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ABSTRACT--Electronic-speckle-pattern interferometry and 
moir6 interferometry have been used to calculate Kt and J 
for compact tension specimens. Automated-fringe-pattern 
analysis enables the full-field of data to be used with the 
minimum of operator intervention. Measurements are shown 
to be accurate to within 10 percent. The J-measurement 
procedure employed could form the basis of an automatic- 
fault detection system. 

KEY WORDS--fracture mechanics, interferometry: elec- 
tronic recording, moire interferometry. 

I n t r o d u c t i o n  

The opening-mode stress-intensity factor and J integral 
are two parameters commonly used to describe the stress 
concentration at a crack tip. Optical techniques have been 
applied to measure Kz and J, either to determine the severity 
of cracks in a structure or to verify some aspect of fracture- 
mechanics theory. Those techniques which measure surface 
displacement principally include holographic interferome- 
try, ~ moir6 interferometry 2 and speckle photography. 3 Elec- 
tronic-speckle-pattern interferometry 4 (ESPI) is less sensi- 
tive to environmental disturbances than holographic 
interferometry, does not require the application of a surface 
grating (moir6 interferometry) and is not a point-wise mea- 
surement technique like speckle photography. Despite this, 
ESPI has previously been used only to detect the location 
of defects via local increases of fringe density or disconti- 
nuities in the fringe pattern? Very little quantitative analysis 
of the interferograms has been undertaken, mainly because 
manual interpretation of the fringe patterns is laborious. Re- 
cently, automatic extraction of the displacement and strain 
distribution from ESPI fringe patterns recorded for a cen- 
trally notched plate was reported. 6 In this paper, it is dem- 
onstrated how ESPI can be used to measure K 1 and J from 
such displacement and strain measurements. The emphasis 
is on automated-fringe-pattern analysis to take advantage of 
the full-field nature of ESPI measurements. Moir6 interfer- 
ometry has been used to validate the results obtained with 
ESPI. The same automated-fringe-analysis procedures have 
been used for the moir6-interferometry tests; the authors 
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believe this also to be the first automated evaluation of frac- 
ture-mechanics parameters with moir6 interferometry. 

Three HS30TF aluminium-alloy compact-tension (CT) 
specimens were tested, Fig. 1. The specimens were stati- 
cally loaded in a rigid hydraulic tensiometer. The tensi- 
ometer was clamped to the optics table, and hydraulic pres- 
sure applied remotely with a dead-weight tester. The 
specimen dimensions were calculated in proportion to the 
loading pin separation of the tensiometer. A maximum 
specimen thickness, B, of 6.35 mm could be accommodated 
by the tensiometer, insufficient to ensure plane-strain con- 
ditions. This is acceptable because all testing remained in 
the linear-elastic regime, and the value of K I at the onset 
of brittle (plane-strain) fracture, Klc, was not to be deter- 
mined. In order to exclude all plasticity effects, ~4-mm 
notches of width 0.2 mm were introduced by electro-dis- 
charge machining (EDM) rather than fatigue cracking the 
specimens. This is analogous to the use of a slitting saw in 
photoelasticity; although crack acuteness is important at the 
fracture event, notches of width 1.2 mm are acceptable to 
accurately determine the geometrical shape factor, 7 Y, and 
hence K r. Thus for a/W > 0.35, K~ values will be given 
by 8 
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Fig. 1 --Compact tension specimen (dimensions in mm) 
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P 
K I = BWI/----- 5 Y (1) 

where 

(2 + a / W )  y =  
(1 - a / W )  3/2 

• [0.886 + 4 . 6 4 ( a / W )  - 1 3 . 3 2 ( a / W )  2 

+ 1 4 . 7 2 ( a / W )  3 - 5 . 6 ( a / W )  4] 

P is the applied load, and a and W are shown in Fig. 1. 
The a / W  ratios for the three specimens tested (including 
EDM notch) were 0.56, 0.66 and 0.75. These specimens 
were denoted CT1, CT2 and CT3 respectively. The corre- 
sponding Y values from eq (1) are 11.74, 17.83 and 30.04. 

