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ABSTRACTmThe wavelet transform (WT) is applied to the 
time-frequency analysis of flexural waves in beams. The 
WT with the Gabor wavelet decomposes a dispersive wave 
into each frequency component in the time domain, which 
enables one to determine the traveling time of a wave along 
the beam at each frequency. By utilizing this fact, a method 
is developed to identify the dispersion relation and impact 
site of beams. 

Introduction 

Analysis of wave propagation in structures is a fun- 
damental subject related to a wide range of engineering 
problems. Since structural waves are often dispersive, iden- 
tification of the dispersive characters is important for un- 
derstanding the wave propagation phenomenon. To identify 
the dispersive characters, the time-frequency analysis may 
be one of the most sophisticated techniques among others. 
Since the time-frequency analysis decomposes a signal into 
time variations of each frequency component, 1'2 it enables 
us to examine the propagation of dispersive waves at each 
frequency. 

There have been few studies on the time-frequency 
analysis of dispersive waves in structures. Hodges, Power 
and Woodhouse 3 applied the short-time Fourier transform 
(STFT) to the time-frequency analysis of waves in strings, 
beams and shells. The STFT has a constant time-frequency 
resolution, which means that a time-frequency window 
suitable for analyzing low-frequency components is not 
adequate for high-frequency components and vice versa. 
Therefore, the STFT is not suited for analyzing waves com- 
posed of a wide range of frequency components. Wahl and 
Bolton 4 proposed an application of the Wigner-Ville dis- 
tribution (WVD) to the time-frequency analysis of struc- 
tural waves. Although the WVD is an optimally concentrat- 
ed time-frequency distribution, it provides interference 
terms between each pair of signal components. Wahl and 
Bolton showed that an appropriate smoothing is required 
to minimize the interference terms. 

To overcome these shortcomings of the STFT or WVD, 
Kishimoto et al. 5 proposed an application of the wavelet 
transform (WT) to the time-frequency analysis of disper- 
sive waves in structures. The WT is a rather new mathe- 
matical technique of time-frequency analysis and has been 

H. lnoue (SEM Member) is Associate Professor, K. Kishimoto and T. Shibuya 
are Professors, Department of Mechanical and Intelligent Systems Engi- 
neering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 
Tokyo 152, Japan. 

Original manuscript submitted: October 17, 1994. Final manuscript re- 
ceived: September 8, 1995. 

extensively developed during the last decade. 1'2'6'7 A large 
number of its applications can be found in a variety of 
fields of science and engineering. The authors conducted 
a numerical simulation on flexural waves in a simply sup- 
ported beam and demonstrated that the WT is an effective 
tool for identifying the dispersive character of structural 
waves. However, no experimental verification has con- 
firmed this. 

In this paper, we apply the WT to experimental analysis 
of dispersive waves and demonstrate its usefulness. First, 
the theory of WT and its application to the time-frequency 
analysis of dispersive waves are briefly explained. Next, 
as a typical example of dispersive waves, an experimental 
analysis of flexural waves in a simply supported beam is 
presented. In addition, by utilizing the information obtained 
by the WT, a method to identify the group velocity and 
impact site of beams is developed. 

The Wavelet Transform 

The continuous wavelet transform of a function f(t) is 
defined by 6'7 

= ~-" j ' ~ t ) ~ d t  
(1) 

where a > 0 and the overline indicates the complex con- 
jugate. The function V(t) is called the analyzing wavelet. 
It satisfies the admissibility condition 

i I 
Io 1 

~ d ( 0  < oo 
(2) 

A 

where ~(o)) denotes the Fourier transform of ~(t) defined 
by 

o o  

~(0)) = S V(t)e-i~ dt 
(3) 

Although there are many choices for the analyzing wav- 
elet, we adopt the Gabor wavelet, since it provides the best 
time frequency resolution as confirmed by the uncertainty 
principle. 6 The Gabor wavelet is expressed as 8 

lxl-~o [(O)o/y)2t21exp(io3ot ) (4) V g ( t ) = ~ "  V exp 2 

and its Fourier transform is expressed as 
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Fig. l~(a)  The Gabor wavelet. (b) The Fourier transform 
of Gabor wavelet: 7 = ~ ~/2/in2 and COo = 2~ 

~8 ((o) = ~ ~ ~ exp 2 ((o - (o~ 

(5) 

where (oo and 7 are positive constants. Although the Ga- 
bor wavelet does not satisfy the admissibility condition (2) 
in the strict sense, it approximately satisfies the con- 
dition i_ff__.7 is sufficiently large. 7'9 In this study, we set 
7=rc~/2/ln2 = 5.336 according to Goupillaud, Grossmann 
and Morlet. 9 If eq (4) is substituted into eq (1), it is un- 
derstood that the WT using the Gabor wavelet has a similar 
form to the Fourier transform with Gaussian windowing. 
Hence we set COo = 2re such that 1/a takes the same value 
as the frequency (o/(2n). 

