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On the Solvability of a Nonstationary Problem Describing 
the Dynamics  of an Incompressible Viscoelastic Fluid 

G. A. S v i r i d y u k  a n d  T.  G. Sukacheva  UDC 517.952 

ABSTRACT. We study the local solvability of the Cauchy-Dirichlet problem for the system 

(1 - xV~)vt  = u V 2 v -  (v �9 V)v - Vp + f ( t ) ,  

0 = - V ( V .  v) ,  

which describes the dynamics of an incompressible viscoelastic Kelvin-Voigt fluid. The configuration space of 
the problem is described. 
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Oskolkov's system [1] 
(1 - xV2)v, = uV2v - (v-  V)v - Vp + f(t) ,  (1) 

0 = V - v  

provides a model of the dynamics of an incompressible viscoelastic Kelvin-Voigt fluid. Let fl C R '~, 
n = 2, 3, 4, be a bounded domain with C ~ boundary 0f~. Previously [2, 3], we have considered the 
Cauchy-Dirichlet problem 

v(x,O) = vo(z), z �9 ~, 
~(~, t) = O, (~, t) E O~ • ~, (2) 

for system (1) under the assumption that the right-hand side f = ( f l , . . . ,  f,,) is independent of time, 
that is, f~ = f~ , ( z ) ,  z Efl, k = 1 , . . . ,  n .  This restriction depreciates the heuristic power of the model 
and reduces generality (of. [4], where problem (1), (2) is considered for the case in which fk = fk(z,  t) 
and x -1 > -Ax ; here A1 is the least eigenvalue of the Dirichlet problem for the Laplace operator in fl). 
On the other hand, the approach suggested in [5] permits one to consider problem (1), (2) in its full 
generality, that is, for a nonstationary right-hand side f = f ( x ,  t) and arbitrary values of the parameter 
x E R, which characterizes the elastic properties of the fluid. (Note that negative values of x have been 
observed experimentally [6, 7].) 

To avoid the question of how can an incompressible fluid be elastic, one treats system (1) as the limit 
case (as e 1 0) of the system 

(1 - ~ v ~ ) v ,  = ~ v ~ v  - ( v .  v ) ~  - v p  + f ,  (3)  

ept  = --X7 �9 V ,  

which models the dynamics of a weakly compressible viscoelastic Kelvin-Voigt fluid. In (3) we perform 
the substitution p = •p and set e = 0; then we arrive at the system 

(i - gV2)v,  = v V 2 v -  ( v - V ) v -  p + f, (4) 

o = - v ( v .  ~). 

Although the kernel of V is nontrivial (it consists of constants), problem (4), (2) has no new solutions as 
compared with problem (1), (2); this is due to the boundary condition in (2). Thc substitution p = Vp 
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is motivated by the fact that  in most hydrodynamic problems [8] it is preferable to consider the pressure 
gradient instead of pressure itself. 

We are interested in the local unique solvability of problem (2), (4). It is convenient to consider this 
problem in the framework of the theory of Sobolev type equations. Therefore, in the first part  of the paper 
we develop some formalism, the main result being that  a semilinear nonstationary Sobolev type equation 
possesses quasistationary trajectories [5]. In the second part, this formalism is applied to problem (2), (4). 

w T h e  formal  s c h e m e  

Let 1 / a n d  3 be Banach spaces, and let the operators L E s 3) and M G C~176 3) and a function 
f :  R ---* 3 be given. We consider the Cauchy problem 

(5) 

for the semilinear nonstat ionary Sobolev type equation 

L6 = M ( u )  + f .  (6) 

A linear operator L: 11 ~ 3 is said to be bisplitting [9] if the kernel ker L and the range im L are 
complemented in the spaces s and 3 ,  respectively. Suppose that  L is bisplitting. By M~0 G s 3) we 
denote the Frdchet derivative of M at a point u0 E 1/. We consider chains of M~o-aZsociated vectors of 
the opera,or L [10]; these vectors will be chosen from some complement coim L = 1 / e  ker L of ker L.  We 
introduce the following condition: 

A1) Regardless of the choice of coi taL,  the chain of M~0-associated vectors of every vector ~0 E 
ker L \ {0} contains exactly p elements. 

