Elastic Constants of B-A1 Composites by Ultrasonic

Velocity Measurements

The elastic stiffness matrix of the composite was determined
by direct contact and fiquid-immersion through-transmission
ultrasonic technigues and is compared to analytical models

by J. H. Gieske and R. E. Allred

ABSTRACT—The complete orthotropic elastic-stiffness ma-
trix of unidirectional, Borsic-filament-reinforced aluminum
composites was experimentally evaluated for three different
volume fractions by ultrasonic velocity measurements on thin
plates. Longitudinal- and shear-velocity measurements were
made in appropriate symmetry directions by direct contact
or liquid-immersion techniques. The elastic constants deter-
mined by this pulsed through-transmission method were in
agreement with micromechanical theories based on the prop-
erties of the constituent materials. Agreement was also
found between engineering constants determined by mechan-
ical testing and those calculated from the ultrasonic data.
Finally, measurement of the ultrasonic-wave velocity has
also been shown to be a rapid nondestructive-test method for
determining filament-volume fraction in a fabricated part.

introduction and Background

The high specific strength and stiffness of certain
fiber-reinforced metals make these materials attrac-
tive for use in aerospace applications. However, be-
fore these composite systems may be employed in
structural applications, the elastic properties must be
accurately determined for design purposes. This need
is accentuated by the anisotropic material properties
which result when high-modulus filaments are in-
corporated into a low-modulus matrix.

If the reinforcing filaments are unidirectionally
aligned in the matrix such that three mutually per-
pendicular planes of twofold symmetry are produced,
the composite is said to be orthotropic and is char-
acterizable by nine independent elastic constants. A
composite in which two of the symmetry planes are
equivalent exhibits tetragonal symmetry, and elastic
deformation may be described by six independent
elastic coefficients. A unidirectionally filament-rein-
forced composite containing a random array of fibers
may be considered to be macroscopically isotropic in
the plane perpendicular to the fiber direction. The
mechanical response of a composite exhibiting such
transverse isotropy may be characterized by five in-
dependent elastic constants. The assumption of trans-
verse isotropy is often made for convenience in de-
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sign with unidirectional filament-reinforced compos-
ites. The elastic stiffness matrices for composite
materials exhibiting orthotropic, tetragonal and
transversely isotropic symmetries are the same as
those for single crystals and may be found in Ref. 1.

All of the independent elastic constants for aniso-
tropic materials may be determined experimentally
by a series of mechanical tests or by ulirasonic-wave-
propagation techniques.! The ultrasonic technique is
more straightforward experimentally and also offers
a means of nondestructively measuring the moduli of
fabricated structural shapes. This enables comparison
of actual values with design objectives in finished
parts, The elastic constants resolved ultrasonically are
comparable to those determined through mechanical
tests, providing the ultrasonic wavelengths used are
much larger than the dimensions of the constituent
material phases and smaller than the dimensions of
the specimen. In this investigation, the ultrasonic-
wave-propagation technique has been used to deter-
mine the elastic moduli for Borsic-fiber-reinforced
aluminum composites.

The complete matrix of independent elastic con-
stants may be found for this case by measuring the
ultrasonic wave velocity in the symmetry directions
of the composite. The elastic properties of the com-
posite may be evaluated as a function of filament-
volume fraction by conducting the experiment on
specimens of various fiber contents. The engineering
constants such as the Young’s moduli, shear moduli
and Poisson’s ratios may then be determined from
the measured independent elastic constants.

Micromechanical theories predicting the elastic con-
stants of fiber-reinforced composites are generally
based upon the relative quantities, geometries and
elastic properties of the constituent materials. In par-
ticular, Behrens? has predicted the elastic constants
of a filamentary composite having a rectangular fiber
array by considering the phase velocity of an ultra-
sonic wave traveling through the material, Behrens’?
calculations are based upon the assumptions that the
fibers are arranged in rectangular cells which repeat
through the lattice and that a theoretically perfect
bond exists at the fiber-matrix interface. A perfect
bond implies that there is no discontinuity of stresses
or displacements across the interface. In this manner,
Behrens gives general averaging rules for the nine
independent elastic constants for a composite of or-
thotropic symmetry.



