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Abstract

We consider a family of linearly elastic shells with thickness 2e; clamped
along their entire lateral face, all having the same middle surface
S � u�x� � R3

; where x � R2 is a bounded and connected open set with a
Lipschitz-continuous boundary c; and u 2 C3

�x;R3
�: We make an essential

geometrical assumption on the middle surface S; which is satisfied if c and u

are smooth enough and S is ‘‘uniformly elliptic’’, in the sense that the two
principal radii of curvature are either both > 0 at all points of S; or both < 0
at all points of S:

We show that, if the applied body force density is O(1) with respect to e;
the field u�e� � �ui�e��; where ui�e� denote the three covariant components of
the displacement of the points of the shell given by the equations of three-
dimensional elasticity, once ‘‘scaled’’ so as to be defined over the fixed do-
main X � x�� ÿ 1; 1�; converges in H1

�X� � H1
�X� � L2

�X� as e ! 0 to a
limit u; which is independent of the transverse variable. Furthermore, the
average f � 1

2

R 1
ÿ1udx3; which belongs to the space

VM �x� � H1
0 �x� � H1

0 �x� � L2
�x�;

satisfies the (scaled) two-dimensional equations of a ‘‘membrane shell’’ viz.,
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for all g � �gi� 2 VM�x�; where aabrs are the components of the two-dimen-
sional elasticity tensor of the surface S;

cab�g� �
1
2�@agb � @bga� ÿ Cr

abgr ÿ babg3

are the components of the linearized change of metric tensor of S;Cr
ab are the

Christoffel symbols of S; bab are the components of the curvature tensor of S;
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and f i are the scaled components of the applied body force. Under the above
assumptions, the two-dimensional equations of a ‘‘membrane shell’’ are
therefore justified.
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Introduction

This is the first part of a three-part work, the second (CIARLETIARLET, LODSODS &
MIARAIARA [1996]) and third (CIARLETIARLET & LODSODS [1996]) being henceforth simply
referred to as ‘‘Part II’’ and ‘‘Part III’’.

Lower-dimensional plate, shell, and rod theories that rely on a priori
assumptions of a mechanical or geometrical nature have been proposed by
CAUCHYAUCHY, SOPHIEOPHIE GERMAINERMAIN, KIRCHHOFFIRCHHOFF, VONVON KARMANÁRMÁN, LOVEOVE, REISSNEREISSNER,
JAKOBAKOB BERNOULLIERNOULLI, NAVIERAVIER, EULERULER, POISSONOISSON, the COSSERATSOSSERATS, DONNELLONNELL,
FLUGGELÜGGE, TIMOSHENKOIMOSHENKO, NOVOZHILOVOVOZHILOV, VEKUAEKUA, GREENREEN, KOITEROITER, SIMMONDSIMMONDS,
NAGHDIAGHDI, and others.

There are two reasons why these lower-dimensional theories are often
preferred to the three-dimensional theory that they are supposed to ‘‘replace’’
when the thickness, or the diameter of the cross section, is ‘‘small enough’’.

One reason is their simpler mathematical structure, which in turn gen-
erates a richer variety of results. For instance, the existence, regularity, or
bifurcation theories, and more generally ‘‘global analysis’’, are by now on
firm mathematical grounds for nonlinearly elastic rods (see ANTMANNTMAN [1995]
for a scholarly and comprehensive exposition) or for nonlinearly elastic von
Kármán plates (see CIARLETIARLET & RABIERABIER [1980]). By contrast, these theories are
still partly in their infancies in nonlinear three-dimensional elasticity (see
MARSDENARSDEN & HUGHESUGHES [1978] and CIARLETIARLET [1988] for comprehensive surveys):
After the fundamental ideas set forth by BALLALL [1977], who was able to es-
tablish the existence of a minimizer of the energy for a wide class of realistic
nonlinearly elastic materials, there indeed remain manifold challenging open
problems; for instance, there is no known set of sufficient conditions guar-
anteeing that such a minimizer satisfies the equilibrium equations even in the
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weak sense of the principle of virtual work (another existence theory, based
on the implicit function theorem, does not share this drawback, but it is
restricted to problems with very smooth data and especially, to special
boundary conditions, unrealistic in practice; see CIARLETIARLET [1988] and the
comprehensive treatment of VALENTALENT [1988]). The origin of this discrepancy is
the semi-linearity of most lower-dimensional equations modeling nonlinearly
elastic plates, shells, and rods, as opposed to the quasi-linearity of the
equations of nonlinear three-dimensional elasticity.

Another virtue of lower-dimensional theories is their far better amen-
ability to numerical computations. For instance, directly approximating the
three-dimensional displacement field of a cooling tower seems out of reach at
the present time, even in the linearly elastic realm: The existing codes use
two-dimensional equations, such as those of KOITEROITER; see BERNADOUERNADOU [1994]
for a comprehensive account. Likewise, although substantial progress has
recently been achieved for directly approximating the ‘‘three-dimensional’’
displacement field of a linearly elastic rectangular plate (see BABUSKAABUŠKA & LII

[1992] and SCHWABCHWAB [1996]), current codes are almost invariably based on
two-dimensional equations, such as those of the Kirchhoff-Love or Reissner-
Mindlin models. Be that as it may, the locking phenomenon that arises in the
numerical approximation of two-dimensional plate or shell equations still
pose challenging problems; see in particular BREZZIREZZI, FORTINORTIN & STENBERGTENBERG

[1991], PITKARANTAITKÄRANTA [1992], CHENAISHENAIS & ZERNERERNER [1993], ARNOLDRNOLD & BREZZIREZZI

[1993, 1995], CHENAISHENAIS & PAUMIERAUMIER [1994], ZERNERERNER [1994], PAUMIERAUMIER [1995].
Lower-dimensional models being thus widely used, two essential, and in

fact intimately related, questions arise:
Given a ‘‘lower-dimensional’’ elastic body, together with specific loadings

and boundary conditions, how to choose between the manifold lower-dimen-
sional models that are available? For instance, given a linearly elastic shell,
which model should be preferred, among those of KOITEROITER, NAGHDIAGHDI,
NOVOZHILOVOVOZHILOV, BUDIANSKYUDIANSKY & SANDERSANDERS? This question is of paramount prac-
tical importance, for it makes no sense to devise accurate methods for ap-
proximating the solution of a ‘‘wrong’’ model! Consequently, before
approximating the exact solution of a given lower-dimensional model, we
should first know whether it is ‘‘close enough’’ to the exact solution of the
three-dimensional model it is intended to approximate. This observation
leads to the second question:

How to mathematically justify in a rational fashion a lower-dimensional
model from the three-dimensional model? This question has been answered
through three different approaches.