Optical Techniques and Fringe Analysis 
Three-dimensional deformation measurement with ESPI 

can be achieved by combining the displacements measured 
along three mutually perpendicular sensitivity vectors. 
These vectors are determined by the optical configuration 
of the interferometer, and are generally taken to be out-of- 
plane (perpendicular to the page in Fig. 1) and horizontal 
and vertical in-plane (parallel to the x and y axes respec- 
tively). However, measuring displacements ahead of the 
EDM notch in the CT specimens is essentially a two-di- 
mensional problem, End the out-of-plane displacement 
component need not be measured. The illumination config- 
uration required for in-plane sensitive ESPI is shown sche- 
matically in Fig. 2. Mutually coherent laser beams I A and 
18 lie in the x z  plane and are incident on the test surface at 
equal angles, 0, to the x axis. Lens, L, forms a speckled 
image of the test surface along the z axis to camera 2. 
[Camera l, the beamsplitter (PBS) and the beam pair I c ,  
I o are not currently being considered.] The image of the 
undeformed test surface is stored in electronic memory and 
subtracted at the video frame-rate from subsequent live im- 
ages of the deforming surface. A speckled cosinusoidal 
fringe pattern is formed, mapping contours of constant 

| c  ~ y 

Test surface 

(amero 2 (x displaceme sensitivity) 
(Y disptocement sensitivity) 

Fig. 2--Arrangement for interferometer distinguishing hori- 
zontal and vertical in-plane interferograms by polarization 
vector 

phase difference between wavefronts I A and 18, for example 
Figs. 3(a). This phase difference can be related to surface 
displacement in the direction of the sensitivity vector. The 
sensitivity vector for this arrangement lies along the x axis 
and the incremental surface displacement between fringe 
peaks is given by the relationship 

h 
u . . . . . . .  (2) 

2 cos0 

where u is the surface displacement resolved parallel to the 
x axis and h is the wavelength of light used. Rotating the 
illumination beam pair I A, 18 to positions 1 c ,  1D in the y z  
plane (Fig. 2) gives sensitivity to displacements parallel to 
the y axis only, denoted by v. 

The two dimensional in-plane displacement field can be 
measured by illuminating the test surface simultaneously 
with the beam pairs I a, 18 and I o I t ) ,  although the two 
speckle patterns must be optically distinguishable. A polar- 
ization discrimination method has been devised. 9 Beams 
I A and 18 are both linearly polarized perpendicular to the 
plane of incidence, as suggested by the arrows in Fig. 2. 
This azimuth corresponds to one eigenaxis of the polarizing 
beamsplitter (PBS) and the image formed is reflected to 
camera 1. I c and I D are linearly polarized with orthogonal 
azimuths to I A and 18 and hence parallel with the other 
eigenaxis of the beamsplitter. An image of the test surface 
illuminated by I c and I D is formed at camera 2. The speckle 
patterns associated with each illumination beam pair are 
therefore separated; correlation fringes produced from cam- 
era l correspond to displacements parallel to the x axis 
while camera 2 is sensitive to displacements parallel to the 
y axis. Notice that a single viewing lens is used to eliminate 
perspective differences between the images of the test sur- 
face. The success of the technique is dependent on the po- 
larization state of the two speckle fields. The nature of the 
specimen surface contributes to the depolarization of the 
scattered wavefront, and consequently must be considered. 
Lightly abraded metal and silver spray-painted surfaces 
have been demonstrated to work effectively with this tech- 
nique. 9 Cross-hatch abrading was used for the results pre- 
sented in this paper. In the experimental system, beams I a 
and 18 were expanded directly from a 0.5-W argon-ion laser 
(514 nm). I c and I o came from the same laser and were 
guided through highly birefringent optical fiber to the test 
surface. The output ends of the fibers were rotated to give 
polarization vectors orthogonal to l a and 18. Two identical 
CCD cameras were used to view the test area (25 m m •  
25 ram) through a narrow-bandwidth polarizing beamsplit- 
ter cube. Spatial manipulation of camera 1 enabled the two 
views to be matched pixel for pixel. For all beams, 0 = 45 
deg, yielding an ESPI sensitivity of 0.36 ixm/fringe. 