The formulas are not in explicit form for these
nine elastic constants; however, if a tetragonal sym-
metry is present in the composite, the calculations can
be simplified by using the Wigner-Seitz approxima-
tion, which is a method established in quantum me-
chanics for the calculation of electron wavefunctions.3
The Wigner-Seitz approximation assumes that the
periodic elemental cell of a composite with two con-
stituents of tetragonal symmetry may be approxi-
mated by a circular elemental cell. This allows the
introduction of polar coordinates which greatly sim-
plifies the functions of the elastic constants which are
complex in Cartesian coordinates. As a result, the
elastic constants can be expressed in terms of radial
functions alone. Integration of the radial functions is
then easily made and the six independent elastic con-
stants for tetragonal symmetry can be written in
explicit form as a function of the elastic constants of
the two components of the composite and the fiber-
volume fraction.

Heaton* has also predicted the elastic constants of a
unidirectional fiber-reinforced composite of tetrag-
onal symmetry by calculating the microscopic stress
and displacement fields which result from constraints
on a unit cell subjected to finite strains. The assump-
tion of a perfect bond at the fiber-matrix interface is
also necessary for the calculations of Heaton. The two
theories agree very well for the range of volume
fractions valid in Heaton’s calculations, but the ex-
plicit expressions given by Behrens are more easily
used and cover the entire range of fiber-volume frac-
tions possible. Other authors’® have also proposed
theories for the prediction of the elastic properties of
composites from the elastic properties of the com-
ponents; however, their theories include only com-
posites of higher symmetry than tetragonal sym-
metry, such as ones which are transversely isotropic,
hexagonal or having random fiber arrays. Because of
the greater utility of the theory of Behrens and its
lower symmetry considerations, the values measured
in this study will be compared with the theoretical
values predicted from Behrens’ expressions which are
found in Appendix A.

The most highly developed metal-matrix composite
system of practical use for structural applications at
this time is boron or Borsic*-reinforced aluminum.
The B-Al composite system has a high strength and
stiffness-to-weight ratio and may be fabricated by
conventional plasma-spraying and hot-pressing meth-
ods. Because B-Al is being applied to structural ap-
plications at the present time, it is appropriate to
more fully characterize its deformation behavior by
determining the complete matrix of elastic constants
for the composite as a function of fiber-volume frac-
tion. The engineering constants of Young’s modulus
and Poisson’s ratio will also be calculated from the
elastic constants and compared to recent mechanical-
test results.

Description of Material

Composite plates of unidirectional, Borsic-fiber-
reinforced aluminum were produced by diffusion
bonding plasma-sprayed monolayer tapes at 10 ksi

® Borsic is the registered trade name of the silicon carbide coated
boron fiber made by Hamilton-Standard Division of United Aircraft
Corporation.
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Fig. 1—Specimen of Borsic—aluminum composite
plate in the final machined shape

Fig. 2—Photomicrograph showing the
4.2-mil Borsic-fiber distribution for the
0.13-volume-fraction specimen

Fig. 3—Photomicrograph showing the
4.2-mil Borsic-fiber distribution for the
0.54-volume-fraction specimen

and 555°C for 5 min. Aluminum alloy 1100 was chosen
as the matrix and 4.2-mil-diam Borsic fibers as the
reinforcement. Details of the fabrication process are
given by Hoover, et al.? Three plates with different
fiber-volume fractions were fabricated for this study.
The volume fractions of the plates were altered by
varying the fiber spacing and matrix thickness in the
monolayer tapes. By chemically analyzing pieces cut
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from the fabricated plates, the fiber-volume fractions
were determined to be 0.13, 0.34 and 0.54. The plates
were then machined by grinding with a diamond
wheel into rectangles of approximately 2.25 in. by
2.75 in. Corners at a 45-deg angle were then ground
off the rectangles which resulted in the specimen
shape as shown in Fig. 1. The 45-deg cuts were made
in order to measure the ultrasonic-wave velocity on
the diagonal of the plate. The thicknesses of the three
plates were 0,237, 0.153 and 0.118 in. for the low to
high fiber-volume fractions respectively. Photomicro-
graphs of the fiber distribution present in the 13- and
54-volume-percent fiber specimens are shown in Figs.
2 and 3.