The first approach consists in directly estimating the difference between the
three-dimensional solution and the solution of a given, i.e., ‘‘known in advance’’,
lower-dimensional model (this difference makes sense once the three-dimen-
sional solution is properly averaged or the lower-dimensional one is extended
in some fashion to a three-dimensional field). For linearly elastic plates, the
first such estimate seems to be due to MORGENSTERNORGENSTERN [1959], who cleverly
used the dual variational principle of the linear theory; see also MORGEN-ORGEN-
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STERNSTERN & SZABOZABÓ [1961], NORDGRENORDGREN [1971], SIMMONDSIMMONDS [1971a], SHOIKETHOIKET

[1976], KOHNOHN & VOGELIUSOGELIUS [1985]. This approach was likewise successfully
applied to linearly elastic shells by KOITEROITER [1970] and SIMMONDSIMMONDS [1971b].

The second approach consists in using the constraint method, whose
governing principle is an a priori assumption that the admissible displacement
fields are restricted to a specific form. For a plate (to fix ideas), such ‘‘test
functions’’ are finite sums of products of unspecified functions of the in-plane
variables times given linearly independent functions of the ‘‘transverse’’
variable. The functions of the in-plane variables are then determined by
inserting these test functions into the three-dimensional equations or into the
three-dimensional energy, a process that leads to the solution of a finite
number of two-dimensional boundary-value problems. Increasing the num-
ber of linearly independent functions of the transverse variable thus yields a
‘‘hierarchy’’ of models, which may be deemed two-dimensional, inasmuch as
they are determined by solving two-dimensional problems.

References to this approach are numerous. For plates, we refer to
NAGHDIAGHDI [1972], PODIOODIO-GUIDUGLIUIDUGLI [1989], DESTUYNDERESTUYNDER [1980, Ch. 5], MIARAIARA

[1989], SCHWABCHWAB [1996]; for rods, to MIARAIARA & TRABUCHORABUCHO [1992], MASCAR-ASCAR-

ENHASENHAS & TRABUCHORABUCHO [1992], FIGUEIREDOIGUEIREDO & TRABUCHORABUCHO [1993], ANTMANNTMAN [1972,
1995]; for shells, to NAGHDIAGHDI [1972], FIGUEIREDOIGUEIREDO & TRABUCHORABUCHO [1992], PODIOODIO-
GUIDUGLIUIDUGLI [1990]; for a general analysis, to ANTMANNTMAN [1976], ANTMANNTMAN &
MARLOWARLOW [1991].

The two approaches described so far nevertheless rely on some a priori
assumptions of a mechanical or geometrical nature, intended to account for
the ‘‘smallness’’ of a geometrical parameter and intended to be more effective
as this parameter approaches zero. Hence the need arises to mathematically
justify these a priori assumptions, together with the lower-dimensional theories
they engender, directly from three-dimensional elasticity. Otherwise, these
assumptions and theories can be thought of as being ‘‘handed down by some
higher power (a Hungarian wizard, say)’’, to quote TRUESDELLRUESDELL [1977, p. 601].

This direct justification is achieved by the third approach, which consists
in applying an asymptotic method. It has recently received considerable at-
tention, as exemplified by the books of CIARLETIARLET [1990, 1997a] and LEE DRETRET

[1991] for plates; LEE DRETRET [1991] and TRABUCHORABUCHO & VIANOIAÑO [1996] for beams
(straight rods); CIARLETIARLET [1997b] for shells.

In a formal asymptotic method, the three-dimensional solution (the dis-
placement field and, in some cases, the stress field) is first ‘‘scaled’’ in an
appropriate manner so as to be defined on a fixed domain, then expanded as
a formal series expansion in terms of a ‘‘small’’ parameter e, which is the
‘‘dimensionless’’ half-thickness of a plate or a shell, or the ‘‘dimensionless’’
half-diameter of the cross section of the rod. ‘‘Dimensionless’’ means that e
measures the ratio between the thickness or diameter and some ‘‘character-
istic’’ dimension. For a cooling tower for instance, where common values for
the average thickness and height are 0.3 m and 150 m, the ratio 2e is thus
equal to 1

500. It is worthwhile to keep in mind this order of magnitude.
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The formal series expansion of the scaled solution is then inserted into the
three-dimensional boundary-value problem, and sufficiently many factors of
the successive powers of e found in this fashion are equated to zero until the
leading term of the expansion can be computed and, hopefully, identified
with the scaled solution of a known lower-dimensional problem. Such a
method is ‘‘formal’’ in that the successive terms of the expansion, except the
leading one, cannot usually ‘‘fully satisfy’’ the boundary conditions of the
three-dimensional problem. This situation is typical of such singular pertur-
bations problems; see, in this respect, the comprehensive treatments given in
LIONSIONS [1973] and ECKHAUSCKHAUS [1979] (there are however ‘‘exceptional’’ bound-
ary conditions for which all the terms can be computed and the convergence
of the series even established; PAUMIERAUMIER [1991] has found such an occurrence
for a rectangular plate).

The fundamental contributions of FRIEDRICHSRIEDRICHS & DRESSLERRESSLER [1961] and
GOLDENVEIZEROLDENVEIZER [1962, 1964] for plates, RIGOLOTIGOLOT [1972, 1976] for rods,
GOLDENVEIZEROLDENVEIZER [1963, 1964] for shells, are among the first successful attempts
to apply formal asymptotic methods in linearized elasticity. Some restrictions
or a priori assumptions were however still needed. For instance, FRIEDRICHSRIEDRICHS

& DRESSLERRESSLER [1961, p.4] and GOLDENVEIZEROLDENVEIZER [1962, eqs. (1.1) and (1.3)] as-
sume that the three components of the body force and the in-plane com-
ponents of the surface force vanish; GOLDENVEIZEROLDENVEIZER [1962, p. 1001] a priori
assumes that the required state of strain and stress is skew-symmetrical about
the middle plane, etc. Another shortcoming is the lack of convergence the-
orems, essentially because the asymptotic method is applied in these works to
the partial differential equations of the three-dimensional problem; in this
case, convergence results usually rely on a maximum principle (see Eckhaus
[1979]), which does not hold for the system of linearized three-dimensional
elasticity.

