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Abstract — Zusammenfassung

On the Range of Eigenvalues of an Interval Matrix. We describe a method for enclosing the set of real
eigenvalues of an interval matrix pertaining to eigenvectors of a given sign pattern.
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Zur Einschliessung der Eigenwerte einer Intervallmatrix. Wir beschreiben eine Methode zur Einschlies-
sung der Menge aller reellen Eigenwerte einer Intervallmatrix die zu Eigenvektoren von einer vor-
geschriebenen Zeichenstruktur gehdren.

1. Introduction

Eigenvalues of interval matrices were recently studied by Deif [1] and Rohn [2].
The problem considered there was the following: given a square interval matrix 47,
determine the exact range of eigenvalues of all the matrices contained in A”.
Formulae for exact bounds on eigenvalues were given for the complex case in
[1] and for the case of real eigenvalues in [2]. A common assumption in both
papers was a constancy of the sign patterns of the real or imaginary parts of the
eigenvectors.

In the present paper we pursue a slightly different approach: we investigate the set
of real eigenvalues (of matrices in A’) pertaining to eigenvectors of a given sign
pattern. This approach enables us to circumvent introducing additional assump-
tions (made in [1] and [2]) which are generally difficult to verify. In the main
Theorem 1 we describe a method for enclosing this set of eigenvalues by means of
two nonnegative nonzero vectors satisfying certain rather weak constraints. In
Theorem 2 we formulate conditions under which exact bounds can be obtained by
an appropriate choice of the two vectors. The quality of enclosures for different
choices of auxiliary vectors is illustrated on a small size example. Finally, in
Theorem 3 we give an application of the main result for solving a tolerance problem
for eigenvalues.
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2. The Results

Consider an interval matrix
Al ={A;A, ~ 4 <A< A + 4}

where A, and 4 are two real n x »n matrices, 4 > 0 (this form of expressing the
bounds is most appropriate for our purposes; inequalities are to be understood
componentwise). We shall study the set

Lg = {4 e R'; Ax = Ax for some 4 € A" and an x with Sx > 0}

where S is a given n x n signature matrix, i.e. a diagonal matrix whose each
diagonal entry is equal to 1 or — 1. Notice that the condition Sx > 0 means that
x;>0if §;;=1and x; <0 if §;; = —1, hence Ly is the set of real eigenvalues of
matrices in A! pertaining to eigenvectors with a constant sign pattern prescribed
by the diagonal vector of the matrix S. In Theorem 1 to follow we describe a method
for computing lower and upper bounds on Lg. We shall formulate the result in
terms of the matrices

Ag=SAS — A
and
Ag=SAS + 4.

AT denotes the transpose of a matrix 4.

Theorem 1. Let g and p be nonnegative nonzero vectors satisfying

(Wj)(g; = 0=(45q); > 0) (1
and

(V) (p; = 0=(45p); < 0). @
Then we have

Ls < [4s, 5] (3)

where

s = min {(“4%‘1)";% > 0} (4)
and

ZS = max {(f%%;pj > 0}. 5

Comment. Note that the conditions (1) and (2) imposed upon ¢ and p are very weak.
They are satisfied e.g. if either (a) or (b) holds:

(@) g>0andp >0,
(b) A¥g=>0and AIp <O0.
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Proof. First, from (4) we can see that

(ASTQ)J‘ = /sq;

holds for each j with g; > 0, but this inequality is also satisfied if g; = 0 in view of
(1). Hence we conclude that

Asq > 2sq (6)
holds. In a similar way, from (5) and (2) we can derive the inequality
Afp < Isp. ()