Figure 1 shows the Gabor wavelet and its Fourier trans- 
form. The Gabor wavelet ~g(t) is ~ocalized around the time 
(t) = 0, and its Fourier transform ~g((o) is localized around 
the angular frequency co = (oo. It is easily understood that 
the function ~tg((t - b)/a) is localized^around t = b and that 
its Fourier  t ransform [aexp(-ib(o)~g(a(o)] is localized 
around (o = (o0/a. Hence the magnitude of WT, I(W39(a, b)l, 
represents the "intensity" of the signal fit) around the time 
t = b and the angular frequency (o = (oola. 

Wavelet Analysis of Dispersive Waves 

Let us consider two harmonic waves of unit amplitude 
and different angular frequency (ol and o)2 propagating in 
the x-direction, given by 

u(x, t) = e-i(k, x - ~  o + e- i (~-o~)  (6) 

= 2 cos (Akx - A(ot) e -i(k`x-t~ 

where kl and k2 are wave numbers, 

kc = (kl + k2)12, (oc = ((oa + o)2)/2 (7) 

and 

Dk = (kl - k2)12, A(O = ((01 - 0)2) /2  ( 8 )  

If A(O is sufficiently small, the group velocity cg at the an- 
gular frequency (oc can be defined as 

cg = A(o/t~k (9) 

When the Gabor wavelet is adopted as the analyzing 
wavelet, the magnitude of WT of u(x, t) is obtained as 5 

I(Wu)(x, a, b)l = 

^ [^ ] ~g(a(o0] 2 + ~g(a(o2) 2 (10) 

A A ] 
+ 2ws(a(ol)U/g(a(o2) cos ( ~  - 2A(ob)~ ~ 

A A 

If A(o is sufficiently small such that ~g(a(ol) = ~g(a(o2) = 
~(a(oc), we obtain 

I(Wu) (x, a, b)l --~ ~ ~g (a(oc) (11) 
[ 1+ cos (2z~ k x -  2 A(ob) ] '~ 

This equation indicates that the magnitude of WT takes 
its maximum value at a = (oo/(oc and b = (AJVzk(o)x = xtc~. 
Therefore, for fixed x, a three-dimensional plot of I(Wu)(x, 
a, b)l on the (a, b) -plane has a peak at (a, b) = ((oo/(oc, 
xlcs). In other words, the location of the peak on the (a, 
b) -plane indicates the arrival time b = xlc s of the wave 
having angular frequency (oo = (oo/a. 

Flexural Waves in a Simply Supported Beam 

As a typical example of dispersive waves in structures, 
we conducted an experimental analysis of flexural waves 
propagating in a simply supported beam. 

Experimental Setup 

Figure 2 shows the experimental setup. A simply sup- 
ported beam with circular cross section was impacted with 
a steel ball (19-mm diameter) at the center of the span 
(point A). Table 1 shows dimensions and material constants 
of the beam. Bending strains were measured at points B, 
C and D by using strain gages as shown in Fig. 2. The 
onset of impact and the contact duration were also meas- 
ured by using the DC circuit illustrated in the figure. The 

,te OCt;out 

Fig. 2--Simply supported beam subjected to impact at the 
center of the span (dimensions in mm) 
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TABLE lmDIMENSIONS AND MATERIAL CONSTANTS OF 
THE BEAM 

Span 
Diameter 
Cross-sectional area 
Moment of inertia 
Timoshenko's shear coefficient 

(after Mindlin and Deresiewicz 1~ 
Young's modulus 
Mass density 

1.5 m 
20 mm 

3.14 x 10 .4 m 2 
7.85 x 10 .-9 m 4 
0.847 

98.1 GPa 
8.65 x 103 kg/m 3 

Strain Gages  [ 
2-mm Gage  Length DC Circuit 

Strain Amplif ier ! 

DC-200 kHz (-3 dB) 

Digital Memory 

1 /zs/sample max 

12 bits 

l 

Fig. 3--Measurement system 

measurement system used is shown in Fig. 3. The data were 
sampled at the rate At = 1 or 10 Its/sample. 

