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Abstract - -  Zusammenfassung 

On the Solution of Interval Linear Systems. In the literature efficient algorithms have been described for 
calculating guaranteed inclusions for the solution of a number of standard numerical problems 
[3, 4, 8,11,12,13]. The inclusions are given by means of a set containing the solution. In [12,13] this set 
is calculated using an affine iteration which is stopped when a nonempty and compact set is mapped 
into itself. For exactly given input data (point data) it has been shown that this iteration stops if and 
only if the iteration matrix is convergent (el. [ 13]). 

In this paper we give a necessary and sufficient stopping criterion for the above mentioned iteration for 
interval input data and interval operations. Stopping is equivalent to the fact that the algorithm presented 
in [12] for solving interval linear systems computes an inclusion of the solution. An algorithm given by 
Neumaier is discussed and an algorithm is proposed combining the advantages of our algorithm and a 
modification of Neumaier's. The combined algorithm yields tight bounds for input intervals of small 
and large diameter. 

Using a paper by Jansson [6, 7] we give a quite different geometrical interpretation of inclusion methods. 
It can be shown that our inclusion methods are optimal in a specified geometrical sense. For another 
class of sets, for standard simplices, we give some interesting examples. 

AMS Subject Classifications: 65(310, 65F05 

Key words: Interval iteration, linear interval systems, standard simplices. 

Zur L6sung linearer Intervailgleichungssysteme. In der Literatur werden eine Reihe effizienter Algorithmen 
beschrieben zur Berechnung garantierter EinschlieBungen der L6sung numeriseher Standardprobleme 
[3,4, 8, 11, 12, 13]. Die EinschlieBungen werden in Form yon Mengen gegeben. In [12, 13] wird diese 
Menge mit Hilfe einer affinen Transformation berechnet, die stoppt, wenn eine nichtleere kompakte 
Menge in sich selbst abgebildet wird. Fiir Punkteingabedaten wurde gezeigt, dab diese Iteration genau 
dann stoppt, wenn die Iterationsmatrix konvergent ist [-13]. 

In der vorliegenden Arbeit werden notwendige und hinreichende Stop-Bedingungen angegeben ffir 
Intervalleingabedaten und Intervalloperationen im reellen und im komplexen. Stoppen heiBt hierbei, 
dab der Algorithmus aus [12] ffir Intervallgleichungssysteme eine Einschliegung liefert. Ein Algorithmus 
yon Neumaier wird diskutiert, und es wird ein Hybrid-Algorithmus vorgeschlagen, der die Vorteile 
Neumaiers und unseres Algorithmus kombiniert. 

Unter Benutzung einer Arbcit von Jansson [6, 7] wird eine interessante geometrische Interpretation yon 
Einschliegungsalgorithmen gegeben. Es wird gezeigt, dab die Einschliegungsalgorithmen in bestimmtem 
Sinne optimal sin& Ffir eine andere Klasse yon Mengen, ftir Standardsimplexe, geben wir einige 
interessante Beispiele. 

O. In troduct ion  

L e t  T d e n o t e  o n e  of  t he  sets  ~ ,  C, ~ "  ( real  v e c t o r s  w i t h  n c o m p o n e n t s ) ,  C" ( c o m p l e x  

v e c t o r s  w i t h  n c o m p o n e n t s ) ,  E" • ( rea l  s q u a r e  m a t r i c e s  w i t h  n r o w s  a n d  c o l u m n s )  
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or C" • (complex square matrices with n rows and columns). Throughout  this paper 
the letter "n" is reserved in the prescribed way; only square matrices (which are 
n x n) will occur. P T  denotes the power set over T. 

In the following �9 e { +,  - , . , / }  denotes the binary real resp. complex operations. 
These operations extend in the usual way to power set operations. If x �9 y �9 T 3 is 
defined for x �9 X �9 P T  1, y �9 Y �9 P T  2 then 

X .  Y:= { x * y l x � 9 1 4 9  Y} �9 PT3. 

The set of all n-dimensional resp. nZ-dimensional hyperrectangles parallel to the 
axis over real resp. complex numbers is denoted by 0 Nn, D C", B ~" x,, B C" • resp. This 
is one way to represent interval vectors or interval matrices. Intervals are always 
supposed to be nonempty. 

The rounding of an arbitrary set X into the smallest hyperrectangle containing X 
is denoted by O :  P T ~  IT 

X �9 P T ~  ~ ( X ) : =  ('] {Y �9  ITlX ~_ Y} �9 DT. 

The set ~ (X) is well-defined and unique. We define operations ~ ,  ~ ,  ~), ~ over 
~Tby 

[ X ] , f Y ] e I T ~ [ X ] ~ > [ Y ] : = ~ ( [ X ] . [ Y ] )  f o r , � 9  

This is the smallest hyperrectangte containing the result of the powers set operation. 
It is uniquely defined and effectively computable (cf. [2, 9, 10, 11]). 

With the componentwise order relation _< for all sets in T (with partial ordering 
for complex numbers) hyperrectangles are usually described by their bounds. Obvi- 
ously 

IX] �9 IT<*[X] = {x E r l inf ( [X])  _< x <_ sup(IX])}. 