Let L be the restriction of L to coim L. By Banach's closed graph theorem, the operator L: coim L --* 
imL is a linear topological isomorphism. We set ~ = kerL and consider the sets 1/0 = Aq[~2~], q = 

1 , . . . ,  p,  where A = ~,-1M~0. Obviously, the sets 1/0 C coim L are linear spaces. Consequently, the 
image ~ = M~0[~~ ] is also a linear space, and moreover, ~ N i m L  = {0} (provided that  condition A1) 
is satisfied). Let us introduce yet another condition: 

A2) ~imL=3. 
We denote by Qp: 3 ---* ~ the projection along imL and consider the operator  A = L - I ( I  - Qv)M~o. 

Note that  A[s = 1/~ , q = 0, 1, . . .  , p -  1, and A[1/~ = {0}. It follows that  

A,[1/or] _-- ({ {~},0 q + r  > p, (7) 
( ,tJq+~, q + r _< p. 

Let D be the restriction of the operator QvM~oAV: 1/---* ~ to s By construction, D [ ~ ]  = ~ and 
D e s ~ ) .  Moreover, kerD = {0}, since otherwise the vector ~0 G ke rD  \ {0} C kerL \ {0} would 
have an infinite chain {~Pl, ~ 2 , . . . ,  qop, 0 , . . .  } of M~0-associated vectors. Again by Banach's theorem, 
the operator D:  ~ --* ~ is a linear topological isomorphism. 

Let P0: 1/--* ~ be the projection along coim L.  We consider the operators Pq = A~D -1QpM~oAv-q , 
q = 1 , . . . ,  p.  The  operators Pq: 1/--* 1/0 are projections. Indeed, im P~ = 1/0, pq e s and 

P~ = A '  (D -1 (QvM'~o A ' ) )  D -1QvM~o A "-q = Pq 

by the definition of D.  Moreover, by virtue of (7) and the definition of P0, we have 

PqPr = PrPq = O, q, r = O, 1, . . . , p, q ys r. 

Set 
P P 

p= 

q=O q=O 
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The operator P E s is a projection with im P = 110. Let ~.[1 = ker P .  Then 11 = 11 ~ (9111. 
M'  I11~ .. , We introduce the linear manifolds ~0 = uo~ q,, q = O, 1, . ,p  - 1 and the operator B = 

M ~ o l - , - ' ( I -  Q , ) .  Since B [ ~ ]  = ~q+,,  q = 0, 1, . . .  , p -  1, and e[~'~p] = {0}, we have 

{0}, 
Bq[~] = ~+~, q + r < p .  (8) 

By analogy with the preceding, it follows from (8) that the operators Qq = D~qlwno~'t' D-lO,~pBp-q, q = 
0, 1 , . . . ,  p -  1, are projections on ~ ,  and moreover, 

QqQ~ = QFQq = O, q, r = O,1, . . . , p, q # r. 

We set 
P P 

q=O q=O 

The operator Q E s  is a projection, and hence ~ = ~-0 (9 ~1, where ~.o = i m  Q and ~ = ker Q.  
Note that 

~ . - o  ,~v'4qn-l~ nq-X ~,r r ) -1o  

by construction. Further, 

B L  = M'=o(I - Po). 