Now, let 1 e Lg, so that Ax = Ax for some 4 € A! and an x with Sx > 0. Denote
y = Sx, then y > 0 and we have

|4y — SASy| = [8(Ax — A.x)| = [(4 — 4.)x| < 4]x| = 4y,
which gives
Asy <Ay < Zs)’- ()
We shall prove that there exists a j with
(4sy); = 4sy;- 9)
Assume to the contrary that this is not so, so that
Asy < sy

holds. Premultiplying this inequality by the nonnegative nonzero vector g, we
obtain

q"Asy < 45"y,
but premultiplying (6) by the positive vector y yields
q"Asy = Asq"y,
which is a contradiction. Hence (9) holds for some j and from (8), (9) we obtain
1> (Asy); > s.
i
In a similar way we can prove from (7) that
(Asyh < Asyi

holds for some k, which in conjunction with (8) gives

Vi
Hence Lg < [Ag, As], which concludes the proof. |
In this way, any pair of nonnegative nonzero vectors satisfying (1), (2) (e.g. an

arbitrary pair of positive vectors) provides us via (4), (5) with some bounds on L.
We shall show that under certain conditions exact bounds can be achieved in (4),
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(5) by an appropriate choice of ¢ and p. Similar results were given in [17 and [2]
under assumption that each matrix in A’ has an eigenvalue in Lg, while here we
require this property to hold for two matrices only:

Theorem 2.

(i) If the matrix A, — SAS has an eigenvalue Ag € Lg pertaining to a left eigenvector
y satisfying Sy > 0, then

As =min Lg. (10)

(ii) If the matrix A, + SAS has an eigenvalue Ag € Lg pertaining to a left eigenvector
V' satisfying Sy’ > 0, then

As = max Lg. (11

Proof. We shall prove (i) only; the proof of (ii) is quite analogous. Let g = Sy, then
g is a positive vector and from

(A, — 848)"y = Agy
we obtain
qu = Lls‘b

hence Theorem 1 implies that for each 1 € Lg we have
Alqg).
A5y, s 0} = As

Az min{
4q;
and since Ag € Lg by assumption, (10) follows. [ ]

Note that if both the matrices A, and 4 are symmetric, then 4, — S45 and
A, + SAS are also symmetric, hence in this case a left eigenvector can be replaced
by an eigenvector in the formulation of (i) and (ii).

Example. Consider the interval matrix A’ = [4, — 4, A, + 4], where

)
- o)

and let S = I = unit matrix. Let us take an arbitrary pair of positive vectors g, p.
Then from (4), (5) we obtain the estimates

Js = min {Q‘_‘l_u} {4 min {zz,q_l} 12
q: q; q: 9>

and

and

Zszmax{pl+3p2,3p1+p2}:1+3max{&,p4}. (13
21 ) P1 P2}
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This shows that Age(1,2] and Jg > 4, but I may get arbitrarily large for an
inappropriate choice of p. Since the matrices A, — SAS = A, — 4 and A, + SAS =
A, + 4 are symmetric and positive, they have eigenvalues A = 2 and Ag = 4, re-
spectively, corresponding to positive Perron vectors, hence A5 € Lg and Ag € Lg and
from Theorem 2 we conclude that min Lg = 2 and max Lg = 4. These extremal
eigenvalues are achieved in (12), (13)e.g. forg = p = (1, )T.

Theorem 1 can be also applied to solve a tolerance problem for eigenvalues: given
a real interval [4,, 4, ], check whether Lg < [4,, 4,] holds. We have this sufficient
condition:

Theorem 3. For a given real interval [1,, A, ], let the systems of linear inequalities
(45 — 4, 1)g =0 (14)

and _
AF - A,Dp<0 (15)

have nonnegative nonzero solutions. Then
Ls < [44,4,]
holds.

Progf. Obviously, the solutions g, p to (14), (15) satisfy (1) and (2) and from
(4), (5), (14), (15) we obtain A, < }s and Js < 15, hence Theorem 1 gives
L < [3s. 4s] < [A1, 4,]. L

3. Concluding Remark

We have described a method for enclosing the set Lg for a particular S. A repeated
use of this procedure may yield an enclosure of the whole real part of the spectrum
of an interval matrix provided the sign pattern structure of the eigenvectors is
known.
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