal  symmetry  is 
certainly justified from the square array of fiber 
spacing in the 0.13-volume-fraction specimen; how- 
ever, in the higher volume-fract ion specimen (0.54), 
it appears that the composite becomes more ortho- 
tropic in its symmetry,  i.e., the fiber spacings in the 
1 and 2 directions are not  equaI. The values of the 
longi tudinal-  and shear-velocities given in Table 1 
for the 45-deg direction in the 1-2 and 1-3 planes are 

TABLE 2~MEASURED ULTRASONIC-VELOCITY VALUES 
FOR THE THREE FIBER-VOLUME-FRACTION 
SPECIMENS OF BORSIC-ALUMINUM COMPOSITES 
IN ALL OF THE APPROPRIATE SYMMETRY 
DIRECTIONS FOR CALCULATION OF THE ELASTIC 
CONSTANTS OF ORTHOTROPIC SYMMETRY 

Values are in in./ffs 
I 

Propa- Fiber-volume Fraction 
gation Velocity Velocity 

Direction. Mode b .13 .34 .54 Designation 

1 L .269 .298 .338 Vl 
Tpol 2 .132 .151 ,170 V~ 
Tpol 3 .135 .159 .187 V:~ 

2 L .268 ,287 .312 V~, 
Tpol 1 .135 ,147 .171 V~ 
TpoI 3 .135 .154 .182 V~ 

3 L .296 ,350 ,393 Vt~ 
Tpol 1 .143 ,161 .189 Vt~ 
Tpoi 2 .143 ,163 .194 V~4 

45 1,2 L .270 ,295 .335 V~B 

Tpol 1,2 .134 ,153 ,185 V~s 
45 1,3 L .277 .309 .360 V16 

Tpol 1, 3 .150 .183 .221 V:m 
45 2,3 L .276 .309 .338 V~ 

Tpol 2,3 .148 .173 ,204 V6 
Tpol 1 .I36 ,154 .I87 V~ 

45 2,3 means the plane cut at 45 deg to the 2,3 axes and paral- 
lel to the 1 axis. 1 means minus 1 direction, 
b L means longitudinal, Tpol 3 means transverse with direction 
of polarization in the 3 direction. 

used in the expressions for the calculation of the 
Mastic constants. Table 2 shows these values along 
with all the other longi tudinal  and shear velocities 
measured in the appropriate symmetry  directions 
for calculation of all the elastic constants. Table 2 
lists the directions of propagation, the velocity mode, 
the velocity values, and the velocity designation for 
the calculation of the elastic constants for the three 
specimens. 

Table 3 lists the elastic constants which were 
calculated from the velocities listed in Table 2. The 
elastic constants are defined in the Voigt notat ion 1 
with the 3 axis taken in the direction of the Borsic 
fibers and the 1 axis taken in the thickness direction 
of the plates. The Mastic constants are defined with 
the assumption, which is assumed valid in this case, 
that only plane-wave propagation of the sound waves 
is present. C~2, C13 and C23 are taken to be positive 
since only the absolute value can be determined by 
the calculations. The positive values are consistent 
with the material-stability conditions la and the sub- 
sequent agreement between the Young's modulus and 
Poisson's ratio as calculated from the elastic constants 
and those determined experimentally by mechanical 
tests. 

The elastic constants listed in Table 3 also reveal 
that the higher f iber-volume-fract ion specimens are 
somewhat orthotropic since Cll ~ Ce2 and C12, C13 
and C2~ are not equal. The values of C~2, C~ and C~_~ 
calculated from the longi tudina l -wave velocity devi- 
ate from the same values calculated from the shear- 
wave velocity at the higher volume fractions. The 
magnitudes of these constants are very sensitive to the 
velocity values, however, and a change of either the 
longi tudinal  or shear velocity by 2 percent  brings 

TABLE 3--ELASTIC STIFFNESS FOR 
BORSIC-ALUMINUM COMPOSITES CALCULATED 
FROM VELOCITY VALUES GIVEN IN TABLE 2 

Values are in units of 108 psi. The density for each 
fiber-volume-fraction specimen is given in gm/cc 

I 

Fiber-volume Fraction 
,13 ,34 .54 

P = 2.69 p = 2,65 p = 2.65 

Clt : pVl 2 
C55 = oV22 
C66 ~ oV82 
C22 = ~V72 
C~ = ~Vs 2 
C66 ---- ~V92 
C33 = ~V213 
C~ = ~V214 
C5~ : ~V215 
V2(C~5 + C66) : pV~2 
[C1~[ V16 ~ 
[C12[ Vts ~ 
IC13{ Vlo b 
]ctsl vt2 b 
IC=31 v,.o 
IC23] v6o 