Therefore we adopt the notation [_X,)(] with _X -- inf([X])i J( = sup(IX])  for 
hyperrectangles and especially 

IX] = mid(IX])  +_ rad([X])  

= [mid(IX])  - rad( [X]) ,mid([X])  + rad([X])]  (0.1) 

where mid([X])=O.5.(inf([X])+sup([X])) denotes the midpoint of X, 
rad([X])  = 0 . 5 - ( s u p ( I X ] ) -  inf([X])) the radius of IX]. If IX] is a vector or a 
matrix, then mid(IX])  and rad([X])  is a real or complex vector or matrix, respec- 
tively. Note that rad([X])  >_ 0. For  any a, b �9 T with T �9 {N, C, R", C", R" • C" x,} 
we define similar to (0.1) 

a + b : = { x � 9  for b_> 0. 

If by = 0 for some component of b the hyperrectangle a _ b is degenerated, the 
interior is empty. 

For sets X, Y ~ T, int(X) denotes the interior of X, X ~ Y means X ~ int(Y), Re(X) 
denotes the real part, Im(X) the imaginary part of X. For a real matrix A we define 
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]AI to be the matrix of absolute values of the components of A, for a complex matrix 
]AI is IRe(A)] + IIm(A)l (cf. [2]). For  an interval IX] E DS, S~  {~,C} we define 
1 IX] I = max{Ixllx ~ IX] } extending componentwise to interval vectors and ma- 
trices. For  two hyperrectangles IX], [Y] e HS the distance q is defined as usual by 

q([X], [Y])  -- max(linf([X]) - inf([Y])l, Isup([X]) - sup([Y])l).  

For  vectors and matrices the distance is defined componentwise. For  A e S "x", 
S s {R,C} the spectral radius of A is denoted by p(A), for [A] e DS "x" we define 
p([A])  := m a x { p ( A ) l A  e [A]}. A i denotes the ith row of A. 

1. Criteria for Convergence of a Matrix 

In [12] the following theorem has been proved: 

Theorem 1. Let  S E {~,C}, C ~ S "x", b, ~ E S", R E S "• and ~5 ~ X ~_ S" be com- 

pact. I f  

R . ( b  - C2) + {I - RC}  . X ~_ int(X) (1.1) 

then C and R are non-singular and the unique solution 2 o f  Cx  = b satisfies ~ ~ ,2 + X .  

I denote the identity matrix, all operations in (1.1) are power set operations. In a 
practical application of Theorem 1 one may start an iteration 

X k +1 := R . ( b  - CYc) + {I - R C } .  X k 

for given X ~ _ S". Clearly, 

X k+l ___ int(X k) (1.2) 

implies all assertions of Theorem 1. In the following conditions will be investigated 
under which (1.2) is satisfied. 

(1.2) can be reduced to an affine iteration 

X k+)- :~_ 7_ .4 7 A "  X k for z E S", A e S "• (1.3) 

In [13] the following theorem has been proved: 

Theorem 2. For S ~ {R,C} let A e S "• be an arbitrary matrix,  z 6 S" and ~ 
X e PS" be compact. Then 

z + A- X _~ int(X) implies p(A) < 1. 

Therefore a contracting A is necessary for an affine iteration (1.3) to stop with (1.2). 
But, in general, it cannot be true that (1.2) is satisfied for some k e N for every starting 
set X ~ because of two reasons: First, the interior of X ~ must be nonempty because 
int(X ~ = ~ implies int(X k) = ~ for every k ~ N. Second, (1.2) implies 2 E X ~ 

In other words only those sets X ~ already containing 2 are suitable to achieve (1.2). 
For  practical applications this is hardly acceptable. 
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To overcome those difficulties the so-called e-inflation has been introduced in [12]. 
One possible definition for general sets is the following. 

Definition 3. For  a set X ~ S", S ~ {R, C} the e-inflation X o e is defined by 

X o e := X + U~(0) for 0 < ~ ~,  

where U~(0) is some closed and bounded set containing the origin as an interior 
point. 

Obviously, X __ int(X o e). An example for U~(0) is the closed ball of radius ~: around 
the origin. Using the t-inflation we can define an iteration scheme allowing a 
complete analysis. 

Theorem 4. Let  A ~ S "• be an arbitrary matrix, ~ # Z ~ S" be a compac~ set o f  
vectors, S ~ {~,C}. For some compact (2~ # X ~ c_ S" let 

X k+l := (Z  + A . X  k) o ek for  0_< k e N, (1.4) 

where U~+~ ~_ U~k and U ~_ U~k for  every k e N and some compact f2~ # U ~_ S ~ with 

0 e int(U). Then the following two conditions are equivalent: 

a) Y ~  # X ~ e S" compact 3k e N: Z + A .  X k ~_ int(X k) 
b) p(A) < 1. 

Pro@ See [131. 

Theorem 4 is of theoretical interest. In practical implementations general sets can 
hardly be handled. Therefore we are aiming on obtaining results similar to theorem 
4 starting with an interval X ~ and using interval operations in (1.4). 

2. Interval Iterations 

If the input data are not exactly representable on the computer they may be replaced 
by the smallest enclosing intervals. Input intervals occur as well if the input data 
are afflicted with tolerances. In both cases an inclusion of the set of all solutions is 
to be calculated. 

