Broken Beams

Tearing and shear failures in explosively loaded clamped beams

by S. B. Menkes and H. J. Opat

ABSTRACT—A series of experiments has been conducted,
utilizing sheet explosive applied to clamped aluminum
beams, with a neoprene buffer, As the load is monotonically
increased, three damage modes are identified, which re-
spectively are major inelastic deformation, tearing at the
extreme fiber, and transverse shear at the support.

Satisfactory correlation is reported for the extent of
inelastic deformation using a lumped parameter, finite-
difference code; thresholds for tearing and shear failure
based on empirical criteria are presented. Using a Timo-
shenko beam theory, the shear threshold appears to be de-
pendent on the section velocity, rather than upon the shear
stress.

List of Symbols

¢y = propagation speed for shear waves (in./s)
G = shear modulus (ksi)
h = beam thickness (in.)
H.E. = high explosive (as abbreviation)
I = impulse intensity (ktaps)*
Iye = reference impulse, arbitrary strain, eq (1)
(ktaps)
Iy5 = reference impulse, 5 percent strain, eq (1)
(ktaps) ¥
1 = subscript indicating material layer
K¢ = defined by eq (3) (in./s)
L = beam length (in.)
r = radius of gyration = /h?/12 (in.)
t = time (s)
t = t/tz (dimensionless)
tr = L/ca (s)
x = distance along beam (in.)
x = z/L (dimensionless)
v, = initial average beam velocity (in./s)
vo = Vo/Cs (dimensionless)
A = residual central deflection of beam (in.)
e — strain (in./in.)
) — slenderness ratio = L/r (dimensionless)
u = defined by eq (3) (lbg-s2/in.3)
p = mass density (lbs-s2/in4)
¢ — uniaxial tensile stress (ksi)
T = shear stress (ksi)
t = v/G (dimensionless)

Objective and Scope
This paper describes an experimental-theoretical

S. B. Menkes is Professor of Mechanical Engineering, The City Col-
lege of New York, N. Y. 10031. H. J. Opat is Senior Research
Physicist, Picatinny Arsenal, NDED, TASB Dover, N. J. 07801.

% 1 ktep = 1000 taps 1 tap = 1 dyne-s/cm?

+ Equation (1) yields the impulse intensity in lbs-s/in®. A conversion
factor is necessary to convert to ktaps; 1 lbr-s/in®* = 69.5 ktaps.

480 | November 1973

study of the dynamic response of clamped beams to
very high transverse pressures of extremely short
duration. The following objectives are delineated:

(1) As the loads become progressively more se-
vere, to identify the different damage mech-
anisms.

(2) For each damage mode, to distinguish the con-
trolling variables.

(3) To seek means by which the incidence of such
damage modes (and where appropriate the
extent of the damage) may be predicted.

Only gross physical damage is considered, involving
large deformations and/or rupture. Superimposed
buckling patterns are not treated.

Introduction and Background

Genesis of Problem

The actual structure of current interest is a re-
entry vehicle, shown schematically in Fig. 1, of
monocoque construction with internal rigid-ring
supports.

Under certain conditions, the vehicle may be sud-
denly subjected to high-intensity, asymmetrie, short-
duration external pressures. A quantitative predic-
tion of the shell response is difficult; it may gener-
ally be expected to deform radially inward in the
sections between the rib stiffeners. If the pressures
are sufficiently high, the skin may be torn at or
ruptured over the supports.

As one approach (which aids in understanding the
phenomenology), an axial section is taken through
the vehicle, disclosing a continuous beam subjected
to a uniform transverse pressure. The beam supports
are the circular reinforcing ribs. One span of this
continuous beam is selected for study. It is assumed
that the supports are ideally rigid. The single span is
then modeled as a clamped beam; the clamp both
acts to prevent rotation and to provide axial re-
straint.

Some Theoretical Considerations

In the real problem, the pressures are in the order
of kilobars, and the pulse length in the order of
microseconds. The loading conditions may be simu-
lated by sheet explosive (see Fig. 2). The transient
stress history through the section depends on wave
propagation, and is dominated by the discontinuity
in the rear-face reflection conditions at points A and
B in Fig. 2.

