
The Magic of Carrier Fringes in 
Moir6 interferometry 

by Y. Guo, D. Post and R. Czarnek 

ABSTRACT--Practical applications in which carrier fringes 
are used with moir~ interferometry for strain measurements 
are presented. Examples illustrate how moir6 carrier fringes 
are applied to obtain the desired data in complex laminated 
composite specimens. In many cases, carrier fringes permit 
extraction of much more detailed information, with procedures 
that are easier and more accurate than those using load- 
induced fringes alone. The fringe vector for carrier fringes is 
introduced and its application to the interpretation of fringe 
patterns is explained, in moir~ interferometry, the carrier 
fringes are produced easily by adjustments of optical elements 
that control the virtual reference grating. 

Introduction 
In geometric moire, the carrier fringes have been called 

m i s m a t c h  f r i n g e s . '  2 They are introduced by changing the 
frequency or the direction of the reference grating. In the 
case of moird interferometry, a very large number of 
carrier (or mismatch) fringes is sometimes introduced-- 
even many times the number of load-induced fringes. In 
such cases, a high-frequency pattern of uniformly spaced 
carrier fringes is modulated by the load-induced changes 
of fringe orders. The analogy to carrier frequencies in 
communications technology is strong, and similar ter- 
minology is adopted. As used here, the terms carr i e r  
f r i n g e s  and carr i e r  p a t t e r n s  represent any carrier fringe 
frequency: high or low, positive or negative. These 
carrier fringes can increase or decrease the frequency of 
load-induced fringes. 

The term m i s m a t c h  does not apply consistently to moir~ 
interferometry. The word implies a difference in frequency 
or orientation of specimen reference gratings. However, 
moir~ interferometry can operate when there is no 

reference grating at alP--neither a real reference grating 
nor a virtual reference grating--but nevertheless carrier 
fringes can be produced in such a case. The term c a r r i e r  

is meaningful even when m i s m a t c h  is not, so car r i e r  
f r i n g e s  will be the terminology favored here. 

The carrier pattern is an important ingredient in moir~ 
interferometry. Together with other special properties, it 
makes moir~ interferometry a unique and powerful 
technique for displacement and strain measurements. 
Carrier patterns can be used for  various purposes, includ- 
ing the following: (1) to increase the accuracy of extracting 
data from a fringe pattern; (2) to distinguish the signs of 
the displacements by introducing a carrier pattern of 
known sign; (3) to determine fringe gradients when they 
are not adequately represented in the load-induced fringe 
patterns; (4) to cancel the initial or no-load fringe pattern; 
and (5) to measure in-plane and out-of-plane displacements 
simultaneously. 

All the applications mentioned above have their own 
magic qualities. In this paper, the third issue is illustrated 
by several examples. The details of other applications can 
be found in Refs. 1-5. 

Moir6 Interferometry 

Basic  Pr inc ip le 

In moir~ interferometry, ~ a diffraction grating is 
replicated on the specimen and it deforms together with 
the loaded specimen. A virtual reference grating created 
by interference of two coherent beams, B, and B2 (de- 
picted in Fig. 1), is superimposed on the specimen grating. 
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*Consider Beam B~ and Bz in Fig. 1 when their polarizations are in the 
horizontal plane, i.e., perpendicular to the y axis. Then, when c~ = 
45 deg, the two beams are orthogonally polarized, so they cannot interfere 
to produce a virtual reference grating. Nevertheless, the diffracted beams 
that reach the camera have parallel polarizations and they interfere to 
create the moire pattern. A rigorous explanation o f  moirff interferometry 
(Ref  3, pp. 335-338) does not involve a reference grating. 

I f  polarizations o f  Bl and B2 are parallel to y, a virtual reference 
grating is produced and a casual explanation utilizing the virtual reference 
grating is given in the next section. 
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The specimen and reference gratings interact to form a 
fringe pattern Nx, which is a contour map of in-plane 
specimen displacements U. This pattern is photographed 
with a camera focused on the specimen surface. Beams 
B3 and B4 (not shown), lying in the vertical plane, 
interact with the specimen grating to form the Ny pattern 
and the V displacement field. In Fig. 1, f is the frequency 
of the virtual reference grating and N is the fringe order 
at each point in the moir~ pattern, In this work, f = 
2400 t / m m ,  or 60,960 t / in .  

Moir~ Carrier Patterns 
In moir~ interferometry, the direction and the fre- 

quency of  the reference grating is changed ,by adjusting 
the incident beam B~ or B2 (Fig. 1). Experimentally, this is 
usually done by a thumbscrew adjustment of one optical 
element, e.g., a mirror that directs light into B, .  A carrier 
pattern of extension, composed of fringes parallel to the 
lines of the specimen grating, is obtained by a small 
change of  the magnitude of angle 2t~. A carrier pattern 
of rotation, composed of fringes essentially perpendicular 
to the lines of the specimen grating, is obtained by a small 
out-of-plane inclination of B, or B2, or by a small rigid- 
body rotation of the specimen grating. 