CIARLETIARLET & DESTUYNDERESTUYNDER [1979a,b] applied instead the formal asymptotic
method to the weak, or variational, formulation of the boundary value
problem of three-dimensional linearly and nonlinearly elastic plates. Without
making any a priori assumption, they justified in this fashion the linear and
nonlinear Kirchhoff-Love plate theories: only the magnitudes of the compo-
nents of the applied loads and of the Lamé constants must be ‘‘scaled’’ as
appropriate powers of the thickness, but, as shown in a systematic way by
MIARAIARA [1994a, 1994b], such scalings are unavoidable. The approach of
CIARLETIARLET & DESTUYNDERESTUYNDER was then extended to von Kármán plates by CIARLETIARLET

[1980], to Marguerre-von Kármán shallow shells by CIARLETIARLET & PAUMIERAUMIER

[1986] and BUSSEUSSE [1996], to general nonlinear constitutive equations by DAVETAVET

[1986], to nonlinear elastodynamics by RAOULTAOULT [1988] and KARWOWSKIARWOWSKI

[1993], to plates with rapidly varying thickness by QUINTELAUINTELA-ESTEVEZSTEVEZ [1989].
By allowing a larger class of scalings on the applied loads, FOXOX, RAOULTAOULT &
SIMOIMO [1993] were also able to justify in this fashion two-dimensional quasi-
linear plate equations that are valid for ‘‘large’’ deformations and ‘‘in-
variant’’, in that they share the same invariances as the three-dimensional
theory (while MIARAIARA assumed at the onset that the nonlinear two-dimen-
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sional models found by the formal asymptotic method had to reduce to the
classical ones once linearized, this assumption is not made by Fox, RAOULTAOULT

& SIMOIMO, who were thus able to consider other families of scalings). The one-
dimensional equations of a nonlinearly elastic beam (straight rod) were
likewise justified by CIMETIEREIMETIÈRE, GEYMONATEYMONAT, LEE DRETRET, RAOULTAOULT & TUTEKUTEK

[1988] and KARWOWSKIARWOWSKI [1990]. Nonlinear rod theory has also been related to
the three-dimensional theory by MIELKEIELKE [1988, 1990], who justified St. Ve-
nant’s principle by a remarkable use of the center-manifold theorem.

The most noticeable virtue of the asymptotic method applied to the weak
formulation of elasticity problems is its amenability to a rigourous asymp-
totic analysis, which shows that the three-dimensional scaled solution con-
verges in some Hilbert spaces (H1 or L2) to the leading term of the formal
asymptotic expansion. Such convergence theorems have been established by
DESTUYNDERESTUYNDER [1980, 1981], CAILLERIEAILLERIE [1980], CIARLETIARLET & KESAVANESAVAN [1981],
KOHNOHN & VOGELIUSOGELIUS [1984, 1985, 1986], RAOULTAOULT [1985], BLANCHARDLANCHARD &
FRANCFORTRANCFORT [1987], CIORANESCUIORANESCU & SAINTAINT JEANEAN PAULINAULIN [1995], DESTUYNDERESTUYNDER

& GRUAISRUAIS [1995], DAUGEAUGE & GRUAISRUAIS [1996], AGANOVICGANOVIĆ, MARUSICARUŠIĆ-PALOKAALOKA &
TUTEKUTEK [1995] for linearly elastic plates (see also CIARLETIARLET [1990, 1997a] and
the works cited therein), CIARLETIARLET & MIARAIARA [1992], BUSSEUSSE, CIARLETIARLET & MIARAIARA

[1996] for linearly elastic shallow shells, BERMUDEZERMUDEZ & VIANOIAÑO [1984], AGA-GA-

NOVICNOVIĆ & TUTEKUTEK [1986], GEYMONATEYMONAT, KRASUCKIRASUCKI & MARIGOARIGO [1987], TRABUCHORABUCHO

& VIANOIAÑO [1987], RAOULTAOULT [1988], VEIGAEIGA [1995], LEE DRETRET [1995] for linearly
elastic beams (see also the comprehensive survey of TRABUCHORABUCHO & VIANOIAÑO

[1996] and the works cited therein). The proofs essentially rely on the ideas
and methods described and developed in LIONSIONS [1973] for analyzing ‘‘ab-
stract’’ linear variational problems that contain a small parameter.

Convergence theorems can also be obtained from C-convergence theory,
as in BOURQUINOURQUIN, CIARLETIARLET, GEYMONATEYMONAT & RAOULTAOULT [1992] and ANZELLOTTINZELLOTTI,
BALDOALDO & PERCIVALEERCIVALE [1994] for linearly elastic plates, and also linearly elastic
beams in the latter reference. Nonlinear ‘‘membrane’’ models that are ‘‘in-
variant’’ and valid for ‘‘large’’ deformations have also been obtained in this
fashion by LEE DRETRET & RAOULTAOULT [1993, 1995a, 1995b], who themselves based
their approach on that of ACERBICERBI, BUTTAZZOUTTAZZO & PERCIVALEERCIVALE [1991] for strings.
Special mention must also be made of the approach of MIELKEIELKE [1995], who
keeps the thickness fixed, but lets the lateral boundary of the plate ‘‘go away
to infinity’’.