Moir6-interferometry results were recorded with the 
commercially available system Optecord, designed by 
Strathclyde University, Scotland. '~ The system consists of 
a single HeNe laser source which is divided into three 50- 
mm diameter beams which illuminate the measurement re- 
gion along the x, y and 45-deg directions, similar to Fig. 
2. Interference between pairs of the beams can be consid- 
ered to provide stable reference gratings at 0, 45 and 90 
deg to the x axis. A suitable crossed diffraction grating is 
bonded to the object under test. When positioned correctly 
within the measurement region, moir6 interferometry 
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Fig. 3--Typical results. (a) ESPI fringes; (b) ESPI phase map; (c) moire-interferometry phase map 
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fringes corresponding to in-plane displacements in the x, y 
and 45-deg directions are formed between the bonded grat- 
ing and the selected reference grating. For these tests, the 
grating frequency was 950 lines/mm, yielding a moirO-in- 
terferometry sensitivity of 1.05 i.Lm/fringe. Details of grat- 
ing replication are given in the Optecord instruction man- 
ual. l~ The process involves casting a cross-diffraction 
grating in epoxy resin to the specimen surface; the mold is 
a silicone rubber replica made from a master grating. To 
enable reliable grating replication close to the notch tip, the 
notch was plugged with plasticine. Initial tests with the ep- 
oxy-resin grating were found to be unrepeatable on unload- 
ing and reloading the specimens. This was attributed to the 
brittle epoxy pulling away from the specimen surface in the 
region of the notch. Thus silicone rubber gratings, including 
the dye normally used in the epoxy resin, were used for the 
experiments reported here. An extra replication process is 
required: master grating to silicone rubber replica; silicone 
replica to epoxy resin replica; epoxy replica to silicone 
rubber grating cast on the specimen surface. Consequently 
the final grating was generally not of such good quality as 
that cast in epoxy. Measurements with 0 and 90-deg sen- 
sitivities (i.e., horizontal and vertical in-plane) are required 
to define the two-dimensional displacement field. Switching 
between illumination geometries (i.e., reference gratings) 
enabled horizontal and vertical displacements to be re- 
corded sequentially. If desired, simultaneous recording 
along the two sensitivity vectors could be achieved using 
polarization discrimination as described above. 

The fringe analysis 6 implemented to automatically deter- 
mine displacement and strain from the recorded fringe pat- 
terns is beyond the scope of this paper, but will be described 
briefly. ESPI and moird-interferometry fringe patterns re- 
veal the magnitude of displacement, but not its direction 
along the sensitivity vector. This is because the optical- 
phase difference introduced between the interfering wave- 
fronts due to deformation is displayed indirectly by the for- 
mation of fringes. To extract the phase difference a 
translating mirror may be placed in one beam of the inter- 
ferometer. 6 Three fringe patterns are digitized to an image 
processor; precise control of the translating mirror enables 
discrete 2rr/3 radian phase steps to be introduced in one 
beam of the interferometer between recordings. The three 
intensities recorded at corresponding pixels in the three im- 
ages, I o, I2,r/3 and 14~/3, a r e  combined to give the optical 
phase, r at that position in the image. 

12~/3 -- 147/3 
cb = tan -1 (modulo 270 (3) 

21 o - I2~/3 - 14~r/3 

Typical ESPI and moirr-interferometry phase results are 
shown in Figs. 3(b) and 3(c) for loads of 99N and 990N 
respectively. Phase values in the range 0 to 27  radians have 
been linearly scaled from 0 to 255 grey-levels for display. 
Discontinuities in the grey-scale occur due to the asymp- 
totic nature of the arctangent function: it is the sign of these 
discontinuities that determines the direction of surface dis- 
placement and enables automated computer analysis of the 
interferogram. By adding or subtracting a 27r offset every 
time a discontinuity is encountered (a process termed 
phase-unwrapping) the displacement over the entire surface 
can be deduced by the computer. Finally, it is necessary to 
determine surface strain as the rate of change of in-plane 

displacement with respect to the x and y axes. 6 Each pixel 
is considered the center of a 25- X 25-pixel neighborhood, 
and a plane surface fitted to the displacement data in this 
region. The gradient of this plane parallel to the x and y 
axes yields the components of surface strain via 