Fringes and Fringe Vectors 
There are two ways to obtain fringes. One is to deform 

the specimen grating by external loads or other means, 
and the other one is to change the reference grating. 
(Rotation of the specimen relative to the reference grating 
is equivalent to changing the reference grating.) The first 
one introduces load-induced fringes and the second one 
introduces carrier fringes. 

The fringe gradient has vector properties as illustrated 
in Fig. 2. At  any point, a fringe vector F is defined such 

f = 2sin(1 Specimens. 

u = §  v = ~.~ G.~ ~ t  y 

Lens 82 

r 
Fig. t--Moir6 interferometry and 
relevant equations 

Fig. 2--Fringe azimuth 
and fringe vectors 

N = 7  I 9 I0 

Fy = F x t o n ~  

that it is perpendicular to the tangent to the fringe at that 
point and has a direction toward the direction of increasing 
fringe orders. Its length, or magnitude, is proportional to 
the gradient of the fringes along the defined direction. All 
the rules of  vector calculation can be applied to the fringe 
vector. A fringe vector can be decomposed into two 
orthogonal components Fx and Fy which are related by 
the equation 

Fy = Fx tan 4~ (1) 

where Fx and F r represent the fringe gradients ON/Ox and 
ON/Oy respectively, and tan q~ is the slope of  the fringe 
vector (or the reciprocal of the slope of the fringe). 

When a carrier pattern is introduced, the resultant 
fringe vector is equal to the vector sum of the load-induced 
fringe vector and the fringe vector of the carrier pattern. 
At any point of the fringe pattern 

F,, = Ft= + Fcx Fy = Fly + Fcy (2) 

where subscript l represents the load-induced fringes and 
subscript c represents the carrier fringes. Thus, eq (1) can 
be written as 

Fly + F,y = (Fix + F~,) tan 4~ (3) 

In terms of the fringe vector and its components, the 
displacement derivatives can be calculated by the following 
equations. For the U (x-direction) displacement field, 

Of, r - 1 Fix O U 1 Fry (4) 
Ox f Oy -- f 

and for the V (y-direction) displacement field, 

0V _ 1 Fly 0V _ 1 F a  (5) 
Oy f Ox f 

The strains can be determined by the well-known small 
deformation equations 

OU OV 
e ~ -  Ox e y -  Oy (6) 

OU OV 
v ~  = ~ + a-Y- (7) 

It is evident that the carrier fringes are not required, in 
principle, to determine strains. Carrier fringes can be 
used, however, to transform the pattern to one from 
which the load-induced gradients can be extracted with 
enhanced precision and ease. These virtues are illustrated 
by the applications that follow. 

Carrier Fringes of Rotation 
Carrier fringes of  rotation are oriented perpendicular 

to the bisector of  the initial specimen grating lines and the 
reference grating lines. Consequently, the carrier fringe 
vector has two components which are functions of 0: 

O ' f  
Fc = Of F,  = - - - f -  (8) 

where 0 is the small angle between the initial specimen 
grating lines and the reference grating lines; Fc is the 
desired component of the carrier fringe vector of rotation 
and lies parallel to the specimen grating lines; and Fe is 
the extraneous component of the carrier fringe vector and 
lies perpendicular to F t .  For a fixed coordinate system 
aligned with the initial orientation of the specimen 
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grating lines, the extraneous component F ,  is always 
negative. It is an apparent uniform compressive strain on 
the specimen surface. In practice, angle 0 is usually very 
small and the extraneous component is usually negligible. 
For example, if F~ is 10 fringes/mm and the frequency 
( f )  of the reference grating is 2400 t/mm, we find that 
0 is 0.004 radians, and F ,  is 0.02 fringes/mm. The apparent 
extraneous strain e, is - 9  #m/m.  Thus, the effects are 
very small. When a very strong carrier pattern of  rotation 
is used in some special cases, however, the extraneous 
effects might not be negligible. In such cases, corrections 
can be applied. 

The carrier pattern of rotation can be produced in two 
ways: (1)by rigid-body rotation of  either the specimen 
grating or the reference grating relative to the other; or 
(2) by adjustment of  beam B, (and/or  B2) illustrated 
in Fig. 1. Equations (8) apply directly to case (1). For 
case (2), one must consider the great variety of  optical 
systems that can be used to produce beams B, and B2. 3.6 
No common analysis can be given for the carrier fringes 
in terms of the adjustments of the mirrors or optical 
elements. Instead, means to maintain Fe within acceptable 
limits must be considered on an individual basis. 