Ultimately, an understanding of the very early
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Fig. 1—Schematic reentry vehicle

material response will probably require a two-di-
mensional analysis using finite-element methods.
The approach is described by Costantino.! In its
present form, however, his code SLAM is not yet
suitable. It must be modified to include a finite-strain
model, appropriate criteria for the detection of local
ruptures, and a treatment for post-failure motion.

If the rear-surface discontinuity can be accom-
modated by sufficient inelastic deformation without
rupture, the beam soon acquires a uniform average
velocity, and the problem reduces to one of response
to an impulsive load.

Review of Literature

A number of investigators?7? have treated the ques-
tion of the response of beams to transverse impulsive
loads sufficient to cause finite inelastic deformation.
They have, however, avoided loads so severe as to
cause tearing or rupture at the support points. The
lumped parameter, finite-difference numerical meth-
ods described by Witmert offer the most versatile
possibilities, reasonable correlation and low opera-
tional cost. These techniques cannot, however, pro-
vide an accurate, detailed representation of stress or
strain distribution through the beam thickness near
the points of support.

It will be found (in this study) that there are
several reasons to conclude that, if a transverse shear
failure occurs, it will take place at extremely early
times—Ilong before there is any opportunity for sig-
nificant plastic deformation to occur. This suggests
that it may be possible to develop a correlation be-
tween an experimentally observed shear threshold
and a shear-stress resultant obtained by a pseudo-
elastic analysis.

The available approximate models for describing
elastic beam behavior are either the Euler-Bernouilli
or the Timoshenko theories. The former is funda-
mentally inadequate to the analysis of impact condi-
tions, because it yields the nonphysical result that
waves of infinitesimal wavelength (and, therefore,
discontinuities) propagate with infinite wvelocity.8
Prescott shows? that this theory yields satisfactory
results only for the lower modes. It can be shown
that the shear-stress series for the Euler theory is
nonconverging.

While the Timoshenko bending mechanism retains
the one-dimensional nature of the more elementary
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Fig. 2—Fixture for sheet-explosive tests on beams

theory, it does include the effects of transverse shear
deformation and of rotatory inertia, Several investi-
gators!®17 have been concerned with various phases
of the problem of an infinite or semi-infinite Timo-
shenko beam subjected to impulsive loads. Normal-
mode solutions were developed by Anderson!® for
finite spans, and then applied to a simply supported
beam subjected to a concentrated load at midspan.
Both Anderson and Thomson!® provide the orthog-
onality conditions. Garrelick?? studied finite, simply
supported beams. The probable incidence of shear
failure at very high initial velocities was suggested
by Bleich and Shaw?! and by Karunes and Onat.22

Experimental Plan

Figure 2 shows the experimental configuration.
The high pressure is provided by sheet explosive,
which is cemented to a neoprene buffer which, in
turn, is bonded to the top surface of a clamped alu-
minum beam. It should be noted that the explosive
extends well over the point of support.

All tests were conducted on 6061-T6 aluminum.
Three thicknesses (.187 in., .250 in. and .375 in.),
considered to be representative, were employed. The
hardpoint separation distances were arbitrary: two
(8.0 in. and 4.0 in.) were used to detect the possible
influence of length. All beams were 1.0-in. wide.

To prevent rear-surface spallation, a .250-in.-thick
neoprene buffer was used in all cases. The high ex-
plosive was Du Pont Detasheet D, and the adhesive
was Dupont 4684 cement, thinned 1:1 with acetone.
In order to vary the impulse loads in reasonable in-
crements, four thicknesses of H.E. (10, 15, 25 and
50 mils) were utilized in different combinations. The
latter three are standard stock, with = 5 percent
tolerance. The 10-mil sheet is especially rolled, and
the tolerance on it is = 20 percent.