In case of hyperrectangles an e-inflation should consist of an absolute and a relative 
part  in order to maintain (1.4) for a small value of k. A possible definition which 
turned out to be very suitable in practical applications is 

I x ]  ~ Bs: i x ]  o ~ := [J] ~> IX] ~ [El 

with a diagonal matrix [J]  e IS "• and [El e DS" and 1 e [Ju],  0 ~ int([Ei]) for 
1 < i _< n. In the following we state a theorem similar to Theorem 4 for intervals 
(hyperrectangles) and the corresponding interval operations ~>. Furthermore, it 
turned out to be useful to adapt  E to the iteration process. Therefore, in the following 
theorem we use a more general definition of the ~-inflation. 

Theorem 5. Let  [A] ~ 0S "• be an interval matrix,  [Z] ~ 0S" be an interval vector, 

S E { II~, C}. For 
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f :  DS" --* US" with [Y] ~ ~S": f ( [ Y ] )  := [ Z ] ~  [A]@ [Y] 

and for [X ° ] ~ DS" we define the iteration 

IX] k+l := J @ f([X~])  @ E k (2.1) 

with diagonal matrix [J]  e ~S "×n, [E k] e IS ~, for  0 <_ k e N. Let  [E k] ~ [E] e IS ~, 
0 e int([E]), 1 s [,l]ii for  1 <_ i <_ n and p ( l [ J ] l ' l [ A ] l )  < 1. Then the following two 
conditions are equivalent: 

a) V ~  • IX °] e ~SnSk e N: f ( [ x k ] )  ~ int([X*]) 
b) p ( I [ A ] I )  < 1. 

Proof. " ~ "  For S = N this is proved in [131, theorem 6. For S = C let [Y] := 
[X] - IX] = IX] ~ [X] = {xl - XElXl,X2 e [X]} e nC. Then for A e [A], z e 
[Z] 

A ' E Y ]  = { A ' ( x  1 - x2)[x t,x2 s [X]} 

= ((z + A x 0  - (z + Ax2)lx~,x2 ~ [ X ] }  

: (z + A ' [ X ] ) - -  (z + A ' [ X ] )  

int([X]) - int([X]) 

= int([Y]).  

Since this holds for every A e [A] we get [A] - [Y]  _~ int([Y]) and hence [ A ] ~  
[Y] _ int([g]).  Using [Y] -- _+Tad([Y]) we get after short computation 

{IRe([A])l + tlm([A])l}'  {Re(Tad([Y]))+ Im(rad([Y]))} 

= Re(rad([A] ~ [ Y ] ) +  Ira(Tad([A] ~ [Y])) 

< Re(rad([Y])) + Im(rad([Y])).  

By a) the real vector Re(Tad([Y])) + Im(rad([Y])) is positive. Therefore, Perron- 
Frobenius Theory finishes this part of the proof. 

° '~" Let g: ~S ~ ~ ~S ~ be defined by 

g([X])  := [J ]  <;> ([Z]  <~ [A]<~ [X])<)  [E] 

for IX] m flS ~. Then for [X], [Y] ~ ~S" the rules of interval analysis (cf. [2, 10]) imply 

q(g([X]) ,  g ( [ r ] ) )  _< I[J]]" q([Z] <) [A] <~> [X], [Z] <~> [A] <~> [g ] )  

-< I[J]J" I[A]l' q([X], [Y]) (2.2) 

because [J]  is diagonal. By assumption a := P(L[J]I' I[A] I) < 1 and hence there is 
some [X*] ~ 0S" with g([X*])  = [X*] (cf. Theorem 1, Chapter 12 in [2]). Now 
q(g([X°]) ,  [X~]) = q([E], [E°])  and by induction follows 

k 

q(gk([X°]), [xk+ ' ] )  <_ ~ a " q ( [ E ] ,  [Ek-~]) 
i = 0  

because with (2.2) we have 
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q(gk+l([X~ [X~+2]) < q(g(gk(fX~ g([X~+I])) + q(o([Xk+1]), [Xk+Z]) 

<_ ~. q(gk([X~ [ - x k + l ] )  "-[- q([E], [Ek+I]) 

k+L 
= ~, ai'q([E],[U+l-i]). 

i=0 

By assumption q([E], leg])  -~ 0 for k ~ oo and therefore [X*] and gk([xO]) have 
the same limit [X*] for k --, oo. 

Let 0 < ~* < min(linf([E])l, [sup([E])[), e* e S". Then 0 e [E] and _+~* ~ [E] im- 
plies diam([X*])  > diam([E]) > e*. Let some e e N" with 0 < e <_ e* be given. 
Then there is a k e [N with 

q([Xk], IX*])  < 0.5"e and q([Z] @ [A] <) IX*], [Z] <~ [A] ~> [Xk]) < 0.5' e. 
(2.3) 

Then the first part of (2.3) implies 

[)(] := [inf([X*]) + 0.5-e, sup([X*])  - 0.5-e] _~ int([xk]).  (2.4) 

Now 

[Z] ~ [A] <3> IX k] ~_ [Z] ~ [A] ~ [X*] _ 0.5.e 

~_ [ J ] ~  ( [ Z ] @  [ A ] ~  IX*])  _ 0.5.e 

__ IX]  

___ int([X*]) 

finishes the proof. []  

In a typical application J is a diagonal matrix with identical entries 1 + e in the 
diagonal. For general sets of matrices {A} E PN" • the generalization of Theorem 
5 replacing part b) by 

p(A) < 1 for all A ~ {A} 

is not true. Part a)implies p()~I=l A ~ ) <  l f o r a l l A , ~ { A } , v = l  ~ m andin  [13] 

an example of a set of matrices {C + a(D - C)10 _< a _< 1} for two matrices C, 
D e N "• is given with p(C) < 1, p(D) < 1 but p(C.D) > 1. 