Let us now turn to the central theme of the present work, shell theory.
After the earlier formal attempts of GOLDENVEIZEROLDENVEIZER (cited supra) for lin-

early elastic shells, a first major step was achieved by DESTUYNDERESTUYNDER [1980] in
his thesis (see also DESTUYNDERESTUYNDER [1985]), where a convergence theorem for
membrane shells was ‘‘almost’’ proved (further comments are given in Sec. 7
of this paper). Another major step is due to SANCHEZANCHEZ-PALENCIAALENCIA [1990], who
clearly delineated specific geometrical and kinematical assumptions that yield
either the two-dimensional membrane shell model or the two-dimensional
flexural shell model, when the formal asymptotic expansion method is applied
to the variational equations of three-dimensional linearized elasticity (see
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also CAILLERIEAILLERIE & SANCHEZANCHEZ-PALENCIAALENCIA [1995]) and MIARAIARA & SANCHEZANCHEZ-
PALENCIAALENCIA [1996]. Of particular interest are also the convergence theorems
obtained by ACERBICERBI, BUTTAZZOUTTAZZO & PERCIVALEERCIVALE [1988] by means of techniques
of C-convergence (we again refer to Sec. 7 for more detailed comments).

For nonlinearly elastic shells, a first noteworthy achievement is due to
JOHNOHN [1965, 1971], who showed that, in the absence of surface loads and
‘‘away from the edge’’, the state of stress is ‘‘approximately planar’’, and that
the stresses ‘‘parallel to the middle surface’’ vary ‘‘approximately linearly’’
across the thickness if the thickness is sufficiently small. These remarkable
results laid the ground for the two-dimensional, linear and nonlinear, shell
theories of KOITEROITER [1966, 1970] and KOITEROITER & SIMMONDSIMMONDS [1973]. However, in
spite of their elegance and depth, JOHN’SOHN’S results hold only for special cases of
loadings; besides, they do not provide information ‘‘up to the boundary’’ (of
the middle surface of the shell), let alone about the boundary conditions of
the associated two-dimensional problem.

Again for nonlinearly elastic shells, the formal asymptotic method has
been successfully applied by RAOAO [1994] to spherical shells, and to ‘‘general’’
shells by MIARAIARA [1994c, 1995], LODSODS & MIARAIARA [1995], who showed that the
leading term of the formal asymptotic expansion can be identified with the
solution of nonlinear two-dimensional membrane or flexural equations, ac-
cording to specific geometrical or kinematical assumptions as in the linear
case. A convergence theorem has also been obtained by LEE DRETRET & RAOULTAOULT

[1995c, 1996], who also used C-convergence theory to obtain nonlinear
‘‘membrane’’ shell models that are ‘‘invariant’’ and valid for ‘‘large’’ de-
formations.

In this three-part work, we analyze the asymptotic behavior of the scaled
three-dimensional displacement field of a linearly elastic shell as the thickness
approaches zero. Under two distinct sets of assumptions on the geometry of
the middle surface, on the boundary conditions, and on the order of mag-
nitude of the applied forces, convergence theorems in H1 or L2 are established
that justify either the linear two-dimensional equations of a ‘‘membrane shell’’
(Part I), or those of a ‘‘flexural shell’’ (Part II). Combining these convergences
with results of DESTUYNDERESTUYNDER [1985] and SANCHEZANCHEZ-PALENCIAALENCIA [1989a,b, 1992],
we also justify the two-dimensional linear shell model of KOITEROITER, under similar
sets of assumptions (Part III). Our results have been announced in CIARLETIARLET

& LODSODS [1994b], CIARLETIARLET, LODSODS & MIARAIARA [1994] and CIARLETIARLET & LODSODS

[1995a].
We use the following conventions and notations throughout this work:

Greek indices and exponents (except e) belong to the set f1; 2g, Latin indices
and exponents (except when otherwise indicated, as e.g. when they are used
to index sequences) belong to the set f1; 2; 3g, and the summation convention
with respect to repeated indices and exponents is systematically used. The
sign := indicates that the right-hand side defines the left-hand side. Symbols
such as da

b; d
ij
; dij, etc., designate Kronecker’s symbol. The Euclidean scalar

product and the vector product of a; b 2 R3 are noted a � b and a � b; the
Euclidean norm is noted j � j.
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Let A be an open subset in a finite-dimensional Euclidean space. For each
integer m, Hm

�A� and jj � jjm;A denote the usual Sobolev spaces of real-valued
functions �H0

�A� � L2
�A��. Boldface letters denote vector-valued or tensor-

valued functions and their associated function spaces; for instance,
v � �vi� 2 L2

�X� means that vi 2 L2
�X�; i � 1; 2; 3; jjvjj0;X � fRijjvijj

2
0;Xg

1=2,
etc. In order to avoid clumsy style and notations, we often deliberately
perpetrate various abuses of language. In particular, we blithely ignore that
families and sequences are not identical; likewise, we do not systematically
mention that some equalities hold only almost everywhere (in some specific
sense that should always be clear from the context).

1. The three-dimensional shell problem

All notions of differential geometry needed for shell theory may be found,
e.g., in GREENREEN & ZERNAERNA [1968], NIORDSONIORDSON [1985], and CIARLETIARLET [1997b]. Let
x be a bounded, open, and connected subset of R2, with a Lipschitz-con-
tinuous boundary c, the set x being locally on one side of c. Ley y � �ya�

denote a generic point in the set x, and let @a :� @=@ya. Let u : x ! R3 be an
injective mapping of class C3 such that the two vectors

aa�y� :� @au�y�

are linearly independent at all points y 2 x. They form the covariant basis of
the tangent plane to the surface

S � u�x�

at the point u�y�; the two vectors aa
�y� of the same tangent plane defined by

the relations

aa
�y� � ab�y� � da

b

constitute its contravariant basis. We also define the unit vector

a3�y� � a3
�y� :�

a1�y� � a2�y�
ja1�y� � a2�y�j

;

which is normal to S at the point u�y�:
One then defines the first fundamental form, also known as the metric

tensor, �aab� or �aab
� (in covariant or contravariant components), the second

fundamental form, also known as the curvature tensor, �bab� or �bb
a� (in cov-

ariant or mixed components), and the Christoffel symbols Cr
ab; of the surface S

by letting (whenever no confusion should arise, we henceforth drop the ex-
plicit dependence on the variable y 2 x):

aab :� aa � ab; aab
:� aa

� ab
;�1:1�

bab :� a3
� @baa; bb

a :� abrbra;�1:2�

Cr
ab :� ar

� @baa:�1:3�
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Note the symmetries:

aab � aba; aab � aba
; bab � bba; Cr

ab � Cr
ba:

The area element along S is
���

a
p

dy, where

a :� det�aab�:�1:4�

All the functions defined in (1.1)–(1.4) are at least continuous over the set x.
In particular, there exists a constant a0 such that

0 < a02a�y� for all y 2 x:�1:5�

For each e > 0, we define the sets

X e
� x��;ÿe; e�; C e

�
� x� feg; C e

ÿ
� x� fÿeg; C e

0 � c� �ÿe; e�:

Note that Ce
�
[ Ce

ÿ
[ C e

0 constitutes a partition of the boundary of the set X e.
Let x e

� �x e
i � denote a generic point in the set X

e
, and let @ e

i :� @=@x e
i ; hence

x e
a � ya and @

e
a � @a.