Experimental Procedure

Two separate through-transmission methods for
measuring the wave velocity in the appropriate sym-
metry directions of the specimens were used. One
technique was the standard ultrasonic pulsed
through-transmission method!® where two opposing
transducers of the same frequency are placed in di-
rect contact with two parallel faces of the specimen
with a coupling medium (Dow Corning 276-V9 resin).
These 0.5-in.-diam transducers were sealed in cases
to provide a flat wear plate between the transducer
and the specimen face. A zero-time reference mark of
the first half-cycle peak of the RF signal was obtained
on the oscilloscope by directly coupling two trans-
ducers to each other. The specimen was then placed
between and coupled to the two transducers with the
same coupling medium as before, The time delay of
the peak of the first half cycle of the RF signal was
then read directly from the oscilloscope. A time-
mark generator was used to regularly calibrate the
oscilloscope sweep-time base to insure reading the
delay time with a maximum error of one percent.

This method was used for longitudinal and shear-
wave velocity measurements made in the 1, 2, 3 and
45-deg directions (in the 2-3 plane) which correspond
to all parallel faces shown in Fig. 1. The longitudinal
velocity values in these directions were measured at
frequencies of 2.25, 5 and 10 MHz; in the 1 direction,
an additional measurement at 30 MHz was made. The
frequency was varied in order to investigate the effect
of the thin dimension of the plates on the measured
wave velocities. At 10 MHz, the thickness-to-wave-
length ratio was as low as 3 in the worst case (i.e, the
measurement in the 3 direction of the thinnest plate).
Measurements of the wave velocities at 5 and 2.25
MHz which decreased the thickness-to-wavelength
ratio by a factor of 4 resulted in only a 3-percent
difference between the measured velocities. The use
of frequencies higher than 10 MHz was not possible
except in the 1 direction because of excessive at-
tenuation of the acoustic wave.

The shear-wave-velocity measurements were not
made at frequencies higher than 2.25 MHz, however.
This corresponded to a thickness~to-wavelength ratio
as low as 1.5 in the worst case. Because the longitudi-
nal wave velocities did not show more than 3-percent
change with the thickness-to-wavelength ratio as low
as 0.7 at 2.25 MHz, it is assumed that the shear-wave-
velocity measurements would be within the same
experimental error. In some directions, however, the
ultrasonic waveform was distorted and the first half
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cycle of the wave was not well defined. The difficulty
defining the first half cycle of the wave is believed
to be the source of some of the 3-percent spread in
the measured values, The source of the distortion is
unknown but it could have been partially due to the
generation of plate waves in addition to volume
waves. 1t is felt that the 3-percent spread in the mea-
sured values over the range of frequencies used is
not sufficiently serious to invalidate the plane-wave
assumption. The plane-wave assumption is thus taken
to be valid for this technique in the plate directions,
particularly at the 10-MHz frequency.

The second technique which was used to measure
the longitudinal and shear velocities in the directions
45 deg to the 1-3 and 45 deg to the 2-3 axes was that
described by Markham.ll The velocity values in these
directions must be known in order to calculate the
total number of independent elastic constants. The
method is an ultrasonic-pulsed through-transmission
method with the specimen immersed in a liquid be-
tween two opposing transducers which are some dis-
tance apart. The method allows one to measure both
longitudinal and shear-wave velocities in a wide
range of directions on -a single specimen without
having to cut the specimen normal to these propa-
gating directions.

Figure 4 is a schematic of the experimental appara-
tus used with the Markham method. Ten-MHz, 3/4-
in.~diam well-damped transducers manufactured by
Panametrics, Inc, were mounted on opposite sides
of a tank. One transducer is used for transmitting
the ultrasonic wave in the ligquid and the other is used
for receiving the wave. The specimen is mounted on
a goniometer holder which allows it to be rotated
to any given angle relative to the sound beam and
the angle can then be read from the gonimeter. With
the specimen in place with its sides perpendicular to
the longitudinal-wave sound beam in the liguid, a
difference in the delay time for the ultrasonic wave
to travel between the two transducers will be ob-
served and compared to the delay time for the ultra-
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Fig. 4—Schematic of liquid-immersion through-
transmission technique for measuring ultrasonic
longitudinal and shear-wave velocities in off-normal
directions of a thin specimen



sonic wave to travel between the transducers with no
specimen in the sound path, By using the difference
in delay time observed on an oscilloscope, the longi-
tudinal velocity, Vi, in the specimen is given by

1
T 1/Viq + At/d

where Vyq is the longitudinal-wave velocity in the
liquid, d is the specimen thickness and At is the ob-
served difference in delay time caused by the speci-
men being inserted in the sound-beam path.