The assumption p(I[J]I'I[A]I) < 1 in Theorem 5 is necessary. Consider 

(0 
[ A ] : =  1/8 ' Z : = 0 ,  [X~ \ [ - - 1 , 1 ]  ' 

) 
and 

( [ -  1/4, 1t4]'~ 
[E k] = [E] := \ [ _  1/4, 1/4].] for k s  N. 
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Then all succeeding I X  k] are symmetric w.r.t, the origin, i.e. ~ [X *] = [xk]. There- 
fore, f ( [X*])  ~_ int([Xk]) is equivalent to 

for 

and 

A.  X k < X k (2.5) 

A := 1/8 ' 

X k+l := J ' A ' X  k + E with J := , E := \1 /4]"  

Then short computation yields for 0 _< k e IN 

( ; . 2 2 k - 2 - 3 / 4 ~  x2k+ 1 { 9 " 2 2 k -  3/4 "~ 
x2k = - -  22k-3 -- 1/8J and = \ 7 '  22k 3 _ 1/8J 

and 

(X 2 k -  A ' x 2k ) I  = --22k-1 -- 1/2, (X 2k+1 -- A'X2k)2 = -22k-2  - 1/32. 

This shows that (2.5) is not satisfied for any k e N. It is p([[J]['l[A][) = 2 > 1. In 
the example it is crucial that A is not primitive. 

Using hyperrectangles, i.e. rectangular intervals, is very convenient on digital com- 
puters. The operations are simple and fast and can be executed on any computer 
with a precisely defined computer arithmetic and directed roundings available, e.g. 
as defined in the IEEE 754 floating-point arithmetic standard (cf. [2, 5, 9, 10, 11]). 
Using the arithmetic defined by Kulisch [9] with a precise scalar product gives 
additional advantages, especially in the case of point data or intervals with small 
diameters. 

Working with general sets instead is hardly possible on computers. One way of 
representing sets being more general than hyperrectangles are simplices. Simplices 
are representable on digital computers by means of their vertices and are closed 
under affine mappings. However, operations are fairly expensive: a matrix-vector 
multiplication costs 0(n 3) compared to 0(n 2) when using hyperrectangles. Another 
possibility are standard simplices which will be discussed in Chapter 4. 

3. An Inclusion Method without Interval Iteration 

In his book [11], page 150, Neumaier proposes the following algorithm for com- 
puting an inclusion of the solution set [A]n[b] = {x e l~"[Ax = b for A e [A], 
b ~ [b]} of an interval linear system with matrix [A] e DN "• and right hand side 
[b] ~ U~": 

Define ( [ X ]  } := min Ix[ for IX] e D N 
x E X  
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and the comparison matrix 

~<[A]ij> 
<[A]>iJ := (-I[A],jl 

Algorithm ( N eumaier) 

1) 

2) 

3) 

for i = j 

otherwise. 

Find an approximate inverse R ~ mid([A]) -1 and compute [A'] = R ~  [A], 
[b'] = R~> [b]. 
Find an approximate solution ~ > 0 of < [A'] >. a = ][b']l + (e . . . . .  e) r for some 
small e > 0 and a number e > 0 such that ( [A']>" ~ _> c~. I[b']]. (If this is not 
possible we conclude that either [A] was not strongly regular or the precision 
of the calculation was not high enough). 
Perform a few (one or two) steps of preconditioned Gauss-Seidel iteration, 
starting with 

Z ~ := ~ - l ' f i ' [ - 1 , 1 ] .  

Each iterate in step 3 is an enclosure of [A]n[b].  

In order to compare this algorithm with an inclusion algorithm with an interval 
iteration based on Theorem 1 (cf. [12, 13, 1,141) some modifications are necessary. 
Neumaier's original algorithm assumes A to be strongly regular. We want to avoid 
any preassumption on A, R or b. Therefore, the algorithm will be modified in a way 
that no such a priori assumption is necessary. This will also prove the non- 
singularity of every A ~ [A]. It can be achieved by assuming < [A' ] ) -  ~7 > ~. i[b']l 
in step 2: 

Theorem 6. Let  [A] e 1 ~" • [b] ~ B ~", R ~ ~" • be given such that some 0 < u ~ R", 
0 < ~ ~ R exist with 

< R ~  [A]>.u > c~ ' lR~ [b]l. (3.1) 

Then R can be scaled by the diagonal matrix D with D u = ft. (mid(R ~ [A]).) -1 with 
0 < fl < 1 such that l~ := D . R  satisfies ( m i d ( / ~  [A]))u -< 1 for 1 <_ i -< n, and for  
IX] := ~-1. u: [ -  1, 11 holds 

/ ~  [b]<~ { I<~ /~>  [ A ] } ~  [X] _ int([X]). (3.2) 

Pro@ The definition of the comparison matrix < R ~  [A]> and (3.1) imply 0 
(<R~> [A]>), for 1_<iN n. Hence /~ is well-defined and satisfies ( m i d ( / ~  
[A]))u _< 1 and < / ~  [A]>.u  > ~' I R ~  [b]l. Therefore, 

/~ ,~ [b] _ + 1/~,~ [b]l ~ + ~ - " ( ( / ~  [A]>)i 'u = G~-I �9 [--t--d - -  e , - d  + e] 
(3.3) 

with 

d := + ~ I / ~ )  [A]lu'uj and e := ( ( / ~  [Al>)u'U i . (3.4) 
j=t  

Moreover, 

( I @ / ~  [A]),<~ [X] _ ~-~' [ - d ,  + d ]  _+ e -a ' l l  - (/~<~> [A])ui "u,. (3.5) 
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Adding (3.3) and (3.5) and observing (3.4) yields 

1.h.s. (3.2) ~ +c~ -1- {((/~<> [A] ) )  u + I1 - (/~<~ [A])u[} "ui. 

