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CALCULATION OF TURBULENT GAS-DISPERSION FLOWS IN
CHANNELS WITH RECIRCULATION EDDIES
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Gas-dispersion turbulent flows in a plane channel with expansion behind a step and in a cylindrical chamber with sudden expansion are
numerically simulated on the basis of the Euler two-velocity description .

Applications of the so-called Euler approach are considered. This is based on the use of equations of the same
mathematical type for describing the motion of both carrier and dispersed phases in recirculating turbulent gas-
dispersion flow calculations . In dispersed flow calculations the application of the Euler approach has been most
successful, as a rule, in the case of relatively simple flows such as jets and flows in straight channels [1-10], when the
flow is almost unidirectional and the solution of the system of equations in the boundary layer approximation applies .

Examples of the use of the Euler approach for describing complicated gas-dispersion flows of pronounced two- or
three-dimensional character are very limited [11-14] . In this paper, in order to establish the advantage (or at least
competitiveness) of the Euler approach over the widely used mixed Euler-Lagrange method for describing turbulent
dispersion flows numerical results are presented for two-dimensional flows in a plane channel with step expansion and
in a cylindrical combustion chamber with sudden expansion . The calculations are based on the models developed in
[4,8,10,15] .
1. For constructing the system of equations governing the motion of a dispersed phase of low volume concentration the
equation for the probability density function (PDF) of the particle velocity in turbulent flow is used [15] :
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where t is time, Uk and u k are the averaged and pulsating components of the gas velocity, 1/k is the dispersed phase
velocity, Fk is the gravity acceleration, t~ is the dynamic relaxation time, and (u,'uk ') are the second single-point
single-time moments of the pulsating gas velocity .

The coefficients of involvement of the particles in the pulsating motion of the carrier phase, f~ and ga , are chiefly
determined by the structure of the energy-containing turbulent vortices and, in the case of a piecewise-constant
approximation of the two-time correlation function of the pulsating gas velocity along the particle trajectories, have the
form [4] :
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where To is the characteristic time of interaction between the particles and energy-containing vortex gas formations
(turbulent moles) .

Integrating (1.1) over the entire velocity space and decomposing the averaged velocity of the dispersed phase into
a sum of convection and diffusion terms [8,10] gives the equations of diffusion and motion of the particles :
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where $ is the averaged volume concentration of the dispersed phase, V is the convection component of the
phase velocity (with the same notation as the total averaged velocity), 1 is the particle diffusion tensor, D nsor
of turbulent diffusion of the inertialess admixture, T is the 1,agrangian time macroscale of turbulence, and (v,'v k `)
are the turbulent stresses in the dispersed phase .

The equations for 4 and V, (1.3) and (1.4), obtained from the equation for the PDF (1.1), are the same as the
corresponding equations in [8,10] obtained from averaging the equations of mass and momentum conservation with the
volume concentration used as a weighting function . The equations for the second moments of the velocity pulsation
obtained by these two methods are also identical [8,10,15] . From these equations, taking into account the isotropy of
the convection and diffusion terms and also the generation tensor in the equation for the second moments, the following
algebraic expressions for the turbulent stresses in the dispersed phase can be obtained [8,10,15] :
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The expressio for the diffusion term obtained in [10] is analogous to (1.7) with the only difference that there is
no second term in parentheses in the expression for the turbulent energy diffusion coefficient A°. However, this
difference is not essential because for inertial particles (t/T,,> 1) the coefficient g„ is small, whereas for small particles
(sujT < 1) the whole diffusion term makes practically no contribution to the turbulent energy balance in the dispersed
phase .

The averaged motion of the gas phase is governed by the continuity and momentum balance equations
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where p, p ° are the densities of the gas and particle material, and P is the pressure .
The turbulent stresses in the gas phase were determined according to the gradient representation

(1.10)

The turbulent properties of the gas were calculated on the basis of the two-parameter k-e model of turbulence .