For the specimen inclined at an angle to the ultra-
sonic path, the longitudinal wave at the specimen-
liquid interface splits into a longitudinal wave and a
shear wave in the specimen as shown by Fig. 5. The
longitudinal wave refracts at an angle given by

Vi (

Vi sinr
—_— —— (2)
Vg sini

where 7 is the refracted angle for the incident angle
i and V|, is the longitudinal-wave velocity in the direc~
tion r. The shear-wave generated in the specimen at
the liquid-specimen interface propagates in a differ-
ent direction r* which is given by a similar expression

Vs sin7
—_— (3)
Vig sini

where Vg is the shear-wave velocity in the specimen
in the direction 7’ for the incident angle i. The shear-
wave mode again converts to a longitudinal wave at
the second specimen-liquid interface and a charac-
teristic delay time for this case is observed on the
oscilloscope.

The difference in delay time for the longitudinal
wave with and without the specimen in place at an
angle i is given by
d d( cosi—}—sinitanr)

Vliq

At =

= 4)
Vicosr (

from which the refraction angle 7 is given by

sini
- ) (5)
At Viig/d + cos i

r = tan—! (

Similar expressions are true for the shear wave where
V1 and r are replaced by Vs and r. Therefore by
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Fig. 5—Refracted-longitudinal and mode-converted
shear-wave propagation in the specimen and liquid
between the ultrasonic transducers

TABLE 1—-MEASURED LONGITUDINAL AND SHEAR
VELOCITIES IN IN./uS. IN THE 1-2 AND 1.3 PLANES
FOR BORSIC-FIBER-REINFORCED ALUMINUM

COMPOSITES
S
Fiber-volume Fraction

13 34 54
1-2 Plane Long. Shear Long, Shear Long. Shear
1 0° 269 132 298 .151 .338 170
30 270 132 297 150 335 175
35 2700 133 .298 .150 .335 178

40 270 133 296 151 335 182
45 270 134 .295 153 335 185
50 270 134 .296 153 333 .185
55 270 134 .296 .153 331 185
60 270 133 .296 153 331 .183
65 270 133 294 151 .329 178
70 270 132 290 148 327 173

2 90 268 135 .287 147 312 A7
1-]!'.) Flane

0° 269 135 .298 .159 .338 .187
30 272 144 .299 178 .348 217
35 274 146 302 182 .350 217
40 275 149 .305 183 354 219
45 277 150 .309 183 .360 221
50 280 148 .316 179 .365 218
55 282 144 318 175 .375 213
60 284 142 .320 172 378 207
65 286,140 322 167 381 194
70 288 .138 .323 164 .382 193

3 9% 296 143 .350 .161 .393 .189

measuring i and At for the longitudinal and shear
waves, one can calculate r and » from eq (5) and
then Vi, and Vg from egs (2) and (3). It should be
noted that the use of egs (2) and (3) with eqs (4)
and (5) assumes that the energy beam of the ultra-
sonic wave travels in the same direction as the wave
normal. The two do not, in general, coincide in
anisotropic media.l2 Although the delay times of the
two are equal for wave propagation between parallel
specimen faces which are perpendicular to the wave
normal, the path length of the energy beam is larger
since it is at an angle to the wave normal. Hence, the
velocity associated with the energy beam is faster
and is designated the group velocity of the sound
waves. The sound-wave velocity in the direction of
the wave normal is the phase velocity. The delay
time measured by the liquid-immersion technique is
that of the group velocity through the specimen. The
distance the wave travels through the specimen, how-
ever, is calculated as if it were the phase velocity.
Since the specimen is tilted at an angle, the actual
path of the energy beam can be longer or shorter
than that calculated by eq (4) depending upon the
angle between the wave normal and the energy-beam
direction.