The uppermost layer of explosive was extended
for 4.0 in. beyond one end of the beams, serving as
the detonation source. With single-ended detonation,
one could be concerned lest the resultant deformation
be asymmetrical. The detonation velocity of the H.E.
is 0.72 cm/us, so that the time fo traverse a loaded
8-in. beam is 35.3 us. The shock transit time through
the beams is of the order of 1-2 us. Thus, there is
ample time for the end of the beam nearest the
detonation point to start deforming before the deto-
nation wave reaches the other end of the beam.
Fortunately, however, there is no significant evi-
dence of deformation asymmetry in the experimental
results. Presumably, even though one end of the
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beam may start to deform before the other, the ex-
tent of the deformation is so small as not to affect
the final result. A limited number of X-ray photo-
graphs support this presumption.

There was no active instrumentation; special tech-
niques are required and must be developed. Central
deformation (A) thus describes a permanent or re-
sidual state, rather than a maximum transient
deformation.

Results of Experiments

General Comments

For any one set of beams, the impulse intensity
was gradually increased by using thicker H. E. as-
semblies; Fig. 3 shows a typical result. Character-
istically, for all beams examined, as I increases, three
distinctly different damage modes may be noted:

I. Large inelastic deformation.
II. Tearing (tensile failure) in outer fibers, at
or over the support.
III. Transverse shear failure at the support.

For Mode I, the extent of damage is described by
the amount of residual central deflection (A). The
threshold for Mode II is taken as that impulse in-
tensity which first causes tearing. As the load in-
creases, Modes II and III overlap. A pure, well de-
fined shear failure is characterized by no significant
deformation in the severed central section.

Normalization of Results

Sliter?? has suggested the use of a normalizing
parameter I in connection with the study of dam-
age caused by impulse. This parameter is the uni-
form radial impulse intensity required to effect a
plastic strain ¢ in a rigid-plastic ring.

For a single-layer material, Ip may be found from
the expression:

Ine = \/2 n Ke (1
while for a two layered material,
Toe = /2 Vi1 (Kep) 2 + 12 (Kep) 2 (2)

wherein:

1 (s
m = pihy K“’ei=—‘£ ode p=p+p2 (3)
pi

Sliter and others at Stanford Research Institute have
used the specific strain of 5 percent to compute the
parameter Ips in connection with several attempts fo
classify experimental data. We treat the beams as
two layers (neoprene and aluminum); the param-
eter Ios for each beam is shown in Table 1. The
values of K¢ and p necessary to define I¢; were taken
either from Ref. 23 or 24.

Empirical Correlations

Analysis of the data suggests that, for Mode I
damage, the central deflection is related to, and gen-
erally proportional to, the length of the beam. An
attempt to correlate the dimensionless ratios (A/L)
and (I/Ip5), however, discloses only a weakly de-
fined pattern with considerable scatter.

Alternatively, however, it appears that the Mode II
and Mode III thresholds (for a cross section com-
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TABLE 1—MODE I! AND 111 THRESHOLDS
EXPERIMENTAL CORRELATION

Beam Impulse Initial
Thickness los Intensity Velocity
Mode (Inches) (ktaps) (ktaps) 1/les (inches/sec)

H 187 19.4 26.0 1.34 8000
Hi 40.0 2.06 12300
| .250 235 32.0 1.36 7350
11 48.0 2.04 11000
] 375 33.0 45.0 1.34 6500
I : 65.0 1.96 10000

posed of neoprene and aluminum) do not depend on
the length of the beam, but only on the thickness.
This may be seen from Fig. 4, which includes all test
data in the region of the thresholds.* Admittedly,
the selection of the individual tearing and shear
thresholds is highly subjective. But it is guite plain
that there is no significant difference in these quan-
tities imposed by the length. Furthermore, the linear
relationship between thickness and impulse intensity
is quite reasonable.

Table 1 displays these conclusions in somewhat
more useful form, including the appropriate Ip;
parameter, the normalized impulse intensity I/Iys,
and the initial section velocity [see eq (4)]. The
nominal impulse intensity (I) to be expected from
an assembly of H.E. sheets has been computed by
simply summing Clark’s?S experimentally obtained
values for the individual sheets.

Discussion of Experimental Error

It may be noted (Fig. 4 and Table 1) that the re-
sults are critically dependent on the initial veloeity
actually acquired by the aluminum. This velocity is

2 (On Fig. 4, T = tearing, S = shear, TS = tearing and shear,
and bracketed numbers are A).