From (9) and (10) with q = 1 , . . . ,  p, we obtain 

q = l , . . . , p ,  (9) 

(lO) 

LPq = L P q ( I -  Po) = L A e D - ' Q p M : o A V - q ( I -  Po) = B ' - I  M'o D - 1 Q v B P - q M : o ( I -  To) = Q , - 1 L .  (11) 

Let us rewrite Eq. (7) in the form 
Li~ = M',,ou + F(u)  + f ,  (12) 

where F = M - M~o E C~176 ~) by definition. By successively applying the projections Qq, q = 
0, 1 , . . . ,  p,  and I - Q to (12), we obtain, by virtue of (11), the equivalent system 

La? = M'0 .~  + ro(-)  + Z, 

= + + h~ 
0 = M:o u ~ + Fv(u ) + fo ,  

Lit 1 = ( I  - Q ) M ( u )  + f I , 

(13) 

where u ~ E 11o fo E ~'~q, Fq(u) = QqF(u)  + QqM~o ul , q = 0, 1 , . . . ,  p, u 1 E ~.[1, and f l  E ~1. Thus we 
have proved the following assertion. 

L e m m a  1. Suppose that L E /:(11; ~) and M 6 C=(11; ~),  L is a bisplit t ing operator, and condi- 
tions A1) and A2) are satis6ed. Then Eq. (6) is equivalent to system (13). 

R e m a r k  1. Under the assumptions of Lemma 1, the operator M is L-bounded at the point u0 [5], 
and the point at infinity is a pole of order p of the operator function (#L - M ' o )  -1 . 

Let us now study problem (6), (7). A ~olution of this problem is a vector function u 6 C ~ ( ( - t0 ,  to) ; 11), 
to = t0(u0) > 0, satisfying Eq. (6) and condition (5). Here we encounter two difficulties. First, it is well 
known [2, 3, 11] that problem (5), (6) is not solvable for some u0 6 tl. Second, even if problem (5), (6) has 
a solution, it need not be unique [5]. To overcome the first (and partly the second) difficulty, we introduce 
the following notion. 

390 



Def in i t ion  1. A set 93' C s x IR will be called a configuration space of Eq. (6) if for any point Uo E s 
such that (u0,0) e 930 there exists a unique solution of problem (5), (6), and moreover, (u(t),  t) �9 93t. 

R e m a r k  2. If 93' = 93 x R, where 93 C s then the set 93 is called the phase space of Eq. (6) 
(see [2, 3, 5]). 

To remove the second difficulty completely, we restrict our considerations to quasistationary trajectories 
of Eq. (6), that is, solutions u = u(t) of problem (5), (6) such that L~ ~ _-- 0 for all t 6 ( - t o ,  to), where 
u ~ = P u  [5]. To single out the quasistationary trajectories from the set of all possible solutions of 
problem (5), (6), we impose several conditions. 

A3) f,~ --- 0 for all t e R  and q =  t , . . . , p .  

= 0 = const, q = 1 , . . ~  p}. It is easily seen that  ~ is a complete Let us consider the set ~ {u �9 Lt : uq 

afflne manifold modeled by the subspace 21~ (~ s . Let u0 e 2 ;  by Duo we denote some neighborhood 

O,,0 C ~ of the point u0. 

A4) Fg(u) --- 0 for all u �9 O,0 and q = 1 , . . . ,  p. 

T h e o r e m  1. Suppose  that 

1) the assumpt ions  of Lemma 1 are satis~ed; 

2) (u0,0) e93  ~ where 9 3 t =  { ( u , t )  e ~ x R : Q o ( M ( u ) + f ( t ) ) = 0 } ;  
3) / �9 C~ ~); 
4) condit ions A3) and A4) hold. 

Then problem (5), (6) has a unique solution, which is a quasistationary trajectory, and  moreover,  u(  t ) �9 93' 
for every t E (--to, to). 

P r o o f .  Suppose that we have found a solution of'problem (5), (6). Then by virtue of conditions A3) 
and A4) it follows from (13) that L6 ~ = 0, that is, the solution is a quasistationary trajectory. Let us 
establish the existence and uniqueness of the solution. 