Applications of Carrier Fringes 

Specimens 

In the studies illustrated here, the specimens were all 
made from laminated fiber-reinforced composite materials. 
Interlaminar deformations were examined. For experimental 
analyses of the behavior of these complex structural 
bodies, moir~ interferometry and its carrier patterns have 
provided an excellent and unique approach. 

Carrier Fringes Parallel to the Initial Fringes 

Figure 3 shows a rail-shear test for determination of  
interlaminar deformations of a graphite-epoxy specimen 
with a [90/90/0],  stacking sequence. Figure 3(b) is the 
fringe pattern of  the load-induced V displacement field in 
the central part of  the specimen. The cross derivative 
O V .  

0x is very high, corresponding to a large magnitude of  

fringe vector Fix, and the fringes are nearly vertical. If  the 
strain ey (corresponding to the gradient F~y) is desired, its 
determination from this pattern would be difficult. By 
introducing carrier fringes of rotation, which are nearly 
parallel to the load-induced fringes, the fringe pattern is 
simplified while the fringe vector Fry remains essentially 
unchanged. This is illustrated in Fig. 3(c), where the 
carrier fringes minimize the resultant Fx, i.e., the gradient 
of carrier fringes Fox nearly cancels Fix. Now, the gradient 
Fly at any point can be determined easily. 

Carrier Fringes Perpendicular to the Initial Fringes 

OF . If the shear strain component ~ is required from 

Fig. 3(b), the fringe vector Ftx has to be obtained. Because 
the specimen is fabricated with successive plies of  90-deg 
and 0-deg fiber orientations, the shear strains vary from 
ply to ply. In certain plies, the deformations are represented 
by only one fringe. It is impossible to measure the gradient 
by only one fringe (unless a sophisticated grey-level 
technique with very high spatial resolution is applied). By 
introducing a carrier pattern of extension F~y, the fringe 
pattern is transformed to that of Fig. 3(d). The fringe 
vector Ftx can be calculated by eq (3) as Fix = F y / t a n  4~, 
where Fy = Fly + Fcy. The fringe gradient Fy is easily 

Fig. 3--Rail-shear test for interlaminar 
deformations of [9019010]. graphite- 
epoxy composite specimen. Inserts on 
patterns show the corresponding fringe 
vectors. (a) Specimen and loading 
fixture. (b) Load-induced fringe pattern 
of the V field for portion of specimen in 
dashed box. (c) Load-induced fringes 
with carrier fringes of rotation. (d) Load- 
induced fringes with carrier fringes 
of extension 

(a) (b) 

(c) (d) 
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(a) (b) 
Fig. 4--Five-point bending test of 
[+4510/-  45/90]~, graphite-PEEK 
composite beam, (a) Specimen and 
loading. (b) Load-induced fringe pattern 
of the U field for portion of specimen in 
dashed box. (c) Load-induced fringes with 
carrier fringes of extension. (d) Shear 
strain distribution along line A-A' 

(c) (d) 

determined in any region from Fig. 3(d) by measuring the 
vertical (y )  distance between fringes. At any point in the 
pattern, ~ is determined by the angle of the fringe normal 
at that point. As a practical matter, the method is imple- 
mented best when ~ is approximately 45 deg. Since the 
carrier pattern does not affect the fringe vector in the x 

direction, F~x still represents the required gradients 0 V 
Ox " 

The gradients are revealed at every point in the field 
because the fringe angle (and Fy) can be determined at 

O V  any point. Gradients - ~ x  that could not be recognized 

from Fig. 3(b) can be calculated with high fidelity from 
Fig. 3(d). 

Detailed normal and shear strain distributions are 
presented in Ref. 7 for this specimen. Dramatic variations 
of shear strains were found, including relatively large 
shear strains in resin-rich zones between plies. 

Figure 4 is another example of the use of a perpendicular 
carrier pattern. The specimen is a 48-ply quasi-isotropic 
beam of graphite-PEEK in a five-point bending test. s 
Figure 4(b) depicts the load-induced U displacement field. 
The pattern is complicated and it is difficult to assign 
fringe orders in the central region with certainty. In 
addition, there are insufficient fringes in the central region 
to determine the strain in each ply. However, carrier 
fringes of extension Fcx transform the pattern to that of 
Fig. 4(c). Now the fringes can be traced without ambiguity. 
The gradient Fly in the different plies, along AA ', can be 
determined from the fringe angles by eq (3), where Ftx and 
F~y equal zero; it reduces to Fry = F,x tan ~ as shown in 
the vector diagram [Fig. 4(c)] for point 0. The shear strain 
distribution along line A A '  was calculated by eq (7) and 
plotted in Fig. 4(d), using data from this pattern and the 
corresponding V field. The different strain levels in 
successive plies are caused by their different stiffnesses in 
shear. The high peaks occur at the resin-rich zones between 

plies, where high shear compliance leads to localized high 
shear strains. 