By the definition of [X] we are finished if we show 

( ( R O  [A] ) ) ,  + I1 -- ( /~0  [A]),I < l (3.6) 

for 1 _ i < n. With the abbreviation Y := (/~<> [A])u for some i _< i < n it is Y > 0 
and mid(Y) _< 1. Therefore, 0 < inf(Y) < 1 _< sup(Y) and 

11 - YI = max(1 - inf(Y), sup(Y) - 1). 

Using <Y) = inf(Y) and inf(Y) + sup(Y) = 2.mid(Y) < 2 demonstrates (3.6) for 
every 1 < i _< n and therefore finishes the proof. [] 

Together with Theorem 5 this implies p(]I ~ R <> [A]j) < 1. Therefore an iteration 
similar to (2.1) will stop. If, on the other hand, p ( [ I ~  R<> [A][) < 1, t h e n / ~  [A] 
is an H-matrix and there are u and ~ satisfying (3.1) (cf. Proposition 3.7.2 in E11]). 

Usually an inclusion algorithm first performs a residual iteration to obtain a 
reasonably good approximate solution 2. Then the inclusion algorithm is applied 
to Ay = b - AYe yielding an inclusion for X([A], [b]) - 2. To give a fair comparison 
we modify Neumaier's algorithm in this way. Furthermore, step 2 is changed 
according to Theorem 6 to prove the non-singularity of every A ~ [A]. This leads 
to the following modification of Neumaier's algorithm. 

Algorithm A 

1) Find an approximate inverse R ~mid(EA])  -1, compute x ~ ~ R . m i d ( [ b ] )  
and perform a residual iteration yielding )2, [A'] := R<> [A], [b ']  := R<> 
([b] <> [A] <> 

2) Find an approximate solution ~ > O of < [ A ' ] ) '  0 = I[b']{ + (e.,... ,e) r for some 
small number e > 0 and a number ~ > 0 such that <[A'] ) . 0  > ~. ][b'][. (If this 
is not possible we conclude that either [A] was not strongly regular or the 
precision of the calculation was not high enough). 

3) Perform a few (one or two) steps of preconditioned Gauss-Seidel iteration, 
starting with Z ~ := ~-~. ~" [ -  1, 1]. It has been verified that every A e [A] is 
regular and each iterate Z in step 3 satisfies 

X(EA],[b]) ~_ Y~ <) Z. 

Algorithm A will be compared with the following Algorithm B given in [12, 13] 
with the modification that R ~ mid([A]) -1 is replaced by /~  := D- R with D u := 
(mid(R<> [A])u) -~. According to Theorem 6 this is the best choice. Smaller com- 
ponents Du still work but increase the spectral radius of I <~/~ ~ [A]. 

Algorithm B 

I) Find an approximate inverse R ~ mid([A]) -1, compute x ~ := R '  mid([b]) and 
perform a residual iteration yielding ~, [Z] := R <> ([b] <~ [A] ~ #), [C] := 
I ~ R <> [A]. (If m i d ( / ~  C), = 0 for some 1 _< i _< n then goto 99). Compute 
Du := (mid(I<) C)u) -~ and Z~ := Du<> Z~, Ci~ := Du<> C;y for 1 _ i,j <_ n. 
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2) Define [X] := [Z], k := 0 and 
repeat k := k + 1; [Y] := [X] + e; inclusion := true; 

for  i :=  1 to n do 
{[x]i := [z],~) [ c ] , ~  ( [x ] l , . . . ,  IX],_1, [Y], . . . . .  [Y],)'; 

inclusion := inclusion and [X]i  ~ int([Y]i)}; 
until inclusion or k > 15; 

3) Perform a few (one or two) iterations of the form [X] := [Z] ~ [C] ~ [X] 
using Einzelschrittverfahren. 
I f  inclusion then 

{every A e [A] is regular and ~r([A], [b]) _ 2 ~ [X] }; 
stop; 

99) Either I CI is not contracting or the precision of the calculation was not high 
enough. 

Note that in step 2 an Einzelschrittverfahren is used (cf. [131). The discussions above 
show that either both Algorithms A and B compute an inclusion of X([A], [b]) or 
not, except when the number of necessary iterations in step 2 in Algorithm B would 
be greater than 15. In many practical experiments this case did not occur. The price 
Algorithm A has to pay is the extra solution of a linear system adding some 1/3. n 3 
operations. 

In the following tables we compare Algorithm A with Algorithm B and display the 
ratio of the diameters of the inclusion of the solution achieved by Algorithm A vs. 
Algorithm B. Second we display the ratio of computing times. Therefore, a number 
less than one indicates advantages for Algorithm A. The numbers are rounded to 
three decimal places. 