We then define a mapping U : X e
! R3 by letting

U�x e
� :� u�y� � x e

3a3
�y� for all x e

� �y; x e
3� 2 X e

:�1:6�

One can then show (cf. CIARLETIARLET & PAUMIERAUMIER [1986, Prop. 3.2]) that there
exists e0 > 0 such that the three vectors

. e
i �x

e
� :� @

e
iU�x

e
�

are linearly independent at all points x e
2 X e and the mapping U : X e

! R3

is injective for all 0 < e2e0. The injectivity of the mapping U : X e
! R3,

which itself relies on the assumed injectivity of the mapping u : x ! R3,
ensures in particular that the physical problem described below is mean-
ingful.

The three vectors . e
i �x

e
� form the covariant basis (of the tangent space,

here R3, to the manifold U�X e
�� at the point U�x e

�, and the three vectors
. i;e

�x e
� defined by

. j;e
�x e

� � . e
i �x

e
� � dj

i

form the contravariant basis. We then define the metric tensor �g e
ij� or �gij;e

�

(in covariant or contravariant components) and the Christoffel symbols of the
manifold U�X e

� by letting (we omit explicit dependence on x e)

g e
ij :� . e

i � .
e
j; gij;e

:� .i;e
� .j;e

;�1:7�

Cp;e
ij :� .p;e

� @
e
i.

e
j:�1:8�

Note the symmetries:

gij
e
� gji

e
; gij;e

� gji;e
; Cp;e

ij � Cp;e
ji :�1:9�

The volume element in the set U�X e
� is

�����

g e
p

dx e
; where

g e
:� det�gij

e
�:�1:10�
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For each 0 < e2e0; the set U�X
e
� is the reference configuration of an

elastic shell, with middle surface S � u�x� and thickness 2e: We assume that
the material constituting the shell is homogeneous and isotropic and that
U�X e

� is a natural state, so that the material is characterized by its two Lamé
constants k e

> 0 and l e
> 0: The unknown of the problem is the vector field

u e
� �ui

e
� : X e

! R3
; where the three functions ui

e
: X e

! R are the cov-
ariant components of the displacement field ui

e.i;e of the points of the shell;
this means that ui

e
�x e

�.i;e
�x e

� is the displacement of the point U�x e
�: Finally,

we assume that the shell is clamped along its whole ‘‘lateral’’ face U�C0
e
�; i.e.,

that the displacement vanishes there (the subsequent analysis does not apply
if the shell is only clamped over a portion of its lateral face, of the form
U�c0 � �ÿe; e��; with c0 � c; cf. Sec. 7).

Then it is classical (cf., e.g., CIARLETIARLET [1997b]) that the variational for-
mulation of the corresponding three-dimensional problem of linearized elas-
ticity reads as follows, when it is expressed in terms of the curvilinear
coordinates xi

e of the reference configuration U�X e
� : The unknown

u e
� �ui

e
� satisfies

u e
2 V�X e

� :� fv e
� �v e

i � 2 H1
�X e

�;v e
� 0 on C0

e
g;�1:11�

Z

X e

Aijkl;ee e
kkl�u

e
�eikj

e
�v e

�

�����

g e
p

dx e
�

Z

X e

f i;evi
e �����

g e
p

dx e for all v e
2 V�X e

�;

�1:12�

where

Aijkl;e
:� k egij;egkl;e

� l e
�gik;egjl;e

� gil;egjk;e
��1:13�

designate the contravariant components of the three-dimensional elasticity
tensor,

eikj
e
�v e

� :�
1
2�@i

evj
e
� @j

evi
e
� ÿ Cp;e

ij vp
e

�1:14�

designate the covariant components of the linearized strain tensor associated
with an arbitrary displacement field vi

e.i;e of the set U��X e
�; f i;e

2 L2
�X e

� are
the contravariant components of the applied body force density. Note the
symmetries

Aijkl;e
� Ajikl;e

� Aklij;e
:�1:15�

Surface forces on U�C e
�
[ C e

ÿ
� may be also taken into account, at the

expense however of various additional technicalities in the ensuing asymp-
totic analysis. For this reason, they are treated separately, in Sec. 6.

The three-dimensional shell problem (1.11)–(1.12) has one and only one
solution for each e > 0: To see this, one may express it in Cartesian co-
ordinates and then use the classical Korn inequality, as in, e.g., DUVAUTUVAUT &
LIONSIONS [1972, p. 115]. The V�X e

�-ellipticity of the bilinear form appearing in
(1.12) may also be directly established in curvilinear coordinates, as in
CIARLETIARLET [1997b].
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Definitions (1.7)–(1.10) apply verbatim to a general manifold U�X e
�;

where X e is any bounded, open, connected subset of R3 with a Lipschitz-
continuous boundary, and U : X e

! R3 is any injective mapping of class C1

such that the three vectors @i
eU�x e

� are linearly independent at all points
x e

2 X e
; the elasticity tensor �Aijkl;e

� of a linearly elastic material with Lamé
constants k e and l e

; occupying the set U�X e
� in its reference configuration, is

likewise always given by (1.13). Note however that, when the set X e is of the
special form X e

� x�� ÿ e; e� and the mapping U is of the special form (1.6)
as here, the following additional relations are satisfied:

C3;e
a3 � Cp;e

33 � 0 in X e
;�1:16�

Aabr3;e
� Aa333;e

� 0 in X e
:�1:17�

Remark. Shells whose middle surface has no boundary, such as an ellipsoid or
a torus, are not covered by the present asymptotic analysis (nor by those of
Parts II and III), which applies to surfaces S that can be described by a single
injective mapping u : x ! R3

: The needed corresponding two-dimensional
existence theory is however available; cf. RAMOSAMOS [1995].