KTAPS 1/1o5
10.9 0.47
17.8 0.76
25.6 1.1
28.7 1.22
35.1 1.51
39.6 1.69
429 1.83
46.0 1.95
50.7 2.16
529 2.25
61.6 2.63

Fig. 3—Results for series of 6061-T6 beams
(.250 X 1 x 8-in. beam)



computed by the formula:

Vo = I/ph (4)

in which the impulse intensity I is not so well de-
fined as the density p or the thickness h.

The value of I depends on two factors difficult to
control:

(1) The amount of impulse delivered to the neo-
prene surface by the sheet explosive,

(2) The manner in which this incident impulse is
partitioned between the neoprene and the
aluminum,

In any one case, for example, the assembled sheet
explosive might consist of as many as two to five
layers. Even if it is assumed that there is no 10-mil
sheet, so that each of the layers is made to a & 5
percent tolerance, the expected variation in the
thickness of a four-layer assembly would be =+ 10
percent. The impulse intensity delivered to the
neoprene surface is approximately proportional to
the assembled H.E. thickness, and may thus be ex-
pected to vary by as much as = 10 percent from a
nominal value.

It is known that the neoprene and aluminum
layers separate at a very early time. The partition of
the incident impulse between the neoprene and the
aluminum is determined by the actual pressure-time
curve, and is a function of the complex shock-wave
behavior within the materials and at the interfaces.
It has been assumed that the momentum transferred
to the aluminum is, in fact, exactly the same as that
originally delivered to the neoprene. The theoretical
partition of momentum has been predicted for sev-
eral cases from the material response code PUFF;26
from these results it is estimated that the assumption
of complete momentum f{ransfer does not err by
more than *+ 5 percent.

Combining these two factors, the uncertainty limits
for the initial velocity value computed for each
nominal loading are about + 12 percent. To obtain
better data, it would be desirable actually to mea-

sure the aluminum velocity by means of a high-speed

motion picture, break rods, or a ballistic pendulum.
This was not done in the current series because the
chief focus has been on the disclosure of the damage
modes. The correlation studies have been made
primarily to test the feasibility of predicting the
onset of different damage modes by purely empirical
rules. Similar damage modes have been observed
in clamped cylindrical shells; it is hoped that any
empirical methods would have ultimate application
to this geometry. It is evident that the accuracy
should be improved.

Mode I Correlation with DEPROSS

Calculations have been made using the DEPROSS
code.” For these runs, the beam is represented as if
it were 20 lumped masses connected by massless
deformable links. The aluminum is taken to be
elastic-perfectly plastic. Table 2 lists all the beams
which suffered inelastic deformation; a comparison
is drawn between the estimated permanent central
deflection, as predicted numerically by DEPROSS,
and the experimental result. These beams do not
exhibit either of the other damage modes.

Although neither data nor curves are shown to
describe the way in which the central deflection
changes with time, it may be noted that the maxi-
mum values are reached at about 0.3 ms for the 8-in.

~beam and at about 0.15 ms for the 4-in. beam. These

are in agreement with typical structural response
times.8

Figure 5 shows a comparison between the residual
central deflection as found by DEPROSS and as
found by experiment, for the .375 X 1 X 8-in. beam.
The asymptotic behavior of the experimental curve
appears to be related to the onset of Mode II damage.

The correlation between theory and experiment is
quite good. Some adjustments are possible in the
DEPROSS calculation as, e.g., the use of more mass
points, and slight changes in the constitutive rela-
tions. But this type of manipulation is not con-
sidered to be useful, until an improvement in the
calculations is effected by a direct measurement of
the initial velocity.

Fig. 4—Results of beam experiments
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Fig. 5—Residual central deflection: DEPROSS vs.
experiment (.375 X 1 X 8-in. beam)

Mode II Threshold, as Predicted by DEPROSS

An attempt was made to predict Mode II thresh-
olds with DEPROSS by incorporating a tensile fail-
ure criterion, based either on maximum tensile stress
or on maximum total strain. This effort was unsue-
cessful; if, however, DEPROSS were to be modified
to include transverse shear deformation and rotatory
inertia, the technique should be satisfactory.