Our first examples are Hilbert-matrices scaled by lcm(1,2 . . . . .  2n - 1) s.t. all entries 

( i  + J )  and Boothroyd-matrices are integers, Pascal-matrices P with entries P~j := J 

transformed to an interval matrix [A] := A.(1 _+ e). Results for different values of 
e are displayed. It is [b] := [A] . (+  1, -- 1, + 1, . . . ) r  and we used an IBM 4361 with 
14 hexadecimal digits in the mantissa corresponding to about 17 decimal places. 

Let [XA], [XB] be the inclusions and t A, t~ be the computing times for Algorithm 
A, Algorithm B, respectively. Then 

d([XA]i) d([XA]i) 
dl := min , d 2 := max - -  and ta/'t ~ (3.7) 

d([XB]i) d([XB],) i 

is displayed. We have n = 10. 
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Table 1. Comparison Algorithms A, B, n = 10 
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Hilbert Pascal Boothroyd 
s d 1 d 2 ta / t  ~ d 1 d 2 tA/t  B d 1 d 2 tA/t ~ 

= 0 1.006 1.008 1.058 1.000 1.000 1.159 1.000 1.013 1.058 
= 10 -16 1.027 1.029 1.058 1.003 1.003 1.159 1.004 1.005 1.058 
= 1 0  - 1 4  1.000 1.000 1.014 1.000 1.000 1.159 0.996 1.000 1.058 
= 10  - 1 3  0.951 0.983 1.014 L000 1.000 1.159 0.983 0.995 0.973 

e = 10 -lz 1.000 1.000 1.159 
e = 10 - l~  0.996 1.000 1.159 
e = 10 -9 0.993 0.993 1.058 

Both linear systems with Hilbert and Boothroyd matrices fail for e = 10 - l z .  Systems 
with Pascal matrix fail for e = 10 -8. The different ratios in computing time come 
from the different number of iterations in step 2 of Algorithm B. 

The table shows that as long as e is not too large Algorithm B is a little bit faster 
than Algorithm A producing similar or even better inclusions. This changes for 
larger e. The quality of the inclusions of Algorithm B can be improved to the same 
quality of those of Algorithm A but with the cost of some extra iterations in step 3. 

The next table zooms the behaviour of both algorithms for large e. We used Hilbert 
matrices, n = 10. 

Table 2. Hilbert-matrices for large e, n = 10 

e d 1 d 2 ta/ t  ~ 

1.0.10 13 0.951 0.983 1.014 
t . 5 "  1 0  - 1 3  0.977 0.982 0.973 
2.0" 10 -13 0.938 0.946 0.936 
2.5' 10 -13 0.885 0.892 0.901 
3.0" 10 -13 0.759 0.770 0.785 

Both algorithms fail for ~ = 3.5- 10 -13. So for large diameters in the matrix elements 
Algorithm A performs better than Algorithm B. For  the largest value of ~ in table 
2 Algorithm A is about 20% faster producing bounds with a 20 to 25% smaller 
diameter. It should be mentioned that the bounds itself are already of very large 
diameter. In this example, for e = 2.5.10 -13, the inclusion of the 7th component is 
[ - - 1 1 2 . 5 ,  + 114.5] .  T h e r e  a r e  e x a m p l e s  a s  wel l  w h e r e  t h e  b e h a v i o u r  o f  t h e  a l g o -  

r i t h m s  is c o n t r a r y .  C o n s i d e r  l i n e a r  s y s t e m s  w i t h  P a s c a l - m a t r i c e s  fo r  n = 15. 

Table 3. Pascal matrices for n = 15 

c dl d2 tA/tB 

0 3.669 484.056 1.059 
10 -16 1.004 2.299 1.000 
10 -z ~ 1.000 1.255 1.059 
10 -1'* 1.000 1.025 1.000 
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Here the bounds produced by Algorithm B are always better, sometimes much 
better than those of Algorithm A requiring the same or less computing time. 

For higher dimensions the extra computing time for Algorithm A vs. Algorithm B 
increases due to the extra 1/3. n 3 operations. We display linear systems with matrix 
[A] := A ~ (1 + e) where A has random entries uniformly distributed in [ -  1, 1], 
]hi := [ A - ] ~ ) ( + I , - I ,  + 1 , - 1  . . . .  )T. 

Table 4. Random matrices 

,~ = 1 0  - ~  ~ = 1 0  - 4  ~ = 1 0  - 3  

n d I d 2 ta/t B dx d2 tA/tB dl dz tA/t8 

20 1.000 1.000 1.163 1.000 1.000 1.135 1.000 1.000 1.135 
50 0.999 1.000 1.165 1.000 1.000 1.154 0.988 0.988 1.100 

100 0.999 1.000 1.166 1.000 1.000 1.160 0.990 0.990 1.116 

Obviously Algorithm B is superior for small e whereas Algorithm A shows its 
advantages for larger diameters of [A]. The diameter of ]hi plays no role at all. We 
therefore propose to combine both algorithms: If Algorithm B fails to obtain an 
inclusion after two or three iterations while the diameters of the potential inclusions 
increase slowly then switch to Algorithm A by computing ft. This approach com- 
bines the advantages of both algorithms because for small diameters it saves 
computing time whereas the additional n3/3 operations for Algorithm A are only 
invested if necessary. This approach computed very sharp bounds for the solution. 
The quality can be measured by the techniques of computing inner inclusions 
described in [16]. 