Measured Strain 

Figure 4(a) shows the strains measured at points B, C 
and D, where the data were sampled at the rate At = 
1 Its/sample. The impact velocity was 4.43 m/s, the onset 
of impact t = 0.2 ms and the contact duration 65 Its. It 
is seen that the rising of the time history becomes ambigu- 
ous as the wave propagates. Figure 4(b) shows the slrain 
measured at point C in the case At = 10 Its/sample. Figure 
5 shows the impact force history predicted by Schwieger's 
method, 11 in which Hertzian contact between the sphere 
and cylinder ~2 is assumed. The predicted contact duration 
is 60 Its, which agrees fairly well with the measured du- 
ration of 65 Its. 

Wavelet Transformation 

The WTs of the strains and the impact force were com- 
puted according to eq (1). The integral in eq (1) was evalu- 
ated by truncating the limit of integration from t = b - 4a 
to t = b + 4a and by applying the trapezoidal rule with 
a step equal to the sampling rate At. The parameters a and 
b were diseretized as follows: 

a = 2 "'4, b = nat (12) 

where m and n are integers. The discretization of the pa- 
rameter a seems unusual but is common in most applica- 
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Fig. 5--Impact force history predicted by Schwieger's method 

tions of the WT. On the other hand, the parameter b is usu- 
ally discretized as b = anat. The reason why the parameter 
b is discretized as in eq (12) is that we require a good time 
resolution to identify the group velocity and impact site by 
the method described below. 

Figure 6(a) shows the magnitude of WT of the impact 
force, and Figs. 6(b)-(d) show those of the strains at points 
B, C and D, respectively. In these figures, the WT is plotted 
at every 10 points of actual data in the b-axis. In Fig. 6(a), 
a "ridge" appears around b = 0.2 ms in the low-frequency 
range, logza > -15 (o)0/(2rca) < 33 kHz), and it divides into 
two in the high-frequency range, log2a < -15 (O~o/(2na) > 
33 kHz). This indicates that the rising and ending of the force 
history are no longer distinguished in the low-frequency 
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Fig. 6--Three-dimensional plot of the magnitude of WT. (a) Impact force history. (b)-(d) Strains at points B, C and D, 
A t =  1 ItS 

range because the width of the time window is larger than 
the contact duration. In Figs. 6(b)-(d), two ridges can be 
found. The larger ridge appearing around b = 0.3 ms in 
Fig. 6(b) corresponds to that found in Fig. 6(a) and moves 
toward the positive b-direction as the measuring point ap- 
proaches the support [see Figs. 6(c)-(d)]. Therefore, the 
larger ridge represents the wave traveling outward from the 
impact site. On the other hand, the smaller ridge appearing 
around b = 1.0 ms in Fig. 6(b) moves toward the negative 
b-direction [see Figs. 6(c)-(d)], representing the wave re- 
flected at the support. 

Figure 7 shows the magnitude of WT of the strain at point 
C for a wider range of time, where At = 10 ~ts/sample. In 
the figure, the WT is plotted at every five points of actual 
data in the b-axis. The ridges found in Fig. 6(c) also appear 

in this figure but are obscured in the low-frequency range. 
This may be due to the stationary vibration of the beam. 5 

Arrival Time 

As mentioned above, the magnitude of WT takes its 
maximum value at the time b when the wave arrives at 
the measuring point for each value of a. We numerically 
extracted the positions where the WT takes its maximum 
value on the (a, b) -plane for each value of a. The result 
is plotted in Fig. 8. The curves shown in Fig. 8 indicate 
the arrival times predicted by the Pochhammer-Chree the- 
ory, 13'14 where it is assumed that all frequency components 
were initiated from the impact site at the onset of impact, 
t = 0.2 ms, and directly arrived at each measuring point. 

In the range of -16 .25  < log2a < -15.25 (78 kHz > 
o~J(2r~a) > 39 kHz), the arrival times obtained by the wav- 
elet analysis coincide well with those predicted by the the- 
ory. In the range of -15 < log2a < - 1 1  (33 kHz > 
co0/(2~a ) > 2 kHz), there is a time lag about 33 ~ts, which 
is comparable to a half of the contact duration. As men- 
tioned above, this is due to the fact that the width of the 
time window becomes larger than the contact duration in 
this low-frequency range. However, it should be noted that 
the amount of this time lag is constant for all measuring 
points. In much lower frequency range, log2a > -11 
(o~0/(2rLa) < 2 kHz), the arrival time cannot be extracted, 
since the transient response is obscured by the stationary 
vibration of the beam. In the higher frequency range, log2a 
< -16.5 (co0/(2r~a) > 93 kHz), the arrival time could not 
be extracted accurately because of the poor signal-to-noise ra- 
tio of the data due to limitations of the measuring equipment. 