Ou ,90 
exx OX eyy Oy 

3u do 
= - -  + - -  (4) 

~lxY Oy Ox 

Phase-stepped ESPI was performed with a Kontron pipeline 
image processor, hosted by a DEC MicroVax. Images dig- 
itized by the Kontron (256 • 256 pixels with 8-bit reso- 
lution) may be accessed by the host computer for specific 
image-processing applications implemented in Fortran (for 
example calculating phase, unwrapping, calculating strain, 
calculating K t and J). Phase-stepped moir6 interferometry 
was performed with an Imaging Technology VG100 board 
(again 256 X 256 • 8 bits). Phase maps, for example Figs. 
3(c), were transferred to the MicroVax for all subsequent 
analysis. Notice that the moirr-interferometry image be- 
comes elongated in the vertical direction: the VG100 board 
uses rectangular pixels whereas the Kontron uses square 
pixels. 

Experimental Method 

For each specimen, 248N was applied to prestress the 
loading fixtures. ESPI measurements of displacement par- 
allel to the x axis (u) and y axis (v), i.e., horizontal and 
vertical in-plane, were made at four equal load increments 
above this initial load. Eight phase maps were recorded for 
each specimen: u and v at each of the four loads. Between 
each load increment the electronic subtraction electronics 
were re-referenced. Consequently the phase maps measure 
the incremental displacement between successive loads. 
The displacement at the load line was monitored with a 
clip-gage mounted between knife edges, which were 
screwed to the CT specimens. Calibration proved the clip- 
gage to be linear over the range 0 to 0.7 mm, with reso- 
lution of 0.4 ~m and an accuracy of approximately + 2 
percent. Load line displacements were used to calculate 
strain-energy release rate (see 'Results and Discussion' be- 
low). Table 1 shows the loads applied to each of the three 
specimens (in addition to the initial prestress value) and the 
recorded displacement at the load line. Moir6-interferome- 
try results were recorded for the same three CT specimens 

TABLE 1--APPLIED LOADS AND LOAD LINE 
DISPLACEMENTS (LLD) FOR ESPI TESTS 

Specimen 

CT1 CT2 CT3 
(a/W = 0.56) (a/W = 0.66) (a/W = 0.75) 

Measurement Load LLD Load LLD Load LLD 
Number (N) (#m) (N) (l~m) (N) (~m) 

1 99 10.9 74 16.3 25 11.7 
2 198 22.1 149 32.6 50 21.4 
3 297 36.1 223 47.0 74 33.0 
4 396 48.1 297 61.3 99 43.5 
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with the silicone rubber gratings bonded to the rear surface. 
For each specimen, an upper load limit was determined at 
which the unwrapping routine repeatedly failed for the o 
data due to the high fringe density. Phase maps were then 
recorded at four loads evenly distributed between the pre- 
load and the unwrapping-determined load limit. The load 
increments in addition to the prestress load are shown in 
Table 2, along with the recorded displacement at the load- 
line. Thus eight data files were transferred to the MicroVax 
for each specimen. 

K~ Evaluation from Displacement Measurements 

A least-squares solution originally proposed by Barker et 
al. ~t was used to calculate K x from the u and u displacement 
measurements. This is based on a multi-parameter descrip- 
tion of the displacement field surrounding the crack tip due 
to Sanford. ~2 

N rJ+l/2 
Eu = ~ C 2 j ~  [(1 - v) cos( j  + 1/2)0 

j=0 + 112 

- (1 + v)( j  + 1/2)sin 0 sin(j - 1/2)0] 
N r j+l  

+ ~ C2/+ 1 ~ [2 cos( j  + 1)0 
j=o j +  1 

- (1 + v)(j  + 1 ) s i n  0 s i n  j 0 ]  ( 5 a )  