4. Standard Simplices 

The special structure of hyperrectangles requires IAI or IRe(A)] + Eim(A)t to be 
convergent in order to allow f ( X  k) ~_ int(X k) for some k 6 N (see theorem 5). This 
is a necessary and sufficient condition. For  general sets or general simplices, f ( X  k) ~_ 
int(X k) is equivalent to p(A) < 1, A ~ S "• S ~ {N, C}. One might try to use other 
representations of sets in order to omit the assumption p(]A]) < 1 resp. p(lRe(A)l + 
IIm(A)]) < 1. The representation should be simple enough to allow fast computation 
o f f ( X  k) but "general" enough to cover as many matrices as possible. 

One such representation is standard simplices: 

s = { s 0 , ~ , . . . , ~ , }  

In [6, 7] Jansson gave an interesting geometrical approach for the construction of 
guaranteed error bounds for the solution of a system of linear equations Ax  = b. 
For a given standard simplex S he gives a sufficient criterion for b e A. S in the 
following way. The matrix S maps S into a general simplex, where the normal vectors 
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of the supporting hyperplanes are the rows of A -1. Using an approximate inverse 
R of A he gives the following theorem, which, in some way, estimates the error of 
R w.r.t. A -1 and gives an inner estimation of A. S. He shows that this estimation is 
optimal w.r.t, the information given by the approximations R and )~. This optimality 
property holds for the general case of convex polyhedrons. It covers also the case 
of interval vectors. 

Theorem 8 (Jansson). Let  A, R ~ ~" • C := R .  A and b, x, e ~ ~" with e > O. I f  both 

R ' b  > C'x_ + Max{(C - diag(C))-diag(e)} and (4.1) 

(e- t )  T. Rb < (e-1)T. Cx_ + Min(e-1) T" C- diag(e) (4.2) 

are satisfied then R and A are nonsingular and the unique solution s o f  A x  = b is 
contained in the standard simplex S := {x, e~ . . . . .  e,}. 

Note.  diag(C) e R" • is the diagonal matrix consisting of the diagonal entries of C; 
diag(~) ~ E"• is the diagonal matrix with ~ ~ E" in the diagonal; for M e E"• 
max(M) ~ E" is the column vector consisting of the maximum of the rows of M, and 
e-1 e E" is the vector (e/-1). 

The approach by Jansson and the proof are based on geometrical considerations. 
It can be shown that with a technical assumption similar to the one used in the 
previous section this geometrical approach implies the fact that condition (1.1) in 
Theorem 1 is satisfied for X = S. 

Theorem 9. The assumptions (4.1) and (4.2) o f  Theorem 7 with R scaled s.t. 
diag(R. A) = I are equivalent to 

R" b + (I - RA) .  S ~_ int(S). (4.3) 

Remark.  The operations in (4.3) are the power set operations. 

Proof. " ~ "  By definition S -- ch(x_,x_ + ~le~ . . . . .  x_ + ~,e,) and therefore 

x e int(S) ~:~ a) x > x and 
(4.4) 

b) (e-1)r .  x < 1 + (~-l )r" x 

(cf. e.g. [6, 7]). We have proved (4.3) if we show conditions a) and b) of (4.4) to be 
valid for all vertices of Rb + (I - R A ) . S .  By assumption C* := C - diag(C) = 
R A  - I and diag(RA - I) = 0. By definition 

Max{C*.diag(e)} > {C*-diag(e)} i = C*eie i (4.5) 

for 1 _< i _< n and thus (4.1) implies 

Rb + (I -- R A ) x  > x + C*eiei (4.6) 

showing condition a) of (4.4) for the vertices x + e~e i. (4.6) holds true for every 
i _< i < n and with (C*eiei) i = 0 it follows 

Rb + ( I -  R A ) ~  > x 

showing condition a) of (4.4) for the vertex x. Furthermore, 
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( g - 1 ) r ' ( R b  + (I - R A ) ( x  + e~e~)) < I + (/;-t)T-x (4.7) 

,~(e-1) T. ( e b  - C" (x  + eiei) ) < 1 - (~;-i)T.eie i . (4.8) 

The r.h.s, of (4.8) equals 0 implying 

(4.7)~(e-i)  r .  R . ( b  - A x) < (e-i) r .  C . e i e  i . (4.9) 

The r.h.s, of (4.9) follows by (4.2) implying the validity of condition b) of (4.4) for 
the vertices _x + eiei. By assumption Max{(e-i) r- C- e~ei} >_ 1 for 1 < i _< n, hence 
Max{(e-i) r .  (I - RA)giei}  <_ 0 and (4.7) implies 

( g - * ) r ' ( R b  + (I - R A ) x )  < 1 + ( e - 1 ) r ' x  

which finishes the first part of the proof. 

" ~ "  (4.3) together with (4.4), a) implies Rb + (1 - RA)(x  + a~e,) > _x for all I < i _ n 
and therefore (4.1) follows by using (4.5). (4.3) together with (4.4), b) imply (4.7) and 
therefore, following the first part of the proof, (4.9) holds for all t _< i _< n. Hence 
(4.2) is true finishing the proof. [] 

It is well known that (4.3) has the quadratic approximation property (see e.g. [113). 
By the previous Theorem 9 and the results of Jansson it follows that (4.3) is optimal 
in the described geometrical sense. 