To obtain the longitudinal-wave velocity and the
shear-wave velocity at 45 deg with respect to the
specimen faces, the time-delay difference for the two
waves was measured over a large range of incident
angles which gave refracted longitudinal and shear
waves below and above the 45-deg directions, By
calculating the refracted angles and corresponding
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velocity values for a wide range of incident angles,
the velocity value at 45 deg could be ascertained
easily.

Results and Discussion

The longitudinal- and shear-wave-velocity values
obtained in the 1-2 and 1-3 planes are shown in
Table 1. The values at 0 and 90 deg were determined
by the direct-contact through-transmission technique.
All other values reported in Table 1 were determined
by the liquid-immersion through-transmission tech-
nique. The balance of the longitudinal and shear
velocities measured by the direct-contact through-
transmission method is listed in Table 2.

The data show that the longitudinal- and shear-
wave velocities are isotropic in the 13-volume-percent
fiber specimen in the 1-2 plane. The Iongitudinal-~
and shear-wave velocities in the 1-2 plane for the
54-volume-percent fiber specimen do not show this
isotropy however, which indicates that this specimen
is more orthotropic. Examination of the fiber distribu~
tions in Figs. 2 and 3 shows that this is an expected
result. The assumption of tetragonal symmetry is
certainly justified from the square array of fiber
spacing in the 0.13-volume-fraction specimen; how-
ever, in the higher volume-fraction specimen (0.54),
it appears that the composite becomes more ortho-
tropic in its symmetry, ie., the fiber spacings in the
1 and 2 directions are not equal. The values of the
longitudinal- and shear-velocities given in Table 1
for the 45-deg direction in the 1-2 and 1-3 planes are

TABLE 2—MEASURED ULTRASONIC-VELOCITY VALUES
FOR THE THREE FIBER-VOLUME-FRACTION
SPECIMENS OF BORSIC-ALUMINUM COMPOSITES
IN ALL OF THE APPROPRIATE SYMMETRY
DIRECTIONS FOR CALCULATION OF THE ELASTIC
CONSTANTS OF ORTHOTROPIC SYMMETRY

Values are in in./us

Propa- Fiber-volume Fraction
gation Velocity Velocity
Direction® Mode? .13 .34 .54 Designation
1 L .269 .298 338 vy
Tpol 2 132 .151 170 Vs
Tpol 3 135 159 187 Vy
2 L 268 287 312 Ve
Tpol 1l 135 147 AN Vy
Tpol 3 135 154 182 Vs
3 L 296 350 393 Vis
Tpol 1 143 161 189 Vis
Tpot 2 143 163 194 Vi4
451,2 L 270 .295 335 Vis
Tpol 1,2 134 153 .185 Vis
451,3 L 277 309 .360 Vip
TpolL, 3  .150  .183 221 Vi
4523 L 276 308 338 Vs
Tpoi 2,3 .148 173 204 Ve
Tpoll 136 154 187 Vs

2 45 2,3 means the;__plane cut at 45 deg to the 2,3 axes and paral-
lel to the 1 axis. 1 means minus 1 direction.

b L means longitudinal, Tpol 3 means transverse with direction
of polarization in the 3 direction.

162 | Aprit 1974

used in the expressions for the calculation of the
elastic constants. Table 2 shows these values along
with all the other longitudinal and shear wvelccities
measured in the appropriate symmetry directions
for calculation of all the elastic constants. Table 2
lists the directions of propagation, the velocity mode,
the velocity values, and the velocity designation for
the calculation of the elastic constants for the three
specimens.

Table 3 lists the elastic constants which were
calculated from the velocities listed in Table 2. The
elastic constants are defined in the Voigt notation!
with the 3 axis taken in the direction of the Borsic
fibers and the 1 axis taken in the thickness direction
of the plates. The elastic constants are defined with
the assumption, which is assumed valid in this case,
that only plane-wave propagation of the sound waves
is present. Cpz, Cis and Cys are taken to be positive
since only the absolute value can be determined by
the calculations. The positive values are consistent
with the material-stability conditions!? and the sub-
sequent agreement between the Young’s modulus and
Poisson’s ratio as calculated from the elastic constants
and those determined experimentally by mechanical
tests.