Carrier Fringes in Both Directions 
Figure 5 illustrates an interlaminar compression test of 

a thick composite. The material was graphite-epoxy with a 
[90/90/0],  stacking sequence, i.e., two plies with fibers in 
the z direction followed by one ply with fibers in the x 
direction, repeated many times. The specimen was 15-mm 
tall with 13 x 13 mm cross section. 

The V displacement field is shown in Fig. 5(a) for the 
portion in the dashed box. The strains could be deter- 
mined easily in the 90-deg plies by ey = F l J f .  In the 0- 
deg plies, however, the fringes are too few to determine 
their gradient. The pattern was transformed to that of 
Fig. 5(b) by adding carrier patterns of  both extension and 
rotation. First, a carrier pattern of extension was applied; 
it was equal in magnitude and opposite in sign to the 
fringe gradient in 90-deg plies, such that the fringe gradient 
in 90-deg plies was cancelled. Then a carrier pattern of 
rotation was applied to produce Fig. 5(b). Near point A, 
the fringes in 90-deg plies are vertical, which indicates 
that the y component of  the resulting fringe vector is 
zero. In 0-deg plies the fringes have a direction ~,,  and in 
resin-rich zones between plies they have a direction th2. 
The corresponding strains ey are calculated by using eqs 
(3), (5) and (6), from which 

1 Fc= tan r + C9o ~Y "~'7 
(9) 

1 
= - T F o ,  

where ego is the normal strain in the 90-deg plies, i.e., the 
strain that was subtracted off by introducing Fcy = - Fly.  
Equation (9) is an implementation of eq (3) where both 
Fox and Fcy are nonzero. 
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Fig. 5--1nterlaminar compression test 
of [90/90/0].  graphite-epoxy composite 
specimen. (a) Load-induced fringe 
pattern of the V field for portion of 
specimen in dashed box. (b) Load- 
induced fringes with carrier fringes of 
extension and rotation. Near point A, 
fringe angles are zero and $~ in the 90- 
deg and 0-deg plies, respectively, and 

in the resin-rich zone between plies. 
(c) Fringe vector diagrams. 
(d) Compressive strain distribution 
along a vertical line. Note this is 
schematic since material properties and 
strain vary along each ply and between 
corresponding plies 

(a) (b) 

(c) (d) 

The pattern of Fig. 5(b) is interpreted by fringe vectors 
in Fig. 5(c). In 90-deg plies, Fry is known and therefore 
Fcy is known. Fox equals the resultant horizontal vector; its 
magnitude is determined by measuring the horizontal 
distance between fringes near point A in Fig. 5(b). The 
carrier fringe vectors Fox and Fcy are constants throughout 
the pattern, and their magnitudes are known. For the 
0-deg ply near point A, Fcy, F~x and the azimuth 0, of F 
are drawn. The vector diagram is readily completed, thus 
establishing the magnitude of Fzy, and by eq (6), estab- 
lishing ey in the 0-deg ply. Note that the direction of F is 
verified because it is known from Fig. 5(a) that F~y must 
be smaller in magnitude in 0-deg plies than in 90-deg plies. 

Narrow zones between plies exhibit fringes of azimuth 
~2. These represent resin-rich zones that are more com- 
pliant in compression than the neighboring plies. The 
vector procedure is the same. With F=,  F~y and 4~2 known, 
the diagram is completed by drawing the unknown vector 
F~y. The results are plotted in Fig. 5(d), which shows 
essentially uniform compressive strains through the thick- 
ness of each ply and strong strain peaks in the resin-rich 
zones between plies. Clearly, this detail cannot be ob- 
tained from the load-induced pattern without the use of 
carrier fringes. 

Generalizations and Conclusions 
Although the examples given here are specific cases, 

they illustrate broader categories. The utilization of these 
techniques for the analysis of fringe gradients can be 
generalized as follows. (1) To enhance the visibility of a 
constant or slowly varying fringe gradient, introduce 
carrier fringes to minimize the gradient in the orthogonal 
direction. (2) To reveal strong gradients in one direction 
when the gradients in the orthogonal direction are modest 
or zero, introduce carrier fringes to increase the modest 
gradient and use eq (3) to analyze any point. (3)For  
superior discrimination of gradients in case (2), introduce 
carrier fringes in both directions to increase the range of 

fringe slopes present in the pattern and use eq (3) to 
analyze any point. 

Information that can be extracted from moir~ patterns 
can be vastly increased by using carrier fringes. The 
procedure for extracting the data can be easier and more 
accurate when carrier fringes are introduced. Fringe 
vectors provide an effective means of interpreting the 
patterns. The carrier patterns are easily introduced and 
controlled by adjustments of the moir~ interferometry 
optical system. Considering its simplicity, the benefits 
seem magical! 
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