Mode III Threshold, as Predicted by DEPROSS

DEPROSS has been considered as a possible tool
for the prediction of the transverse shear threshold.

TABLE 2—DEPROSS THEORY AND EXPERIMENT

Imputse initial Beam Central Deflection
Intensity Velocity Length Thickness DEPROSS Experiment
(ktaps) (in./s) (in.} (in) (in.) (in.)
10.9 3354 8 187 0.99 0.94
17.8 5478 1,56 1.44
25.6 7879 2.28 1.75
10.9 3354 4 .187 0.44 0.25
17.8 5478 0.77 0.69
25.6 7879 1.17 0.80
10.9 2509 8 .250 0.54 0.50
17.8 4098 1.07 1.50
25.6 5894 1.64 1.50
10.9 2509 4 .250 0.32 0.31
17.8 4058 0.53 0.44
25.6 5834 0.81 0.75
17.8 2732 8 375 0.72 0.50
218 3346 0.8¢ 0.75
25.6 3929 1.06 0.88
28.7 4405 1.20 1.25
334 5126 1.42 131
35.1 5387 1,51 1.50
39.6 6078 171 1.50
42.9 6584 1.88 1.44
17.8 2732 4 375 0.48 0.18
21.8 3346 0.57 0.31
25.6 3628 0.65 0.31
28.7 4405 0.71 0.38
334 5126 0.77 0.56
35.1 5387 0.83 0.81
39.6 6078 0.88 0.75
429 6584 0.94 0.81
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Fig. 6—Transverse shear stress, as computed
by DEPROSS {250 X 1 X 8-in. beam)

For the .250 X 1 X 8-in. beam, a detailed early time
history is shown in Fig. 6. (The velocities shown do
not correspond to the actual tests, but they span the
same range). From Table 1, the shear threshold was
estimated at 48.0 ktaps, corresponding to an initial
velocity of 11000 in./s and (from Fig. 6) a shear
stress of 155 ksi.

Other runs, not shown, indicate that DEPROSS
predicts a transverse shear stress inversely propor-
tional to beam length. This contradicts the experi-
mental evidence that the shear threshold does not
depend on length.

One of two conclusions is inescapable:

(1) Either DEPROSS does not predict the shear-
stress resultant accurately near the point of
support, or

(2) The threshald for Mode III damage depends
not on the maximum shear stress, but only
on the initial velocity.

Judgement is reserved until the results from the
Timoshenko beam calculations are examined (be-
low). For the moment, however, it is noted that:

(1) The peak shear stress occurs at very early
times. (In this case at 0.2 us).

(2) The dynamic shear strength appears to be
much higher than the static shear strength.

(3) For any one beam, the shear stress is lin-
early proportional to the initial velocity.

Mode III Thresholds, from Timoshenko Theory

Because this is an elastic theory, it cannot be used
to predict Mode I damage or the Mode II threshold.
Using a pseudoelastic approach, however, it remains
a possible tool for the prediction of Mode III thresh-
olds.

Two closely related studies are contained in Refs.
10 and 20. Leonard and Budianskyl® analyzed the



response of a cantilever beam subjected to a step
velocity input at the root; Garrelick?? studied finite,
simply supported beams subjected to transverse
dynamic loads.

Both investigators show results for shear stress
which disclose very severe discontinuities at those
times when reflections occur, but do indicate that
the curve is well behaved near zero time. This ob-
servation prompts consideration of an ordinary
eigenfunction analysis for the Timoshenko beam, in
order to detect a shear threshold, even if the stress
levels predicted are fictitious, In support of this de-
cision, it should be noted that:

(1) The eigenfunction expansions in Refs. 10 and
20 are well behaved at early times.

(2) The actual experimental results show that no
inelastic deformation precedes pure trans-
verse shear failure.

(3) DEPROSS calculations indicate that high
transverse-shear stresses occur at less than
1.0 us.