Lemma 1 and conditions A3) and A4) imply that system (13) can be reduced in the neighborhood D,, o 
to the form 

aAr' u o + Fo(u) +/Do, 0 = av, tUO 0 

La 1 = ( I  - Q ) M ( u )  + f l .  (14) 

Note that, by construction, the operator M" 0 : ~ ---, ~0 is nondegenerate and 

FLI .= .0  -- 0, 

where Fg,, is the Fr~chet derivative of F0 at u. By the implicit function theorem, it follows that there exists 
Do a O 0 o P [ D . , ]  a neighborhood O~o C ( I -  P)[D.o] and a vector function 6 E C (D,, o x R; uo), where Duo = 

such that 
P 

~(t) = ~ ( t )  + ~ ~0 + . ~  e 93' vt e R 
q = l  

, o = Pquo = const for q = 1, . p. Here U~ 1 4) for any u 1 � 9  Uq .. , 
Next, it follows from (11) that QL = L P .  This means that the operator L acts in the spaces 

L: ~t x ---, ~a. Let L1 be the restriction of L to 111. The operator L1 E s ; ~1) is injective by 
construction. Let us establish that it is surjective. Let f l  �9 ~1. Then the element ~ = ~ - 1 f l  �9 co i t a l  
is well defined. Suppose that P~  ~ 0, that is, 

P P 

q = l  q = l  

Then 
P 

L~ = L P ~  + L ( I  - P )~  = E L~~ + L , ( I  - P ) ~  = f l  ~ 51. 
q= 1 
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This is a contradiction. Hence LI:  521 ___, ~: is a continuous bijection, and furthermore,  L -1 is the 
restriction of ~-1 to ~ : .  

It follows from the preceding that  system (14) on D10 can be reduced to the form 

i~ 1 = L - ' ( I  - Q)M(5(u ' ,  t) + (P - Po)uo + U 1) Jr ~(f) = O ( U  1 , t) ,  (15) 

00 1 where �9 e C (Ou0 x R;  52]) and g(t) : L - l f ~ ( t ) .  The unique local solvability of the Cauchy problem 
u](O) = ( I  - P)uo for Eq. (15) is a classical result [12]. The desired quasistationary trajectory has the 
form u(t) = ~(ul ( t ) , t )  + ul ( t ) ,  where u I e C~176  D~o) is the solution of the Cauchy problem for 
Eq. (15). [] 

R e m a r k  3. By analyzing the proof of Theorem 1, one can see that  the initial value can be taken 
arbitrarily from some neighborhood of u0 in ~B ~ . Thus !B t is locally a configuration space. 

w Interpretat ion of  the formal scheme 

Following [5], we reduce problem (2), (4) to problem (5), (6). To this end, we set 

52 = H 2 . x H~ x Hp, ~ = H~, x H~ x Hp,  (16) 

where H~, is the closure with respect to the norm of L2(s = (L2(f~)) n of the linear manifold {v E 
( c ~ ( n ) ) "  : V . v  = 0} of solenoidal vectors, H .  = H i ,  and Hp = H,~. Let r.: L2(n)  --, H .  be the 

orthogonal projection. Then  E E s N l ~ ( f ~ ) ) " ) .  We write i m E  = H~ and ke rE  = H~ and 
define operators L, M :  11 ~ ~ by the formulas 

[ E A , , E  EA,,II ! )  
L : = ~ H A o . E  IIA.IIo ' (17) 

where H = I - E ,  A x = l - x V  2; 

M(~) := | I : B ( u .  + u.)  - u~ ) ,  
\ c(,.,.  + ~,,,) 

(is) 

where BCu. + u . )  := .V2(u .  + u . )  - ((u. + u . ) -  V)(~ .  + u . ) ,  C(~.  + u . )  := - V ( V .  (u.  + u . ) ) ,  
= (~., ~., u,). 