N r J + l l 2  

Ev = ~ C - -  [2 sin(j + 1/2)0 
j=o 2j j + 1/2 

- (1 + v)( j  + l /2)s in 0 cos( j  - 1/2)0] 

N rj+ l 
+ ~ C2j+ J ~ [(1 -- v) sin(j  + 1)0 

a=0 j +  1 

- (1 + v)( j  + 1)sin 0 cos j0] (5b) 

E and u are Young's modulus and Poisson's ratio, respec- 
tively. Assume that n coefficients [C o to C,, i.e., j = 0 to 
n12 in eqs (5)] are required to adequately describe the dis- 
placement profile over the data-acquisition region. Both u 
and v are linear functions with respect to the unknown co- 
efficients C2j. If  displacement measurements are made at m 
points (m > n) a set of  over-determined linear equations i s  
obtained, which may be expressed in matrix form by 

TABLE 2--APPLIED LOADS AND LOAD LINE 
DISPLACEMENTS (LLD) FOR MOIR[ = INTERFEROMETRY 
TESTS 

i i  

Specimen 

CT1 CT2 CT3 
(a/W = 0.56) (a/W = 0.66) (a/W = 0.75) 

Measurement Load LLD Load LLD Load LLD 
Number (N) (txm) (N) (t~m) (N) (l~m) 

495 60.6 495 103.7 248 116.9 
990 124.2 743 161.5 446 219.3 

1486 186.0 990 214.3 664 320.7 
1981 254.7 1238 279.5 842 418.9 

[Eu] = [S,][C] 

[Ev] = [S~][C] (6) 

[Su] and [So] are m (rows) • n (columns) matrices con- 
taining the constants in (r, 0) from eqs (5), and [Eu] and 
[Ev] are m • 1 matrices of  displacement at the m mea- 
surement points (r~, 0~). The n • 1 elements of the coeffi- 
cient matrix te l  must be determined. Provided that m > n, 
the unknown coefficients can be determined in a least- 
squares sense, i.e., the problem reduces to determining the 
coefficients of the series which produce the best match to 
the displacement measurements at the selected points. K,  is 
related to the leading coefficient by 

Kz 
Co - ~ (7) 

Programs were written to collect (ri, Oi, ui) and (ri, Oi, 
v)  data sets from the unwrapped phase maps from a grid 
of  points. Typically between 300 and 400 measurement 
points were used to minimize random phase errors. An 
eight-parameter solution [ j  = 0 to 4 in eqs (5)], with an 
additional two terms to allow for rigid-body motion, ~ was 
found to model the displacement field accurately. 

J-evaluation from Displacement Measurements 

The contour independent line integral J is defined by ~3 

fF 0. J = (Vdy - T 7 x  ds) (8) 

J may be evaluated for any contour enclosing the crack tip 
and traversed in an anti-clockwise direction, for example 
F t in Fig. 1. u is the displacement vector. V is the strain 
energy density, and may be calculated from the components 
of  surface strain 14 (plane stress) by 

I~ 2 E (s2  + z + 2vs•eyy) + ~ y , ~  (9) 
V~- 2(1 - v 2) syy 

t* is the shear modulus. T =- ~ron j is the traction vector on 
F 1 according to an outward unit vector n (with direction 
cosines n j) normal to the curve. For any contour 

Ox ~ xx q- "rxy rl x 

( O-'-~O q- "rxvSxx) rt v (10) ~- fJ'YY O X " " 

The evaluation of this term is greatly simplified for a rec- 
tangular contour, F z in Fig. 1, because na take the values 0, 
- 1  and 1. The components of  stress ~ria can be evaluated 
from strain measurements using Hooke 's  law ~4 for plane- 
stress conditions, 

E 
%x (1 - v 2 ) ( e ~  + yew) 

E 
~ (1 -- v 2) (syy + ve~)  (11) 

"rx~, = t~%y 
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Provided that the contour passes through linear-elastic ma- 
terial, 

K 2 
J = - -  (12) 

E 

The quantities V, er 0, e~  and Ov/Ox were calculated for 
each pair of phase maps and written to a data file to avoid 
time-consuming recalculation. On defining two opposing 
comers of a rectangular contour, eq (8) was automatically 
evaluated from values read from the data file. Strain data 
were not available immediately adjacent to the notch line, 
due to the use of a 25- x 25-pixel window in calculating 
strain. Thus side 3 of any contour enclosing the notch tip 
will include a length for which no valid data are available. 
V and T O u / O x  are smaller close to the free crack surface 
than at other points on the contour. The omission of a few 
data points makes very little difference to the overall con- 
tour integral. 