18,21 22.02 28.32 
4.57 6.27 8.67 
4.39 5.65 7,17 

18.07 20.42 24.13 
4.59 5.88 8.21 
5.29 5.36 7.25 

22.05 30.37 38.29 
5.15 6.59 9.33 
5.15 6.43 8.86 
4.66 5.88 8.67 
8.87 10.90 14.90 
9,11 9,59 9.12 
8.62 7.85 I2.86 
8,67 9.03 8.38 
8.39 8.67 6,31 
8.89 9.80 9.24 

- C . 2 F } ~ / ~  - }C~l = ~/~ {[4pV= - (C,~ + 0=2 + 2C~)] = - (C,~ 
C66 where V is the designated velocity above. 
b Same formula as (a) except index changes 2->3, and 6->5. 

Same formula as (a) except index changes 1-~2, 2-~3, and 6-*4. 
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the two calculated values into agreement.  For this 
reason, the uncertaint ies  in these quanti t ies  might 
be as much as 50 percent  whereas the uncer ta in ty  in 
the other elastic constants is approximately  7 percent. 
Since C44, C55 and C66 are found by more than one 
velocity measurement ,  the average values were used 
in  the formulas for the calculations of C12, C~ and C2~. 

The n ine  orthotropic elastic stiffnesses and  com- 
pliances calculated from the ul t rasonic-veloci ty data 
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1 . 0  

for each f iber-volume fraction are given in Table 4. 
Average values of all equal  constants listed in Table 3 
were used in  calculating the values presented in 
Table 4. Examinat ion  of Cll and C22 in  Table 4 in-  
dicates that the assumption of t ransverse isotropy 

TABLE 4--ELASTIC STIFFNESSES AND COMPLIANCES 
FOR BORSIC-ALUMINUM COMPOSITES OF 
ORTHOTROPIC SYMMETRY 

Stiffnesses are in units of 106 psi and compliances 
are in units of 10 -8 psi -1 

values per Fiber-volume Fraction 
Constants ,13 .34 .54 

Cn 18,21 22.02 28.32 
CI~ 8.99 10.25 12.01 
C~s 8.65 8.44 10.62 
C22 18.07 20.42 24.13 
C~ 8.64 9.24 7.77 
C38 22.05 30.37 38.29 
C~ 4.87 6.23 8.77 
C55 4.87 6.35 8.76 
C66 4.84 5.51 7.21 
S~1 7.886 6.126 4.746 
S~2 --3.008 --2.673 --2.074 
$I~ - -  1.915 --0.889 --0.896 

$22 7.957 6.845 5.340 
S~ -- 1.938 -- 1.340 --0,508 
$33 6.046 3.948 2.963 
$44 20.534 16.0'51 11.403 
$55 20.534 15,748 11,416 
S66 20.661 18,149 13.870 
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results in an error of about 15 percent for the 0.54- 
volume-fraction specimens. The assumption of trans- 
verse isotropy in the case of the off-diagonal con- 
stants C13 and C28 results in an error of 25 percent. 
It may be seen that the assumption of transverse 
isotropy in the case of high-volume-fraction compos- 
ites may introduce an error greater than the design 
allowable, in which ease the complete orthotropic 
matrix of elastic constants should be used. 

For comparison with the theory given by Behrens, 2 
a tetragonal symmetry must be assumed for all the 
specimens. The six independent elastic constants for 
the composite displaying tetragonal symmetry are 
given for each fiber-volume fraction in Table 5. Con- 
stants listed in Table 4 which are equivalent assum- 
ing tetragonal symmetry were averaged for presenta- 
tion in Table  5. 

The elastic stiffnesses l is ted in Table 5 are p lo t ted  in 
Figs. 6, 7 and 8 as a function of f iber -volume fraction. 
The predic ted  dependence of the elastic constants  on 
f iber -volume fract ion as calcula ted from the expres -  
sions in Append ix  A is also shown in Figs. 6, 7 and 8. 
The mate r ia l  proper t ies  used in these expressions for 
the Borsic fibers and a luminum ma t r i x  a re  given in 
Table 6. Good agreement  exists be tween  the  exper i -  
menta l  and theore t ica l  values  for the constants  C~, 
C33 and C44. Agreemen t  is not  as good for the  con- 
stants C12 and C~s; however,  these quant i t ies  are  
very  sensit ive to errors  in the u l t r a son i c -w a ve -ve l -  
ocity measurements .  The constant  C66 shows the 
max imum devia t ion  f rom theory  as ca lcula ted  f rom 
eq (A4) in Append ix  A for the  h igher  f i lament-  
volume fractions.  This indicates  tha t  shear  coupling 
be tween  the fibers and ma t r i x  may  not be as s trong 
as that  considered in theory  due to the manufac tur ing  
process, i.e., a theore t ica l ly  perfect  bond does not 
exist  at the f ibe r -ma t r ix  interface.  