2. The ‘‘scaled’’ three-dimensional shell problem
over a domain independent of e

Let

X � x�� ÿ 1; 1�; C� � x� f1g; Cÿ � x� fÿ1g; C0 � c0 � �ÿ1; 1�;

let x � �xi� denote a generic point in the set X; and let @i � @=@xi: With
x e

� �xi
e
� 2 X e

; we associate the point x � �xi� 2 X defined by
xa � xa

e
�� ya� and x3 � �1=e�x3

e
; we thus have @a

e
� @a and @3

e
� �1=e�@3:

With the unknown u e
� �ui

e
� : X e

! R3 and the vector fields
v e

� �vi
e
� : X e

! R3 appearing in the three-dimensional problem (1.11),
(1.12), we associate the scaled unknown u�e� � �ui�e�� : X ! R3 and the scaled
vector fields v � �vi� defined by

ui�e��x� � ui
e
�x e

� and vi�x� � vi
e
�x e

� for all x e
2 X e

:�2:1�

Note that, in relations (2.1) and (2.3)–(2.6) infra, it is understood that x
stands for the point of X that is associated with the point x e

2 X e as in-
dicated above.

We next make the following assumptions on the data, i.e., on the Lamé
constants and on the forces: There exist constants k > 0 and l > 0 in-
dependent of e; and there exist functions fi

2 L2
�X� independent of e such that

k e
� k; l e

� l;�2:2�

f i;e
�x e

� � f i
�x� for all x 2 X:�2:3�
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Remarks. (1) By contrast with (2.1) and (2.3), different scalings are made in
the asymptotic analysis of plates on the ‘‘horizontal’’ components u e

a and
‘‘vertical’’ component u e

3 of the unknown, and different assumptions are
made on the ‘‘horizontal’’ components f a;e

; and ‘‘vertical’’ component f 3;e
;

of the applied forces; cf. CIARLETIARLET [1990, pp. 106–107] and Sec. 7 of the
present article.
(2) Assumptions (2.3) could be replaced by the more general ones: ‘‘There
exist functions f i

�e� 2 L2
�X� and f i

2 L2
�X� such that f i;e

�x e
� � f i

�e��x� for
all x 2 X and e > 0; and f i

�e� ! f i in L2
�X� as e ! 0 ’’.

A simple computation then shows that the scaled unknown u�e� satisfies
the scaled three-dimensional shell problem (2.10), (2.11), now posed over the
set X; thus over a domain which is independent of e :

Theorem 2.1. Let the functions Cp;e
ij ; g e

;Aijkl;e
: X e

! R defined in (1.8),
(1.10), (1.13), be associated with the functions Cp

ij�e�; g�e�;A
ijkl
�e� : X ! R

defined by

Cp
ij�e��x� :� Cp;e

ij �x
e
� for all x e

2 X e
;�2:4�

g�e��x� :� g e
�x e

� for all x e
2 X e

;�2:5�

Aijkl
�e��x� :� Aijkl;e

�x e
� for all xe

2 X e
:�2:6�

With any vector field v � �vi� 2 H1
�X�; let there be associated the symmetric

tensor �eikj�e��v�� 2 L2
�X� defined by

eakb�e��v� :� 1
2�@avb � @bva� ÿ Cp

ab�e�vp;�2:7�

eak3�e��v� :�
1
2

@av3 �
1
e
@3va

� �

ÿ C r
a3�e�vr;�2:8�

e3k3�e��v� :�
1
e
@3v3:�2:9�

Then the scaled unknown u�e� defined in (2.1) satisfies

u�e� 2 V�X� :� fv � �vi� 2 H1
�X�;v � 0 on C0g;�2:10�

Z

X

Aijkl
�e�ekkl�e��u�e��eikj�e��v�

��������

g�e�
p

dx�2:11�

�

Z

X

f ivi

��������

g�e�
p

dx for all v 2 V�X�:

Remarks. (1) As already noted in (1.16), the Christoffel symbols C3;e
a3 and Cp;e

33
vanish in X e for the special class (1.6) of mappings U considered here.
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Consequently, the functions C 3
a3�e� and Cp

33�e� likewise vanish in X; so that
the functions eik3�e��v� of (2.8), (2.9) are equivalently defined as

eak3�e��v� :�
1
2

@av3 �
1
e
@3va

� �

ÿ Cp
a3�e�vp;

e3k3�e��v� :�
1
e
@3v3 ÿ Cp

33�e�vp;

i.e., in a form more reminiscent of (1.14).
(2) The functions eikj�e��v� are not defined for e � 0: By contrast, the

functions Cp
ij�e�; g�e�;A

ijkl
�e� converge in the space C0

�X� as e ! 0 (cf.
Lemma 3.1).

3. Technical preliminaries

We henceforth assume without loss of generality that the number e0 > 0
(which is such that the ‘‘original’’ three-dimensional problem is well-defined
for 0 < e2e0; cf. Sec. 1) also satisfies e021:

In this section and in Secs. 4 and 5, whenever a symbol such as C1;C2;

etc., or c1; c2: etc., appears in an inequality, it means that there exists a
constant, denoted by this symbol, that is positive and independent of the
various variables (e.g., the parameter e; functions in a specific space, etc.)
involved in this inequality. For instance, inequality (3.10) in Lemma 3.1 means
that there exists a constant C2 > 0 independent of e 2 �0; e0�; of the point
x 2 X; and of the symmetric tensor �tij�; such that this inequality holds.