R e s u l t s  a n d  D i s c u s s i o n  

K~ measurements for the three CT specimens are shown 
in Fig. 4. The graphs for ESPI, Fig. 4(a), and moire infer- 
ometry, Fig. 4(b), both contain 48 measurement points: two 
(ri, 0i, ui) and two (ri, 0~, vs) data sets gathered at each of 
the four loads for three specimens. The experimentally de- 
termined K I values (ordinate) were calculated from the 
leading coefficient, C 0, of the least-squares fit using eq (7). 
The theoretical K~ values (abscissa) were calculated from 
eq (1) using the loads given in Tables 1 and 2. 

The subtraction electronics were re-referenced between 
each load increment for the ESPI measurements. Each 
phase map therefore measures the incremental displacement 
between successive loads; hence the increase in K1 between 
successive loads is calculated from each phase map. The 
pair of 'incremental' Kr measurements for each phase map 
is seen at the bottom of Fig. 4(a). K 1 is linearly related to 
displacement. Consequently, the mean of each pair of in- 
cremental measurements has been added to give a 'cumu- 
lative' horizontal in-plane (HIP) and vertical in-plane (VIP) 
total for each specimen, Fig. 4(a). An alternative solution 
would be to sum successive displacement measurements be- 
fore collecting the (r i, 0i, u i) and (r~, 0~, v~) data sets. Moire 
interferometry measures this total (cumulative) displace- 
ment giving Kz at each load directly, Fig. 4(b). It is evident 
from both graphs that in some cases the solution calculated 
from vertical in-plane displacement data converges to a 
least-squares hest-}it set of coefficients that does not give 
the leading term correctly. [CT3 VIP in Fig. 4(a), CT1, 
CT2, CT3 VIP in Fig. 4(b).] In fact, a negative K~ value 
was obtained at load 1 from the vertical in-plane moirE- 
interferometry data for CT2. Chona et al. ~s encountered this 
problem in photoelastic studies and proposed a sampled 
least-squares method for analysis of the data, to be used 
"whenever necessary." These erroneous solutions are gen- 
erally consistent for both the data sets taken from each ver- 
tical in-plane phase map, and in some instances increase 
linearly with load [CT3 VIP in Fig. 4(a), CT1, CT2 VIP in 
Fig; 4(b).] Consequently it is not apparent from the vertical 
in-plane K~ values alone when recourse to the sampled 
least-squares solution is necessary, unless the result is 
wildly in error, e.g., negative. Rather than using a sampled 

K, ESPI (MN/m**I.5) 
3 

+ CT1 HIP 
X CT1 VIP J X 

2 [] CT2 HIP / ~  Cumulative 
A CT2 VIP ~ "  
v CT3 HIP v J  X 
0 CT3 VIP 

f *  ~ ~ ~, Incremental 

0 , 

0 1 2 
K, THEORY (MN/m**I.5: 

K MOIRE (MN/m**I.5) 

(a) 

12 

+ CT1 HIP 
10 X CT1 VLP 

[] CT2 HIP 
& CT2 VlP 

8 V CT3 HIP 
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0 
x 0 t, 

4 

2 0 0 

i i i i i i 

0 2 4 6 8 10 12 

(b) 
K ,THEORY (MN/m*'I.5) 

Fig. 4--K1 measurements for CT1, CT2 and CT3. (a) ESPI; 
(b) moire interferometry 

least-squares solution, therefore, only experimental K I val- 
ues calculated from horizontal in-plane phase maps were 
used in the subsequent analysis. 