Young's  moduli ,  shear modul i  and Poisson's  ra t ios  
were ca lcula ted  f rom the data  in Table 5 for com- 
posites of t e t ragona l  s y m m e t r y  for each volume frac-  
t ion and are  l is ted in Table 7. Express ions  for these 
engineer ing constants  in te rms of the elastic constants  
for or thotropic  s y m m e t r y  are given in Append ix  B. 
Also l isted in Table 7 are the  values  of E33 and  ~3~ 
which were  expe r imen ta l ly  de te rmined  for Bors ic-  
a luminum by  mechanica l  testing. 14 Agreemen t  is 
found to wi th in  6 percent  be tween the mechanica l ly  
measured  values  of Young's  moduli ,  Es3, and Poisson's  
ratio, "d81 , and the  values ca lcula ted  f rom the  u l t r a -  
sonic data. This agreement ,  in addi t ion to the  agree-  
ment  be tween  theore t ica l ly  p red ic ted  values and the 
values  resolved in this study,  indicates  tha t  the u l t r a -  
son ic -wave-propaga t ion  technique is a val id  method  
for de te rmin ing  the elastic proper t ies  of f iber - re in-  
forced composites. This agreement  also indicates tha t  
the composi te  may  be considered a quas i -homogene-  
ous medium for the  theore t ica l  predic t ion  of elastic 
constants.  

The theore t ica l  curve for C88 was obtained by  using 
the upper  l imi t  of Young's  modulus  for the  Borsic 
fibers. Actual ly ,  Young's  modulus  for a single Borsic 
fiber is be tween  55 and 60-mil l ion psi.13 F rom a 
s t ra igh t - l ine  ex t rapola t ion  of the expe r imen ta l  points  
(Fig. 6), it  appears  that  the average  Young's  modulus  
for the Borsic fibers is closer to 55-mil l ion psi. 

Since the  ul t rasonic  veloci ty  in the fiber di rect ion is 

TABLE 5--ELASTIC STIFFNESSES AND COMPLIANCES 
FOR BORSIC-ALUMINUM COMPOSITES OF 
TETRAGONAL SYMMETRY 

Stiffnesses are in units of 10 .6 psi and compliances 
are in units of 10 -8 psi -1 

I 

Values per Fiber-volume Fraction 
Constants .13 .34 34 

Clt 18.14 21.22 26.23 
C12 8.99 10.25 12.01 
C13 8.64 8.84 9.20 
C83 22.05 30,37 38,29 
C44 4.87 6,29 8,77 
C66 4.84 5,51 7.21 
St1 7.920 6.457 4.995 
$12 --3.001 --2.658 --2.038 
$13 -- 1.925 -- I.I06 --0.710 
S38 6.043 3.936 2.953 
S~4 20.534 15.898 11,403 
S66 20.661 18.149 13.870 

TABLE 6--ELASTIC PROPERTIES OF BORSIC FIBER 
AND 11C0 ALUMINUM MATRIX 

Borsic Aluminum 

Young's Modulus 55-60 X 10 .6 psi 15 10 X 10" psi 
Poisson's Ratio ~4 .156 .327 
Density 2.69 glcc 2.70 g/co 
Cn 63.67 X 106 psi 14.66 X 106 psi 
Ct2 -- ;q 11.77 X l0 s psi 7.12 X 106 psi 
C,4 = ~,1 25.95 X 106 psi 3,77 X 106 psi 

TABLE 7--YOUNG'S MODULI (Eli), POISSON'S 
RATIOS (vii), AND SHEAR MODULI (Gij) FOR 
BORSIC-ALUMINUM COMPOSITES OF 
TETRAGONAL SYMMETRY 

Moduli are in units of 106 psi 
IIIII 

Values per Fiber-volume Fraction 
.13 ,34 .54 

El l  12.65 15.51 20.02 
E33 16.52 25.42 33.87 
vl~ .38 .41 .41 
v1~ .24 .17 .14 
Val .32 .28 ,24 
G~3 4.87 6.29 8.77 
GI~ 4.84 5.51 7.21 
E38 =~ 15.3 24.3 31.5 
v31#- .30 .27 ,22 

Young's modulus and Poisson's ratio determined from me- 
chanical tests. 1~ 

proportional to the filament content as seen in Fig. 6, 
this method provides a quick nondestructive means 
of measuring the filament-volume fraction of a part 
whose geometry prohibits such a determination. The 
ultrasonic velocity measurements also provide a check 
on the moduli in the principal directions which can be 
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compared  to the requ i red  modul i  for which  the fab-  
r ica ted  par t  was designed. 