The elastic constants listed in Table 3 also reveal
that the higher fiber-volume-~fraction specimens are
somewhat orthotropic since Ciy ¢ Cag and Cyp, Cis
and Cgs are not equal. The values of Cys, C13 and Css
calculated from the longitudinal-wave velocity devi-
ate from the same values calculated from the shear-
wave velocity at the higher volume fractions. The
magnitudes of these constants are very sensitive to the
velocity values, however, and a change of either the
longitudinal or shear velocity by 2 percent brings

TABLE 3—ELASTIC STIFFNESS FOR
BORSIC-ALUMINUM COMPOSITES CALCULATED
FROM VELOCITY VALUES GIVEN IN TABLE 2
Values are in units of 108 psi. The density for each
fiber-volume-fraction specimen is given in gm/cc

S
Fiber-volume Fraction
13 34 54
p = 2.69 p = 2.65 p = 2.65

Ci1 = pVy2 18.21 22.02 28.32
Css = pVa2 4.57 6.27 8.67
Ces = pV32 4.39 5.65 117
C22 = pV72 18.07 20.42 24.13
Cas = pVs? 459 5.88 8.21
Ces = pVg2 5.29 5.36 1.25
Caz = V243 22.05 30.37 38.29
Cag = pV2yg 5.15 6.59 9.33
Css = pV245 5.15 6.43 8.86
Y2(Cs5 + Cgg) = stz 4.66 5.88 8.67
C1a| Vig? 8.87 10.90 14.90
[C1g| Vi2 9.11 9.59 9.12
C1s] VyoP 8.62 7.85 12.86
C1g| V1P 8.67 9.03 8.38
|Cag| Ve 8.39 8.67 6.31
23] Vee 8.89 9.80 9.24

2iCia] = Y% {[4pV2 — (Cix + Cos + 2Ces)}2 — {Cu — Cog)m}t2z —
Ces where V is the designated velocity above.

b Same formula as (a) except ihdex changes 23, and 6-5.

¢ Same formula as (a) except index changes 1-2, 2-3, and 6-4.
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for each fiber-volume fraction are given in Table 4.
Average values of all equal constants listed in Table 3
were used in calculating the values presented in
Table 4. Examination of Cy; and Css in Table 4 in-
dicates that the assumption of transverse isotropy

TABLE 4—ELASTIC STIFFNESSES AND COMPLIANCES
FOR BORSIC-ALUMINUM COMPOSITES OF
ORTHOTROPIC SYMMETRY
Stiffnesses are in units of 108 psi and compliances
are in units of 10—8 psj—1

the two calculated values into agreement. For this
reason, the uncertainties in these quantities might
be as much as 50 percent whereas the uncertainty in
the other elastic constants is approximately 7 percent.
Since Cy4, Cs5 and Cgs are found by more than one
velocity measurement, the average values were used
in the formulas for the calculations of Cis, Ci3 and Coas.

The nine orthoiropic elastic stiffnesses and com-
pliances calculated from the ultrasonic-velocity data

L
Values per Fiber-volume Fraction
Constants 13 .34 .54
Ci1 18.21 22.02 28.32
Ci2 8.99 10.25 12.01
Cis 8.65 8.44 10.62
Cag 18.07 20.42 24.13
Cos 8.64 9.24 1.77
Css 22.05 30.37 38.29
Cas 4.87 6.23 8.77
Css 4.87 6.35 8.76
Ces 4.84 5.51 7.21
Si1 7.886 6.126 4.746
S1a —3.008 —2.673 —2.074
Si3 —1915 —0.889 —0.89
Sos 7.957 6.845 5.340
Sos —1.938 —1.340 —0.508
Sss 6.046 3.948 2.963
Syy 20.534 16.051 11.403
Sss 20.534 15.748 11.416
See 20.661 18.149 13.870
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results in an error of about 15 percent for the 0.54-
volume-fraction specimens. The assumption of trans-
verse isotropy in the case of the off-diagonal con-
stants Cy3 and Cy3 results in an error of 25 percent.
It may be seen that the assumption of transverse
isotropy in the case of high-volume-fraction compos-
ites may introduce an error greater than the design
allowable, in which case the complete orthotropic
matrix of elastic constants should be used.

For comparison with the theory given by Behrens,?
a tetragonal symmetry must be assumed for all the
specimens, The six independent elastic constants for
the composite displaying tetragonal symmetry are
given for each fiber-volume fraction in Table 5. Con-
stants listed in Table 4 which are equivalent assum-
ing tetragonal symmetry were averaged for presenta-
tion in Table 5.