Our first result gathers all the properties needed in the sequel concerning
the behavior of the functions Cp

ij�e�; g�e�;A
ijkl
�e� as e ! 0: A noteworthy

conclusion in this respect is that, while these are functions of x � �y; x3�

2 X � x� �ÿ1; 1�; their limits for e � 0 are functions of y 2 x only, i.e., the
limits are independent of the ‘‘transverse’’ variable x3 : see relations (3.2)–(3.5),
where the functions C r

ab; bab; br
a ; a;A

ijkl
�0� are identified with functions de-

fined over the set X by letting these be constant with respect to x3: Observe
that the notational distinction between the ‘‘three-dimensional’’ and ‘‘two-
dimensional’’ Christoffel symbols Cr

ab�e� and Cr
ab is automatic, as in relation

(3.2) for instance, since the symbol e appears only in the former. Also, note
that the following symmetries hold (cf. (1.9) and (1.15))

Cp
ij�e� � Cp

ji�e�; Aijkl
�e� � Ajikl

�e� � Aklij
�e�:�3:1�

If w 2 C0
�X�; we let

k w k0;1;X� supfjw�x�j; x 2 Xg:

Lemma 3.1. Let the functions Cp
ij�e�; g�e�;A

ijkl
�e� be defined for e > 0 as in

(2.4)–(2.6); let the functions aab
; bab; br

a ;C
r
ab; a 2 C

0
�x� be defined as in (1.1)–

(1.3) and be identified with functions in C0
�X�: Then
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k Cr
ab�e� ÿ Cr

ab k0;1;X � k C3
ab�e� ÿ bab k0;1;X

� k Cr
a3�e� � br

a k0;1;X 2 C1e;
�3:2�

C3
a3�e� � Cp

33�e� � 0;�3:3�

k g�e� ÿ a k0;1;X 2 C1e;�3:4�

k Aijkl
�e� ÿ Aijkl

�0� k0;1;X 2 C1e;�3:5�

Aabr3
�e� � Aa333

�e� � 0;�3:6�

for all 0 < e2e0; where

Aabrs
�0� :� kaabars

� l�aarabs
� aasabr

�;�3:7�

Aab33
�0� :� kaab

; Aa3r3
�0� :� laar

; A3333
�0� :� k� 2l;�3:8�

Aabr3
�0� � Aa333

�0� :� 0;�3:9�

and finally,

tijtij2C2Aijkl
�e��x�tkltij�3:10�

for all 0 < e2e0; all x 2 X; and all symmetric tensors �tij�:

Proof. We only sketch the proof. First, it is clear that relations (3.3) and (3.6)
are simply a re-writing of relations (1.16), (1.17). Next, let .i�e��x� � .i

e
�x e

�

and .i
�e��x� � .i;e

�x e
� for all x e

2 X e
: Since .a�e� � aa � ex3@aa3 and

.3�e� � a3; it follows that g�e� � a � O�e� in C0
�X�; whence inequality (3.4) is

proved. Because the mapping u : x ! R3 is assumed to be of class C3 (third-
order derivatives of u appear in @b.a�e��; we likewise have

Cp
ij�e� � .p

�e� � @j.i�e� � Cp
ij�0� � O�e� in C0

�X�;

with

Cr
ab�0� :� Cr

ab; C3
ab�0� :� bab; Cr

a3�0� :� ÿbr
a ;

whence inequality (3.2) is proved. Relations (3.5) and (3.7)–(3.9) are analo-
gously proved.

For each e > 0; the three-dimensional elasticity tensor defined in (1.13) is
positive-definite, uniformly with respect to x e

2 X e (see, e.g., CIARLETIARLET

[1997b]). This implies that there exists c�e� > 0 such that (cf. (2.7))

Aijkl
�e��x�tkltij3c�e�tijtij

for all x 2 X and all �tij� 2 S; where S denotes the set of all symmetric
matrices of order 3. Using definitions (3.7)–(3.9), we have
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Aijkl
�0�tkltij � k�aabtab � t33�

2
� l�aarabs

� aasabr
�trstab

� 4laabta3tb3 � �k� 2l�t33t33;

on the other. Since there exists c1 > 0 such that (cf., e.g., BERNADOUERNADOU,
CIARLETIARLET & MIARAIARA [1994, Lemma 2.1])

�aarabs
� aasabr

�trstab3c1tabtab;

it easily follows that there exists c2 > 0 such that

Aijkl
�0��x�tkltij3c2tijtij

for all x 2 X and all �tij� 2 S: The continuity of the mapping

�e; x; �tij�� 2 �0; e0� � X� S1 ! Aijkl
�e��x�tkltij;

where S1 :� f�tij� 2 S; tijtij � 1g; then yields the existence of a constant C2

such that relation (3.10) holds for 02e2e0: h

Since averages with respect to the ‘‘transverse’’ variable x3 play a funda-
mental rôle in the ensuing analysis, their relevant properties are gathered in
the next lemma. If v and v are respectively real-valued and vector-valued
functions defined almost everywhere over X � x � � ÿ 1; 1�; their averages v
and v are respectively the real-valued and vector-valued functions defined
almost everywhere over x by letting

v�y� :�
1
2

Z

1

ÿ1

v�y; x3�dx3; v�y� :�
1
2

Z

1

ÿ1

v�y; x3�dx3�3:11�

for almost all y 2 x; whenever these definitions make sense (cf. Lemma 3.2(i)
for such instances). The functions cab�g� introduced in (3.17) are the covar-
iant components of the linearized change of metric, or strain, tensor, asso-
ciated with an arbitrary displacement field gia

i of the surface S:

Lemma 3.2. (i) Let v 2 L2
�X�: Then v�y� as given in (3.11) is finite for almost

all y 2 x; the function v defined in this fashion belongs to L2
�x�; and

k v k0;x 2
1
���

2
p k v k0;X :�3:12�

If @3v � 0 in the sense of distributions, i.e., if
R

X
v@3udx � 0 for all u 2 D�X�;

then v does not depend on x3; and

v�y; x3� � v�y� for almost all �y; x3� 2 X:�3:13�

(ii) Let v 2 H1
�X�: Then v 2 H1

�x�; @av � @av; and

k v k1;x 2
1
���

2
p k v k1;X :�3:14�

Let c0 denote a measurable subset of c: If v � 0 on c0 � �ÿ1; 1�; then v � 0 on
c0; in particular, v 2 H1

0 �x� if v � 0 on C0 � c� �ÿ1; 1�:
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(iii) Let �v�e��e>0 be a sequence of functions in H1
�X� and let v 2 L2