Taking into account the reverse influence of the particles, the equations for the gas turbulent energy k and its dissipation 
E are written in the form: 
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The turbulent viscosity coefficient of the gas is determined by the relationship 
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Here, P~ and A~ determine respectively the generation of turbulent stresses in the gas phase due to the averaged 
motion and the reverse influence of the particles on the turbulent stresses in the gas. Expression (L13) was obtained 
on the basis of a Rodi transformation of the equations for the second moments of the gas velocity pulsations with the 
aim of reducing them to algebraic form [16] using the isotropic representation for the tensors P and A~ 

3 (%  a:,,) 

For P~= e and Ak=0 (123) turns into the expression for the turbulent viscosity coefficient commonly used in the 
standard two-parameter model of turbulence. In (1.13) a correction function accounts for the influence of the turbulence 
nonequilibrium and the dispersed phase on v.  It should be noted that both expression (1/3) and the experimental 
dependence for a single-phase shear layer obtained by Rodi [16] predict the same type of influence of the turbulence 
nonequilibrium on v,: as Pk/e  increases the turbulent viscosity coefficient decreases. 

The values of the constants in (Ll l )  and (1.12) are standard for the two-parameter model of turbulence [17]: 
ak=l.0, a = L 3 ,  S~=L44,  C,2=1.92 , C =0.09. The constant C 1 in (IA3) corresponds to the constant in the Rotta 
approximation for the exchange terms in the equations of balance of the second moments of the velocity pulsations. For 
C 1 the mean of the commonly used values is assumed: C~ = 2.0 [16]. 

The isotropic expression Dac=DtSa,  , where D =  v/Sc, and the turbulent Schmidt number Sc, = 0.8, is assumed for 
D~, the coefficient of turbulent diffusion of the inertialess admixture in terms of which the particle diffusion coefficient, 
Dp in (1.3), is expressed. 

The characteristic time of interaction of the particles and the energy-containing vortex formations of the gas is 
determined by the expression 

Tp = T~,/~/I + (T,, IU - v l/L) 2 (1.14) 

where L = (2k/3)~/2T. is the length macroscale of turbulence. 
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The time macro- and microscales of turbulence are determined by the expressions 
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Now, with (1.2), (L5), (1.7), (L10), and (123)-(1A5) taken into account, the system of equations (1.3), (1.4), (1.6), 
(L8), (L9), (1.11), (1.12) gives a closed description of the turbulent gas dispersion flow. 
2. To solve equations (L3), (L4), (L6) governing the motion of the dispersed phase the boundary conditions must be 
prescribed on the surfaces bounding the flow. As in case of deriving boundary conditions in the theory of a rarefied gas 
[18], for constructing boundary conditions for the equations of the dispersed phase motion the particle PDF in the near- 
wall region must be known. The boundary conditions were derived in [4,7] from the solution of the equation for PDF 
obtained by the perturbation method and in [6,9] with the use of a PDF prescribed a priori as a 5-function or as a 
quasinormal velocity distribution. 

We will give the boundary conditions for particles which are not absorbed by the wall and assume elastic interaction 
between particles and wall in the normal direction, that is allowing only for the possible loss of tangential momentum. 
In this case the probability density for the particle transition from state 1 before interaction (collision) with a wall to 
state 2 after interaction is given by the expression 

ew(v2/v  1) = 8 (v,a - ~ v ~ )  8 (va  + v~)  

where x and y are the coordinates normal and tangential to the wall, and @ is the momentum recovery coefficient for 
the collision with the wall. 

For zero dispersed-phase mass flux through the wall according to (L3) 

y=0: Vy= 0¢ =0 (2.1) 
0y 

Taking into account (1.5), in the case under consideration the expression for the tangential stress at the wall [7,9] 

(v,'vy~ 1 + ~0 

gives the boundary condition for the tangential velocity of the dispersed phase 
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Expression (2.2) is a boundary condition of the third kind. From (2.2) it follows that due to the dynamic inertia 
of the particles there may be a velocity slip on the surface. For an ideally smooth wall the recovery coefficient ~p = 1, 
while for a very rough wall we may assume q~ = 5/7 [19,20]. 