The elastic stiffnesses listed in Table 5 are plotted in
Figs. 6, 7 and 8 as a function of fiber-volume fraction.
The predicted dependence of the elastic constants on
fiber-volume fraction as calculated from the expres-
sions in Appendix A is also shown in Figs. 6, 7 and 8.
The material properties used in these expressions for
the Borsic fibers and aluminum matrix are given in
Table 6. Good agreement exists between the experi-
mental and theoretical values for the constants Cii,
Cs3 and Cy4. Agreement is not as good for the con-
stants Cjy2 and Ci3; however, these quantities are
very sensitive to errors in the ultrasonic-wave-vel-
ocity measurements. The constant Cg shows the
maximum deviation from theory as calculated from
eq (A4) in Appendix A for the higher filament-
volume fractions. This indicates that shear coupling
between the fibers and matrix may not be as strong
as that considered in theory due to the manufacturing
process, i.e, a theoretically perfect bond does not
exist at the fiber~matrix interface.

Young’s moduli, shear moduli and Poisson’s ratios
were calculated from the data in Table 5 for com-
posites of tetragonal symmetry for each volume frac-
tion and are listed in Table 7. Expressions for these
engineering constants in terms of the elastic constants
for orthotropic symmetry are given in Appendix B.
Also listed in Table 7 are the values of Es3 and vs
which were experimentally determined for Borsic-
aluminum by mechanical testing.!4 Agreement is
found to within 6 percent between the mechanically
measured values of Young’s moduli, Eys, and Poisson’s
ratio, v3;, and the values calculated from the ultra-
sonic data. This agreement, in addition to the agree~
ment between theoretically predicted values and the
values resolved in this study, indicates that the ultra-
sonic-wave~propagation technique is a valid method
for determining the elastic properties of fiber-rein-
forced composites. This agreement also indicates that
the composite may be considered a quasi-homogene-
ous medium for the theoretical prediction of elastic
constants,

The theoretical curve for Cys was obtained by using
the upper limit of Young’s modulus for the Borsic
fibers. Actually, Young’s modulus for a single Borsic
fiber is between 55 and 60-million psi.!5 From a
straight-line extrapolation of the experimental points
(Fig. 6), it appears that the average Young’s modulus
for the Borsic fibers is closer to 55-million psi.

Since the ultrasonic velocity in the fiber direction is
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TABLE 5-—ELASTIC STIFFNESSES AND COMPLIANCES
FOR BORSIC-ALUMINUM COMPOSITES OF
TETRAGONAL SYMMETRY
Stiffnesses are in units of 108 psi and compliances
are in units of 10-8 psi—1!

Vaiues per Fiber-volume Fraction

Canstants 13 .34 .54
Ci1 18.14 21.22 26.23
Ci2 8.99 10.25 12.01
Cis 8.64 8.84 9.20
Css 22.05 30.37 38.29
Cas 4.87 6.29 8.77
Ces 4.84 5,51 7.21
Su 7.920 6.457 4,995
S12 ~3.001 —2.658 —2.038
Si3 ~1.925 —1.106 —0.710
Sa3 6.043 3.936 2.953
Sy 20.534 15.898 11,403
Ses 20.661 18.149 13.870

TABLE 6—ELASTIC PROPERTIES OF BORSIC FIBER
AND 11C0 ALUMINUM MATRIX

Borsic Aluminum
Young's Modulus 55-60 x 106 psiis 10 x 108 psi
Poisson’s Ratiol4 .156 327
Density 2.69g/cc 2.70g/cc
Cu 63.67 x 106 psi 14.66 x 106 psi
Cio = Mg 11,77 x 106 psi 7.12 x 108 psi
Coy = 1 25.95 x 108 psi 3.77 X 108 psi

TABLE 7—YOUNG’S MODULI (Ey), POISSON'S
RATIOS (), AND SHEAR MODULI (Gy;) FOR
BORSIC-ALUMINUM COMPOSITES OF
TETRAGONAL SYMMETRY

Moduli are in units of 106 psi

Values per Fiber-volume Fraction

13 34 .54
E1r 12.65 15.51 20.02
Ess 16.52 25.42 33.87
via .38 41 41
vi3 .24 A7 14
v31 .32 .28 .24
Gag 4.87 6.29 8.77
Gis 4.84 5.51 7.21
Eszg# 15.3 243 315
var# .30 27 22

#Young's modulus and Poisson’s ratio determined from me-
chanical tests.l

proportional to the filament content as seen in Fig. 8,
this method provides a guick nondestructive means
of measuring the filament-volume fraction of a part
whose geometry prohibits such a determination. The
ultrasonic velocity measurements also provide a check
on the moduli in the principal directions which can be



compared to the required moduli for which the fab-
ricated part was designed.