Deviations between theoretical and experimental K~ val- 
ues arise due to residual speckle noise in the phase data: 
no systematic error is apparent for the horizontal in-plane 
values. The mean difference between two measurements 
taken from the same horizontal in-plane phase map is 0.01 
MN/m 3/2 and 0.35 MN/m 3/2 for the ESPI and moirE-in- 
terferometry tests respectively. This corresponds to a signal- 
to-noise ratio of 36 dB and 30 dB over the respective mea- 
surement ranges of --~0.7 MN/m 3/2 for ESPI and =11.7 
MN/m 3/2 for moire interferometry. All cumulative ESPI 
and moirE-interferometry results fall within + 10 percent 
and + 11 percent respectively of the theoretical values. 
Thus the accuracy of both techniques is comparable. Fig- 
ures 4(a) and 4(b) are combined for a specimen CT2 in Fig. 
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Fig. 5 - -Compar ison of ESPI and moire-interferometry K~ 
measurements for CT2 

5. This emphasizes the sensitivity of  ESPI, although the 
measurement range is significantly less than for moir6 in- 
terferometry. However, it is possible to calculate cumulative 
values with ESPI as demonstrated. 

The J integral should be constant for any contour that 
encloses the notch tip, and zero otherwise. Noise in the 
measured strain data will cause J to vary with the contour 
chosen. In order to study the noise present in J measure- 
ments, the following test was performed. Referring to Fig. 
1 showing the rectangular contour, sides 1, 2 and 4 were 
defined at the edge of available data. Side 3 was then tra- 
versed from the left-hand edge of  the image to the right, 
one pixel at a time. J was calculated for each contour thus 
defined�9 The process was then repeated, but with sides 1, 2 
and 3 at the image edges and side 4 traversed down the 
irhage. This test can be performed very quickly, because 
the required data are available at nearly all points in the 
image (i.e., full-field measurement, and J is evaluated au- 
tomatically). Figure 6 shows the result of continuous vari- 
ation in the position of  side 3 for specimen CT1. ESPI 
measures the J increment between successive loads, Fig. 
6(a), while moir6 interferometry, Fig. 6(b), measures the 
cumulative J value�9 The x position of  the notch tip is in- 
dicated by a vertical line in both graphs. When side 3 is 
positioned to the left of this line, the contour encloses the 
notch tip and J takes a positive, theoretically constant, 
value�9 The notch tip is not enclosed to the right of the line, 
and J falls theoretically to zero. Consider the J measure- 
ment for load 1 in Fig. 6(a). The x values at which local 
maxima and minima occur to the left of  the notch tip have 
been denoted x3 . . . .  and X3.min, respectively�9 Similarly, to the 
right of  the notch tip, the maxima and minima are marked 
at x~ ... .  and XLm~,. With the y positions of sides 2 and 4 
given in the figure, maximum J occurs for side 3 at X3.ma x 
and side 1 at x ~,m~," The minimum value will be given with 
sides 3 and 1 at x3,~j . and x~ . . . . .  respectively. It is possible 
to determine the corresponding values Y2,m.~, Yz,m~., Y4,max 
and Y4.m~. from the plot of J with continuous variation in 
side 4. From these x and y values, two final contours were 
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Fig. 6 D J  variation with contour for CT1. (a) ESPI; (b) moire 
interferometry 

cons t ruc ted :  xl,min, Y2,min, X3 . . . . .  Y4 . . . .  for sides 1 through 4 
respectively giving 'maximum' J, while x t . . . . .  Y2 . . . . .  
X3,min, Ya,min gave a 'minimum.' Clearly not every possible 
J value has been calculated by this procedure, but the two 
contours give a reasonable approximation to the global 
maximum and minimum J values. 