In agreement with the assumption of elastic interaction between the particles and the wall in the normal direction 
~vy'2)/~=0 at y=0. Hence the boundary condition for (1.6) can be written in the form: 

y =0: ~kfl3y =0 (2.3) 

According to (2.3) the turbulent energy of the dispersed phase may be nonzero on the wall in spite of the zero 
value of the turbulent energy of the carrier flow. The presence of dispersed phase velocity fluctuations near the wall is 
due to the transfer of pulsation from the turbulent region of the flow because of particle inertia. 

As boundary conditions for the equations of averaged motion of the gas phase (1.8), (1.9) no-slip conditions are 
prescribed on the walls: 

y =0: U i =0 (2.4) 

For determining the pulsation properties of the flow near the wall it is worth using the method of wall functions 
which has gained wide acceptance in monophase flow calculation [17]. Introducing wall functions considerably reduces 
the number of computational grid points in the direction normal to the wall. In this case the boundary conditions for 
the equations (1.11), (1.12) are prescribed not on the wall itself but at some distance from it, outside the viscous sublayer 
in the so-called logarithmic layer. The basis of the wall function method involves the assumption of constant turbulent 
shear stress (u~,'uy') and turbulent energy k and also of universality of the profile of the velocity component U~ 
parallel to the surface in the near-wall region, where the ftrst calculation grid point for the equations (1.11), (L12) is 
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positioned .
The analysis of the system of equations for the second moments of the gas-phase velocity pulsation shows that the

gas turbulent energy in the logarithmic layer in the presence of a dispersed phase can be determined with fair accuracy
from the relationship

where for monophase flow the Prandtl-Karman constant x=0 .4. Assuming that the length scale of turbulence is not
much affected by the agents complicating the flow, x may be taken to be equal to the Prandtl-Karman constant in a
two-phase flow also .

The dynamic velocity u' and the gas friction on the wall r,= pu? can be found from the universal logarithmic
velocity profile in the near-wall region
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The applicability of the wall law (2 .7) with the same values of the constants x and A as

	

e flow was
experimentally confirmed for vertical and horizontal gas-dispersion flows in [21] .

Therefore, expressions (21)-(2.7) determine the boundary conditions on rigid surfaces for the system of equations
of the motion of a turbulent gas dispersion flow.

As the inlet boundary conditions we used the distributions of U,, k, and s, which were uniform over the channel
cross-section, while in the channel outlet the solution was assumed to be continuous up to the second derivatives with
respect to the longitudinal coordinate .
3. On the basis of the system of equations described above the aerodynamics of a combustion chamber were calculated .
The combustion chamber is a cylindrical channel with a sudden expansion into which a gas-dispersion mixture is injected
through two inlet nozzles, separating the mixture into primary and secondary flows (Fig . 1). The dispersed phase is

ted into the near-axis region of the chamber and mixes with pure air. Due to the sudden expansion there is a

in Fig. la clearly demo t to that the
As the distance from e

1, 1.2 and characterize t
w the velocity profiles

line joins together
with the experimen d gas velocity is

ework of the model used . T velocity profiles for partic es size and
profile differ considerably from each other. For large particles the profile of Y is flatter and in the limit

r~ ersed-phase motion is analogous to the translational movement of a rigid body . This correlates well with
the experimental data for flows in tubes [23] .

In agreement with the tendency for the large particle velocity vector to remain parallel to the initial one, there is
a decrease in the degree of involvement of the dispersed phase in the circulating motion . With increase in the particle
size the region of negative velocities shrinks sharply, so that the carrier and dispersed phase velocities are not only quite
different in value but even act in opposite directions . Therefore the residence times for particles of different sizes may
differ several-fold .