L e m m a  2. Let spaces 12 and ~ be defined by formulas (16), where n = 2, 3, 4, and let operators 
L, M: 52 --* ~ be deigned by formulas (17) and (18). Then 

1) L E s q~); moreover, i f ~ - '  ~ a ( - V 2 ) ,  then kerL = {0}x{0}xHp and i m L  = H . x H = x { 0 } ;  
2) M 6 C0~ 5)- 

P r o o f .  Assertion 1) is obvious, and Assertion 2) can be verified in a straightforward manner.  Let us 
only point out that  

, ( 1 o )  

C 

where B .  (B,~) is the partial Fr6chet derivative of the operator B at the point u~, + u,~ with respect 
to u~ ( ~ ) .  [] 

We set f = ( f , ,  f,~, 0); thus completing the reduction of problem (2), (4) to problem (5), (6). Next, 
let us verify conditions A1)-A4). To verify the validity of A1), we consider the restriction A, , ,  of the 
operator EA,,E to H 2. 
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L e m m a  3. Suppose that the assumptions of Lemma 2 are satist~ed, and moreover, ker A,,a = {0}. 
Then each vector ~o E kerL \ {0} has exactly one M~-associated vector regardless of the point  u E 11. 

P r o o f .  Suppose that  t0 E (0, 0, ~p) E ker L,  ~ ~ 0. Let us find a vector r E 11 such that  L r  = M ~ .  
It follows from (17) and (19) that  

A,,#r + ~A,,r = 0, IIA,,tb~ + HA,,r = -~op. (20) 

By the Solonnikov-Vorovich-Yudovich theorem (see [31) , the inverse operator A~,~ E s  Hg)  exists. 
Hence from (20) we obtain r = -A, ,~,ZA, ,r  It follows that if r = 0, then r  = 0 and ~0p = 0. 
T h u s r 1 6 2  [] 

Let 

Since 

Z - ' =  ~ H A ~ ' Z  IIAT'III0 " (21) 

o) o) 
.L -1L  = r l  o E L ( a ) ,  L L  -1  = IX 0 E F.(~),  

0 0 0 0 

we see that  r = -EA~,l~0p, r = -IIA~',l~p, and the component Cp of the vector r may be arbitrary. 
Next, 

( E ( B ~ r 1 6 2  ) 

Cr 

Since r r O, it follows that Cr ~ 0 [13]. We conclude that M',,r ~ im L regardless of u e ~J. 
Thus condition A1) is satisfied, and moreover, p = 1. Let us verify A2). By A,,,~ we denote the 

restriction of the operator IIA~-,~II to H~.  

L e m m a  4. Under the assumptions of Lemma 3, the operator A,,,~ : H,~ ---* H i is a linear topological 
isomorphism. 

P r o o f .  By construction, A,,,~ E L:(H~, H~).  Let us verify that A,,~ is bijective. Suppose that 
f,~ E kerA,,~. Then AT, lf,~ = u~ E H~,  that  is, f,~ = A, ,u~.  It follows that  A~,aua = 0; hence ua = 0, 
and so f,~ = 0. Thus A,,~ is injective. 

--1 2 Let us prove that  this operator is surjective. Suppose that  u~ E H~.  We set ua = - A , , ~ E A , , u , r  E Ha.  
Then 

~.A,,u~, + EA,,u,~ = 0, IIA,,uo + IIA,,u,r = f,~. 

It follows that  A, , (u~ + u,~) = f,~, that  is, u~ + u,~ = A - l  f,~, u,~ = A,,,~f,~. The proof  is complete. [] 

By Lemma 2, the operator L in (17) is bisplitting. We set ~J~ = kerL and co imL = H~ x H~ x {0} 
and construct the linear manifolds 

By Lemma 4, 

5 0  ~ t 0 M~,0[s = {0} x n p  x {0} = {0} x H~ x {0} C i m L ,  

~o = ~-1[~0] ~AT,'[np] x A,,~[Hp] x {0} -1 -1 2 2 = = EA,, A,,~[H~] x H,~ x {0}. 