Summary and Conclusions 
The complete  or thot ropic  ma t r i x  of nine indepen-  

dent  elastic constants  for Bors i c -a luminum composites 
has been de te rmined  for each of three  f iber -vo lume 
fract ions by  u l t r a son ic -wave -p ropaga t ion  techniques.  
These values  may  be used in design wi th  Bors ic-  
a luminum composites r a the r  than assuming a h igher  
s y m m e t r y  condition, such as t r ansverse  isotropy.  The 
assumption of t ransverse  i so t ropy has been shown 
to be 15 to 25 percent  in e r ror  for the  specimens 
measured  in this study.  

The or thotropic  da ta  have been reduced to matr ices  
of six independent  elast ic  constants  by  assuming that  
t e t r agona l  s y m m e t r y  exists in the  composite. These 
resul ts  a re  compared  wi th  theore t ica l  predict ions  for 
the  elastic constants  of composites  exhib i t ing  t e t r ag -  
onal s y m m e t r y  and are in good agreement  for the  
coefficients Cn, Css and C~. The expe r imen ta l  values  
of C~2 and Cl~ show a l a rge r  devia t ion  f rom theory  
but  a re  ve ry  sensit ive to exper imen ta l  errors.  The 
constant  Cs~ shows the larges t  devia t ion  f rom theory  
which indicates  that  the f ibe r -ma t r ix  in terface  in the 
composi te  is not  a theore t ica l ly  perfect  bond. 

The engineer ing constants  Young's  modulus  and 
Poisson's  ra t io  were  also calcula ted f rom the elastic 
constants  of the composite assuming te t ragona l  sym-  
metry .  Agreemen t  was found to be wi th in  6 percent  
be tween  these values  and those de te rmined  f rom 
mechanical  tests. The agreement  be tween  the values 
de te rmined  in this s tudy and values  predic ted  b y  
theory  and resolved by mechanica l  tes t ing indicates  
tha t  the u l t r a son ic -wave -p ropaga t ion  technique is a 
val id  method for de te rmin ing  the elastic proper t ies  
of f i l ament - re inforced  composites.  Measurement  of 
the  u l t r a son ic -wave  veloci ty  has also been shown to 
be a rap id  nondes t ruc t ive - tes t  method for de t e rmin -  
ing f i l ament -volume fract ion in a fabr ica ted  part .  
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APPENDIX A 
The six independent  elast ic  constants  for a two-  

component  composite wi th  t e t ragona l  s y m m e t r y  as 
given by Behrens~ as a function of f iber -vo lume con- 
tent  are  g iven below. The t a m 6  coefficients ~. and 
are  used where  1 and 2 designate the fiber coefficients 
and ma t r i x  coefficients respect ively.  S is the f iber-  
vo lume f rac t ion and q equals  (2~2 + k2)/#2. 

Cn ---- C~2 = (2~2 + ~.2) 

~ + ~i + ~ 

(m + h + ~2) (m + ii -~2- ~2)S 

(m - ~ )  S ] 

C~s = (2#2 + ~2) + (2tq + ~.I -- 2~2 -- ~2)S 

(h -- ~e) 2 S(l -- S) 

--  (A2)  
(~i + )~i + #2) -- (~i + )~i -- ~ -- ~2)S 

(~i "~- #2) -~- (#i --/t2)S 
C44 = C55 = ~2 (A3) 

(~1 + ~ )  --  (m --  Z~)Z 

C66 ---- /~2[ 1 -~ (/~1 - - /~2 )S  ] 
~i -- (~i ~2) S 1/~ (A4) 

C12 --- ~'2 ~- (2/X2 ~- ~'2) 

/~1 " l -  ~,1 - -  #2 ~ ~2 

A(5)  
(,1 + ~ + ke) (~1 --  ~ ) S q  ] 

Ci~ = C~ = k2 

( ~  -- ~2) (2~2 + ~-2)S 
+ (A6) 

(~i+h+~2)-- (m+h--~2-),2)S 

APPENDIX B 
The fol lowing expressions are  used for calculat ing 

Young's moduli ,  Poisson's  ratios, and shear  modul i  
from the elast ic  constants  for t e t ragona l  symmetry .  

El l  ---- Cll  - -  ~13 C13 - -  el2 C12 (B1) 

E3s ---- C33 --  2v81 C13 (B2) 

C~8 -- C1~ C33 
el2 - -  (B3) 

C~3 --  Cn  C83 

Cl~ C13 - -  C l l  C13 
u13 = (B4) 

C~8 -- CII C~3 

C~2 Cls -- Cn CIz 
~$I = (BS) 

- c5 

G2~ -= C~4 

G12 = C66 

(B6) 

(B7) 
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