In accordance with the gradient representation of the turbulent stress tensor in the gas (1 .10) and dispersed (1.5)
phases, the substantial nonuniformity of the averaged gas and particle velocities results in sharp variation of the
turbulence pulsation field over the cross-section. The maximum level of the turbulence pulsation (about 10-15% of the
maximum averaged velocity) is located in the region separating the main and reversed flows .

Because of this nonuniform distribution of the turbulent energy with a deep minimum in the near-axis flow region
there is a potential barrier for the particles. This is due to the turbulent migration (a turbophoresis force) directed
toward decreasing pulsation energy of the gas [4] . The turbophoresis force drastically reduces the diffusion exchange
of particles between the regions of direct and recirculating flow . This decreases the probability of particle penetration
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where u' is the dynamic velocity .
In the logarithmic layer the dissipation rate is determined by the expression

e =C 4k3n/xy (2.6)
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into the reversed flow region and inhibits the mixing processes .
Figure 2 shows the variation along the device axis of the dispersed-phase mixing function fP=tV/4 0V~ and the

passive scalar f=m,/(ml + m7) (where m, is the mass flux of the scalar admixture in the primary (i=1) and the
secondary (i=2) flows) . Curve 1 corresponds to the mixing of a passive scalar, 2 is for a dispersed phase with particle
diameter 19 µm, 3 is for a dispersed phase with particle diameter 54 µm (experimental data from [22]), and R, is the
radius of the central injection nozzle for the gas-dispersed flow . The inertial admixture mixes much more slowly than
an inertialess one. An increase in particle size further reduces the mixing (curve 3) .

For more a detailed analysis of the dynamics of particles of various diameters in recirculating eddies calculations
were performed for a gas-dispersion flow in a plane channel with a backward-facing step . The geometry of the channel
with a step corresponds to the experimental unit described in [24] and is shown in Fig . 3a. The Reynolds number formed
from the step height H was assumed to be Re =U0H/v=3.105 , where Uo is the gas inlet velocity. The streamlines
characterizing the flow pattern are shown in Fig. 3a. On each isoline the values of the stream function correspond to
the notation in Fig. la. The velocity profiles for gas, particles with d=30µm, and particles with d=70 µm are shown
in Fig. 3b-d respectively.

With increase in particle diameter the degree of particle involvement into the recirculating motion decreases . Large
particles completely retain the initial direction of the motion. This manifests itself in the absence of negative velocities
throughout the flow. On the whole, the general flow pattern is quite similar to that considered above for the flow in a
combustion chamber.

For the flows under consideration the importance of the correct formulation of the boundary conditions for the
pulsating energy of the dispersed phase should be mentioned . The phenomenon of nonzero pulsating energy on the
channel walls, described above, is of fundamental importance . The use of the locally uniform approximation for the
particle turbulent energy in the form k=f k results in the nonphysical growth of the dispersed phase concentration near
the wall. The concentration growth is due to the conservation of the particle pulsation energy flux fik=const near the
wall from which it follows that d~ m for kP -. 0. The use of the differential equation (1 .6) for kP and the boundary
condition (2 .3) ensures quite satisfactory physical results .

For a quantitative comparison of the calculational results with the experimental data [24] we analyzed the variation
of the maximum positive velocity V along the channel and the maximum negative velocity V along the recirculation
eddy. These relations are shown in Figs . 4 and 5, where V,' =V /U0, x'=(x, - x)/x,, and x, is the coordinate of the
reattachment point of the recirculation eddy . Curve 1 corresponds to the gas flow, curve 2 is for the particle velocity with
dp =15µm, and curve 3 is for the particle velocity with d =30 µm. In both the calculations and the experiments with
increase in the particle diameter the maximum of the negative velocity of the dispersed phase moves toward the step
(upstream) .

Therefore, the calculational results confirm the correctness of the description of the averaged characteristics of
complicated gas dispersion turbulent flows with recirculation regions within the framework of the proposed model . For
the calculation of the dispersed phase characteristics in bounded flows it is necessary to use the equation for the particle
pulsation energy, because the use of the locally uniform approximation results in considerable errors in the near-wall
region of the flow.
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