5 ~ = M:0[~t~ = EBoA~,'[Hp] x HBoA~,'[Hp] x CA~,I[Hp]. 

Let C be the restriction of C to H i . Since the inversc ~ - l  exists [13], it follows from Lemma 4 that 

= EBoA, ,  A,,,~C [Hp] x IIBoA,, A,,,~C [Hp] x Hp. 
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0 0 and the operator ~-1 Here and in the preceding B0 stands for the Fr4chet derivative of B at u~, + u,~, 
is defined in (21). 

Let us construct the operators 

o) 
P o =  o o , P I =  II o , 

0 H 0 0 

where P~2 -1 -1 = EA,, A,,,flI, and the operators 

o o) (o o o., 
= , = Q 2 3  / qo ' H qo ~ e l  o o 

o o o o  ~ )  
where 

(22) 

(23) 

Q~3 = ~BoA ~-IA..C-1--II~, Q23 = nBoA~e-IA~t~ C-1--1I~, Qo 21 = _IIAxA~ely], Q023 = _ Q 2 1 Q ] 3  _ Q~3.  

One can readily see that the operators Pk 6 s and O~ 6/:(~:) ,  k = 0, 1, axe projections; moreover, 
imPk = II ~ imQk = ~ ,  k = 0 ,1 ,  and PoP~ = P1Po = O, QoQ1 = Q1Qo = o.  Since kerQ~ = 
im(I - Q~) = im L,  it follows that ~ @ im L = ~,  that is, condition A2) is satisfied. 

Condition A3) is satisfied, since Q~f = Ql(fo,, f,~, 0) = (0, 0, 0). 
To verify A4), let us consider the set s = {u E ~ :  P~u = const} = {u 6 g :  u,~ = const}. In our case, 

condition A4) consists of the single equation 

Q1M(u) = Q~3C(u= + u,~) = , 
C(=~ + ~)  

which is satisfied identically [13] provided that u~ = 0. Thus if we set ,~ = {u 6 s : u,. = 0}, then A4) is 
satisfied. 

Let us construct the set ~ t .  By Theorem 1, 

Since 

Q0 

and 

we h a v e  

~ t  = {(u, 0 6 ~ x R :  Qo(M(u) + f( t ) )  = 0}. 

+ t) = ~ (Q~'E + H)B(ur - u n + Q~lfr + f,~(t) = 0 

Q2olE + H = A~,~HA~,*E + A,,,flIA,,-1 -1H = A,,,~HA,,-1 -1 , (24) 

(25) --1 --1 ~ t =  { (u , t )  6 ~ x R :  A,,,fllA,, (B (uv )+  fv(t)) + f ,~ ( t )=uv ,  u~.=O}.  

To prove (24), note that 

HA~,~ A,,~E + HAT,1HA,,E = HA~,~(EA,, + IIA,,)E = O. 

Hence 
--1 --I --1 --1 HA~,IA,,,,E = -A, , ,~IIA, ,E,  AT,;IIA,, A,,,,E = -HA, ,E ,  A,,,~HA,, E = - I IA , ,A , ,~E  = Q~IE. 

We have proved the following theorem. 

T h e o r e m  2. Suppose that the assumptions o[ Lemma 3 are satisfied. Let f 6 C ~ ( R ;  L2(fl)) ,  and let 
(v0, o) e ~0 (see (25)). Then [or some to = t0(v0) there e~sts a unique solution (v, p) o~prob/em (2), (4) 

-1  --1 such that v 6 C ~ ( ( - t 0 , t 0 ) ;  H~) ,  v. = 0 ,  and p= A . . H A , ,  (B(v~.) + fa(t)) + f ,~( t )  

R e m a r k  4. Our formalism for problem (2), (4) is different from the one considered in [2, 3, 14]. 

R e m a r k  5. If we do not intend to construct tile set ~3t, then the proof of Theorem 2 can be simpli- 
fied [6, 7]. 
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