The following examples will show that w.r.t, the inclusion methods described in 
[12, 13] standard simplices play a special role. 

There are real matrices A which are convergent with P(I A I) >_ 1 and mapping some 
standard simplex into itself. On the other hand, there are matrices A the absolute 
value of which is convergent but A maps no standard simplex at all into itself. 
Consider the case n = 2 and a standard simplex s = {(a, b) r, c, d}. Then according 
to (4.4) A" S _ S is equivalent to 

(a,b) r <<_ A ' v ~  and x - a y - b - - +  < 1  f o r ( x , y ) r = A . v v ,  v = l  2 ,3  
c d - 

(4.10) 

vl = (a, b) r ,  v2 = (a + c, b) r ,  v3 = (a, b + d) r .  

As a first example consider 

and 

0.9 -0.05~ 
A= -0.9 - 0 . 8 j  

The eigenvalues of A are 0.05 ___ ~ ,  those of lA] are 0.85 +__ ~ 5  implying 
p(A)  < 1 < p(IA[). However, short computation yields that the standard simplex 
S = {(-2.7, - 1.15),4.9,5} produces 

( - 2 . 3 7 2 5 )  = ( 2 . 0 3 7 5 )  = ( -2 .6225~ 
A ' v l = \  3.35 ] '  A ' v 2  \ - 1 . 0 6  J '  A ' v 3  \ - 0 . 6 5  / 

and satisfies condition (4.I0), i.e. A-S ~ S, in fact A-S __ int(S). 
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As a second example consider 

(0.5 ) - 0 . 5  
A = 0.25 0.5 " 

The eigenvalues of [A] are 0.5 + 0.xf67i~ implying p(A) <_ p(lA[) < 1. 

Let a standard simplex s = {(a, b) T, c, d}, c 4: O, d 4:0 be given. Then 

= ( 0 . 5 . ( a - b ) ' ~ .  = ( 0 . 5 ( a + c - b )  ) .  
A ' v l  \0.25a + 0.5bJ'  A 'v2 \0.25(a + c) + 0.5b_' 

0 . 5 . ( a - b - a )  
A'va = 0.25a + 0.5(b + d)J" 

Assuming (4.10) implies 

(a,b) r < A . v 3 ~ a  <_ - b  - d 

(a, b) r < A" v 1 ~ b <_ 0.5a. 

The condition 

and 

x - a  y - b  

c d 
_< 1 for (x,y) r = A.v , ,  v = 1,2, 3 

(4 .11)  

(4.12) 

implies for (x, y)T = A" 1)2: 

- - a  + c - -  b a + c -  2b(4.1l) c + d 
1>_ + > + 

2c 4d - 2e 

a + c - -  2 b  (4_12)c + d c 
+ 

4d -- 2c 
(4.t3) 

Consider the function f(e, d) - 
c + d  c 

- T -  + 4-d" The partial derivatives are 

~f Of c 2 -- 2d 2 

c?c Od 4c2d 

For c ~ 0 r d an extremum o f f  implies c = x/~.  d with 

f (x /2d,  d) - (xf2 + 1)d x/~d 1 1 
2x /2e  + 4d = 2 + ~  > 1. 

Since this extreme value is obviously a minimum there is a contradiction to (4.13) 
A short computation implies immediately that c = 0 or d = 0 forces a = b = c = 
d = 0, the trivial case. 

In other words A. S ___ S is, except for the trivial case, not possible although p ([A [) < 
1. That means an iteration (1.4) using hyperrectangles will stop for any starting set 
X ~ whereas no standard simplex is mapped into itself by the matrix A. This 
behaviour becomes clear when looking at the eigenvectors which are (1, - x / 2 / 2 )  T 
and (1, w/2/2) r. 
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There might be other representations of sets being suitable for numerical computa- 
tions and allowing to verify convergence of A even if p(IAI) >_ 1. At least the 
standard simplices do not seem to be suitable for general matrices. 

5. Conclusion 

A constructive method has been given for proving convergence of an interval matrix 
resp. its absolute value by means of an iteration. It has been shown that the iteration 
stops if and only if the absolute value of the matrix resp. the sum of absolute values 
of real and imaginary part is convergent. The criterion is applicable on digital 
computers with the cost of n 2 operations per iteration step. 

The criterion is especially useful in combination with socalled verification algorithms 
(see [13]) for linear and nonlinear systems of equations and other standard problems 
in numerical analysis. 

For the application to inclusion methods (see [12, 13]) being described for the case 
of linear systems in theorem 1 this means the following. 

The iteration scheme (1.2) is exactly 
an inclusion of the solution of the 
side [b] will be computed 

for general sets X ~ PS" if and 

of the form used in Theorems 8 and 9. Therefore 
linear system with matrix [A] and right hand 

only if p(C) < 1 and 

for hyperrectangles IX] e BE" if and only if p(l[C]l) < 1, 

for hyperrectangles IX] e 0C" if and only if p(IRe([C])[ + tlm([C])[) < 1 

where [C] := I ~ R ~ [A]. In the first case power set operations, in the latter two 
cases interval operations ~ for �9 e { + ,  - , . , / }  are used. 

An algorithm based on such an iteration scheme for validated calculation of an 
inclusion of S([A], [b]) becomes slow then the diameters of [A] are very large. 
Therefore a combination with a modification of an algorithm proposed by 
Neumaier has been suggested working very good for small and for large diameters 
of [A]. 
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