Fig. 7uThree-dimensional plot of the magnitude of WT of 
the strain at point C, ,~t = 10 ~ts 

Identification of the Group Velocity and Impact Site 

There have been some methods for experimentally identi- 
fying the velocity of structural waves as a function of fre- 
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Fig. 8--Arrival time of each frequency component of the 
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10 ~ts 

quency. A common technique is the resonance method, in 
which the phase velocity is determined from the measure- 
ment of resonant frequencies of structures. ~5'16 However, it 
requires repetitious measurements at various frequencies to 
obtain the frequency dependence of the wave velocity. 

Estimation of the impact site of structures has been tack- 
led by several researchers. Doyle 17 has proposed a method 
to estimate the impact site of beams by utilizing the phase 
information obtained by using the Fourier transform. How- 
ever, the use of the phase information requires the com- 
putation of tan -~, which may be rather troublesome. 

As shown above, the wavelet analysis of dispersive 
waves provides the arrival time of each frequency compo- 
nent. By utilizing this fact, we can identify the group velocity 
at each frequency and, in addition, estimate the impact site. 

Let us consider two points P1 and P2 on one side and 
a point P3 on the other side of the impact site P0 as shown 
in Fig. 9. The distances of these points from the impact 
site are denoted by l~,/2 and 13, respectively. Suppose that 
the arrival time of the wave at the point Pk is extracted 
by the wavelet analysis and is denoted by bk(a). Note that 
the time origin is arbitrary. In addition, let us consider the 
unknown time lag bo(a), which arises when the width of 
the time window becomes larger than the contact duration. 
Then we obtain 

bk(a) = bo(a) + lJcs(a), (k = 1, 2, 3) (13) 

where cg(a) is the group velocity. 
Subtracting bl(a) from b:(a), we obtain 

12 -- l 1 
cg(a) -- b2 (a) - bl(a) (14) 

Impact 

Fig. 9--Identification of group velocity and estimation of 
impact site 

On the other hand, adding bl(a) to b3(a), we obtain 

bo (a) = l [bl (a) + b3 (a) _ ll + l~] (15) 
c, (a)J 

Since bl(a), b2(a) and b3(a ) are obtained by the wavelet 
analysis of experimental data and, in addition, (/2 - ll) and 
(ll + 1~) are known in advance, the group velocity cs(a ) and 
the time lag bo(a) can be identified for each value of a, 
namely, for each frequency. Once cs(a ) and bo(a ) are iden- 
tified, the distances tl, /2 and 13 can be easily determined 
by eq (13). 

We considered the points A, B and D in this experiment 
as the points P0, Pt and P2, respectively, and identified the 
group velocity for each value of a from the arrival times 
shown in Fig. 8(a). Figure 10 shows the results, in which the 
curves are predictions by the Bernoulli-Euler, Timoshenko 
and Pochhammer-Chree theories. The identified velocity 
agrees well with the prediction by the exact Pochhammer- 
Chree theory for a very wide range of frequency 4 kHz _< o~0/ 
(2ha) < 78 kHz (-12 > log2a > -16.25). The scatter in the 
high-frequency range is due to the errors mentioned above. 

Since the impact response of the beam is symmetric 
about the impact site in this experiment, the strain at point 
C' in Fig. 2 is same as that at point C. Therefore, we con- 
sidered the strain at point C as that at point P3 and esti- 
mated the time lag bo(a ) and the distance lz. The estimated 
distance Ii is shown in Fig. 11. The impact site is accurately 
estimated except for the high-frequency range. 
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Fig. l O--Group velocity identified by the wavelet analysis 
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Conclusions 

In this study, an application of the wavelet transform 
(WT) to the experimental time-frequency analysis of dis- 
persive waves in structures has been presented. It has been 
shown that the WT using the Gabor wavelet is an effective 
tool for the experimental analysis of dispersive waves. The 
three-dimensional plot of the magnitude of WT on the 
time- frequency plane has peaks whose locations indicate 
the arrival times of each frequency component of the wave. 
In addition, a method has been developed to identify the 
group velocity and impact site of beams by utilizing the 
arrival times extracted by the wavelet analysis. 

Although the example treated in this study is rather clas- 
sical, the time-frequency analysis of elastic waves by means 
of the WT will be applicable to various problems in experi- 
mental mechanics, such as the material evaluation by ultra- 
sonics and the source identification of acoustic emissions. 
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