The range of J values calculated for each specimen at 
each load is shown by the error bars in Fig. 7. Incremental 
ESPI measurements are shown at the bottom of Fig. 7(a). 
To determine the cumulative J value, J2 ...... from succes- 
sive incremental measurements K~, J~ and K 2, J2, a rela- 
tionship of  the form J = c K  2 was assumed (c = constant), 
eq (12). Then 

J2 .. . .  = c ( K i  + K2) 2 (13) 

= J1 + 2N/J-I J2 + J2 

The mean value for each measurement has been marked. 
An uncertainty in any single J measurement of 33 percent 
is indicated. Due to the cyclic variation in J with contour 
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Fig. 7 - - J  measurement for CT1, CT2 and CT3. (a) ESPI; (b) 
moir6 interferometry 

position, Fig. 6(a), this can be reduced by averaging several 
measurements. This cyclic variation is possible due to small 
errors in the size of the applied phase-step caused by en- 
vironmental disturbances. The moir6-interferometry results 
for specimen CT1 are shown in Fig. 7(b). The uncertainty 
in a single J measurement is 18 percent. The noise in the 
moir6-interferometry J measurements appears random, Fig. 
6(b). Consequently the uncertainty in J may also be reduced 
by averaging several measurements. 

The expected relationships between J and K 2 under 
plane-stress, eq (12), and plane-strain conditions are plotted 
in Figs. 7(a) and 7(b). A variation is seen between these 
theoretical values and the experimental results. A possible 
explanation is the presence of the EDM notch rather than 
a true stress singularity. The J-evaluation routines were not 
in error, because tests on theoretical data sets gave the ex- 
pected relationship. Secondly the moir6-interferometry 
measurements confirm the ESPI results. As an independent 
check, the values in Tables 1 and 2 were plotted on a graph 

of load against load point displacement. The compliance, 
C, of each specimen is defined as (1/gradient) of the load- 
displacement graph. These values of compliance may then 
be plotted against crack length, from which an estimate of 
OC/Oa was made for each specimen. Compliance testing 
was an early fracture-mechanics technique by which the 
strain-energy release rate, ]6 G, was calculated. 

O = ~ (14) 

For linear-elastic conditions, ~3 J = O. Figure 7 shows the 
best fit line to G values for CT1 and CT3, which bound the 
ESPI measurements. The mean ESPI measuremenl~s~ fall 
within 10 percent of the value calculated from the specimen 
compliance. Moirr-interferometry results also agree well 
with the compliance values. Finally cumulative ESPI and 
moirr-interferometry results are plotted on the same axes 
in Fig. 8. Again this highlights the sensitivity of ESPI and 
the substantially larger dynamic range of moirr-interfer- 
ometry measurements. 

Conclusions 

It is demonstrated that ESPI may be successfully used to 
measure Kz with a signal-to-noise ratio of 36 dB over the 
approximate range of 0.7 M N / m  3/z. All cumulative ESPI 
results fall within + 10 percent of the theoretical values. J 
values averaged over several contours agree to within 10 
percent with compliance measurements. Averaging over 
several contours 2"3 is a procedure adopted with other optical 
techniques to measure J. All results are verified with phase- 
stepped moirr-interferometry measurements made from the 
same specimens: K~ values from molt6 interferometry show 
a signal-to-noise ratio of 30 dB over the approximate mea- 
surement range of 11.7 MN/m3/2; systematic errors in J of 
+ 18 percent have been recorded for J < 1200 N/m. 
Moirr-interferometry and ESP1 results were in excellent 
agreement. This comparison highlights the sensitivity of 
ESPI, although the measurement range is significantly less 
than for moir6 interferometry. However, it is possible to 
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calculate cumulative values with ESPI as demonstrated. 
Both techniques have their niche. Moir~ interferometry is 
useful for relatively large-scale deformation (e.g. plasticity) 
when coherent interferometric conditions would be lost for 
ESPI. However, moir6 interferometry requires a reference 
phase grating to be bonded to the specimen surface, which 
must be relatively flat. ESPI can be used for objects of 
arbitrary surface profile without the need to apply a surface 
grating. Also, dynamic studies involving pulsed ESPI 
would be well suited to this sensitivity range: the pulse 
separation can be adjusted to vary the sensitivity further. 
Processing the displacement data takes approximately one 
minute for Kj and 10 minutes for J. Finally, the procedure 
for determining the range of J values, Fig. 6, could form 
the basis of an automatic fault-detection system. 
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