The differential equations are given in Refs. 18 and
19; the orthogonality conditions are demonstrated in
Ref. 18. In the development as applied to a clamped
beam, a difficulty is encountered in that a single
characteristic equation cannot be directly solved for
the natural frequency. Instead a trial and error ap-
proach originally advanced by Flugge,2? and more
recently described by Forsberg?8 and by Fisher and
Menkes,?® must be used. This involves the use of a
trial value of natural frequency, computation of the
wave-shape parameters, the formulation of a bound-~
ary-condition determinant, and an iteration of the
frequency until a required value of the determinant
(usually zero) is obtained.

It is necessary to decide how many terms should
be used in the shear-stress summation. Figure 7
shows a typical plot for the dimensionless shear
stress (z) vs. dimensionless time (t), for a beam
with A2 = 12288. (This corresponds to the .250 Xx
1 x 8-in. beam). Alternative summations for 11, 19
and 25 modes are displayed. The stress is taken at
the dimensionless location (x) of .010, and does not
vary appreciably (not shown) from the result at
.000,

The stress at the first peak is higher than those
that follow. The actual value of v attained depends
on how many modes are used in the summation. In
order to compare properly the shear stresses in the
different beams, it is necessary to identify the wave-
lengths for each frequency. For different beams, the
shortest periods (corresponding to the highest mode
used) should be similar.

In Fig. 7, the shear stress is for a dimensionless
initial velocity of 1.0. Using the criterion of similar
periods, Fig. 8 shows the maximum shear stress ob-
tained for beams of different values of A2 in one case
including all modes down to a period of 0.400 and,
in another, all modes down to a period of 0.150.

Noting from the formula (not shown) that the
shear stress is linearly proportional to the velocity,
Fig. 9 is constructed, showing theoretical distribu-
tion of maximum shear stress for velocities lower
than 1.0. Also shown on Fig. 9 are the experimen-
tally obtained best estimates (from Fig. 4) of the
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Fig. 7—Dimensionless plot of shear stress (t) vs. time
(t); 22 = 12288, x = .010

transverse-shear threshold. The data support the
following comments:

(1) The transverse shear threshold will occur
for any beam at about the same value of
velocity; ie., at about 0.1, dimensionless,
corresponding to 12,000 in./s.

(2) The magnitude of the shear stress actually
reached depends on 12, ranging here from
.03 to .055 (or dimensionally, from 120 ksi
to 220 ksi).

Conclusions

Three objectives were delineated. These are re-
peated below, for clarity, together with the appropri-
ate conclusions.

1. To identify the damage mechanisms

Three damage modes, involving inelastic deforma-
tion (I), tearing over the support (II) and transverse
shear failure at the support (III) are characteristic
of the response of clamped aluminum beams to high-
intensity short-duration transverse pressures.

2. For each damage mode, to distinguish the
controlling variables

(a) For MODE I, the severity of the damage may be
described by the residual central deflection. This
depends on the impulse intensity, the density and
constitutive relations of the materials, the manner in
which the impulse is partitioned (determining the
initial velocity in the substrate), and the beam
thicknesses and length.

(b) For MODE II, the threshold depends on the same
variables cited in the paragraph above, with the ex-
ception of the length. It is characterized by a small
tear in the top fiber.

(c) For MODE III, the threshold depends on the
same variables as for Mode II, occurring at higher
values of the impulse intensity. It is characterized by
no appreciable plastic deformation. The initial ve-
locity appears to be critical.

3. To seek means for prediction

(a) Deformation in Mode I can be correlated with
the numerical code DEPROSS.

(b) Thresholds for Mode II and III can be experi-
mentally correlated as occurring at about 1.36 and
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2.0 times the parameter Io; respectively.

(¢} On the basis of both DEPROSS and Timoshenko
beam theory, Mode III threshold depends on the
initial velocity; it occurs at the dimensionless value
of 0.1; this corresponds to different shear stresses,
depending on beam proportions,

Other experiments are now in progress on clamped
aluminum cylindrical shells; cylinder thicknesses are
taken the same as beam thicknesses, and distance
between supports the same as beam lengths. It may
be noted that similar damage modes are encountered
at similar impulse-intensity levels. This suggests
the tentative conclusion that empirically based
methods for prediction of damage in beams may
have application in the prediction of damage to re-
entry vehicles.
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Fig. 8—Maximum shear stress {3) for all beams;
velocity (vo) = 1.0
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