Summary and Conclusions

The complete orthotropic matrix of nine indepen-
dent elastic constants for Borsic-aluminum composites
has been determined for each of three fiber-volume
fractions by ultrasonic-wave-propagation techniques.
These values may be used in design with Borsic—
aluminum composites rather than assuming a higher
symmetry condition, such as transverse isotropy. The
assumption of transverse isotropy has been shown
to be 15 to 25 percent in error for the specimens
measured in this study.

The orthotropic data have been reduced to matrices
of six independent elastic constants by assuming that
tetragonal symmetry exists in the composite. These
results are compared with theoretical predictions for
the elastic constants of composites exhibiting tetrag-
onal symmetry and are in good agreement for the
coefficients C11, Css and Cy. The experimental values
of Cip and Ci3 show a larger deviation from theory
but are very sensitive to experimental errors. The
constant Cgs shows the largest deviation from theory
which indicates that the fiber-matrix interface in the
composite is not a theoretically perfect bond.

The engineering constants Young’s modulus and
Poisson’s ratio were also calculated from the elastic
constants of the composite assuming tetragonal sym-
metry. Agreement was found to be within 6 percent
between these values and those determined from
mechanical tests. The agreement between the values
determined in this study and values predicted by
theory and resolved by mechanical testing indicates
that the ultrasonic-wave-propagation technique is a
valid method for determining the elastic properties
of filament-reinforced composites. Measurement of
the ultrasonic-wave velocity has also been shown to
be a rapid nondestructive-test method for determin-
ing filament-volume fraction in a fabricated part.
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APPENDIX A

The six independent elastic constants for a two-
component composite with tetragonal symmetry as
given by Behrens? as a function of fiber-volume con-
tent are given below. The Lamé coefficients A and u
are used where 1 and 2 designate the fiber coefficients
and matrix coefficients respectively. S is the fiber-
volume fraction and ¢ equals (2uz + A2) /ue.

C11 = Coz = (2u2 + 22)

[ e S D)
(g 4 Mt 4 m2) — (p1 + M — g — 22) S
(1 — u2) S ]
(Al
(w1 + w2 + ko) — (u1 — p2) ST )
Cs3 = (2ug + Az) + (Qu1 -+ At — 2u9 — A2) S
(1 —42)2 S(1—8)
— (A2)
(w1 4 2+ p2) — (e + ki — p2 — 22) S
(o1 + w2) + (w1 — w2) S
Cy = Cs5 = (A3
* BT (o1 + w2) — (u1 — w2) S )
(b1 — ) § ]
Cse = [1 A4
o =wal Lt w — (pg — pg) SVe (AD)
Cia = ha 4+ (2uz + A2)
[ w1+ A — ug — A2
(pr + 2+ m2) — (p1 + h — g — A2) S
_ H1— g ] A(5)
(o1 + w2 + A2) — (ug — pg) S9
Cis =Cas = ks
A1 — ko) (2 i) S
(M 2) (2uz + A2) (A6)

(ug + g4 pa) — (g + M — g — h2) S

APPENDIX B

The following expressions are used for calculating
Young’s moduli, Poisson’s ratios, and shear moduli
from the elastic constants for tetragonal symmetry.

Ey3 = Ci1 — »13 C13 — v12 C12 (BD)
Eg3 = C33 — 2w3; C13 (B2)
2
Cizs — Ci2 C
g == s 712 38 (B3)

C# — Ci1 Css

—Cn C
s = Ci2 Ciz 11 C13 (B4)

CH — Cu Cas
Ci2 C13 — Cu Cus

va1 = (B3)
ch — ch

Gas = Cys (B6)

Gz = Ces (BN
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