�x� be such
that

@3v�e� ! 0 in L2
�X�; v�e� ! v in L2

�x� as e ! 0:�3:15�

Then

v�e� ! v in L2
�X� as e ! 0;�3:16�

where v is identified in (3.16) with a function in L2
�X�; by letting

v�y; x3� :� v�y� for all �y; x3� 2 X:
(iv) Let �v�e��e>0 be a sequence of functions v�e� � �vi�e�� 2 H1

�X� bounded in
L2
�X�; let the functions eakb�e��v�e�� be defined according to (2.7), and let

cab�g� :�
1
2�@agb � @bga� ÿ Cr

abgr ÿ babg3�3:17�

for any g � �gi� 2 H1
�x� � H1

�x� � L2
�x�: Then

feakb�e��v��e� ÿ cab�v�e��g ! 0 in L2
�x� as e ! 0:�3:18�

Proof. (i) Let v 2 L2
�X�: For almost all y 2 x; the function v�y; �� belongs to

the space L2
�� ÿ 1; 1�� by Fubini’s theorem. For such points y; the Cauchy-

Schwarz inequality gives

Z

1

ÿ1

v�y; x3�dx3

�

�

�

�

�

�

�

�

�

�

�

�

2

2 2
Z

1

ÿ1

jv�y; x3�j
2dx3 < �1;

hence

Z

x

jv�y�j2dy 2
1
2

Z

x

Z

1

ÿ1

jv�y; x3�j
2 dx3

8

<

:

9

=

;

dy �

1
2

Z

X

jvj2dx;

and inequality (3.12) is proved. If @3v � 0 in the sense of distributions, then
there exists f 2 L2

�x� such that v�y; x3� � f�y� for almost all �y; x3� 2 X (cf.,
e.g., LEE DRETRET [1991, Lemma 4.1, p. 74]). But v � f in this case, and thus
relation (3.13) is proved.

(ii) Let v 2 H1
�X�: Given an arbitrary function u 2 D�x�; let u : X ! R

be defined by u�y; x3� � u�y� for all �y; x3� 2 X: Since u vanishes on C0 and
the ‘‘horizontal’’ components of the unit outer normal vector vanish on
C�[Cÿ; we have

Z

X

v@au dx � ÿ

Z

X

@av u dx

by Green’s formula in Sobolev spaces. Since v 2 L2
�X�; @av 2 L2

�X�; and u
and @au are independent of x3; Fubini’s theorem yields
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Z

x

v@au dy � ÿ

Z

x

@avu dy;

hence v 2 H1
�x�, with @av � @av. These relations, combined with inequality

(3.12), imply inequality (3.14).
Assume in addition that v � 0 on ~C0 :� c0 � �ÿ1; 1�. There exist functions

/k
2 C1

�X�, k = 0,1,..., such that /k
! v in H1

�X� as k !1. Hence,
/k
j
~C0
! 0 � v

j
~C0

in L2
�
~C0� as k !1; consequently, /

k
jc0
! 0 in L2

�c0� since

jj/
k
jjL2

�c0�
2 1

��

2
p jj/k

jjL2
�
~C0�

, and thus /
k
jc0
! 0 � v

jc0
in L2

�c0�.
(iii) Let v 2 L2

�X� be such that its derivative @3v in the sense of dis-
tributions belongs to L2

�X�. Then for almost all �y; s� 2 x�� ÿ 1; 1�, we may
write (cf. LEE DRETRET [1991, p. 9])

v�y; s� � v�y;ÿ1� �
Z

s

ÿ1

@3v�y; x3�dx3;

and thus

v�y� �
1
2

Z

1

ÿ1

v�y; s�ds � v�y;ÿ1� �
1
2

Z

1

ÿ1

Z

t

ÿ1

@3v�y; x3�dx3

0

@

1

Adt:

Hence the following identity holds:

v�y; s� � v�y� �
Z

s

ÿ1

@3v�y; x3�dx3 ÿ
1
2

Z

1

ÿ1

Z

t

ÿ1

@3v�y; x3�dx3

0

@

1

Adt:

This identity, combined with the triangular inequality and the relations

Z

x

Z

1

ÿ1

jv�y�j2ds

8

<

:

9

=

;

dy � 2jjvjj20;x;

Z

x

Z

1

ÿ1

Z

s

ÿ1

@3v�y; x3�dx3

�

�

�

�

�

�

�

�

�

�

�

�

2

ds

8

<

:

9

=

;

dy24jj@3vjj20;X;

Z

x

Z

1

ÿ1

Z

1

ÿ1

�

Z

t

ÿ1

@3v�y; x3�dx3

�

dt

�

�

�

�

�

�

�

�

�

�

�

�

2

ds

8

<

:

9

=

;

dy28jj@3vjj20;X;

shows that

jjvjj0;X2
���

2
p

jjvjj0;x � �2 �
���

2
p

�jj@3vjj0;X:�3:19�

The desired convergence (3.16) is then proved by letting v � v�e� ÿ v in in-
equality (3.19).

(iv) Since
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1
2�@avb�e� � @bva�e�� � 1

2�@avb�e� � @bva�e��

by (ii), it suffices to establish that

fCp
ab�e�vp�e� ÿ Cp

ab�0�vp�e�g ! 0 in L2
�x� as e ! 0;

where the functions Cr
ab�0� :� Cr

ab and C3
ab�0� :� bab are independent of x3.

By (3.2) and (3.12),

jjCp
ab�e�vp�e� ÿ Cp

ab�0�vp�e�jj0;x � jjCp
ab�e�vp�e� ÿ Cp

ab�0�vp�e�jj0;x

2 1
��

2
p jjCp

ab�e�vp�e� ÿ Cp
ab�0�vp�e�jj0;X2C1

��

3
2

q

ejjv�e�jj0;X;

and the convergence (3.18) follows from the boundedness (cf. (3.12)) of the
sequence �v�e��e > 0 in the space L2

�X�. h

4. A generalized Korn inequality for an elliptic surface

If no specific assumption is made on the ‘‘geometry’’ of the surface S, it is
shown in Part II that there exist constants e1 > 0 and C > 0 such that, for all
0 < e2e1,
n

X

i

jjvijj
2
1;X

o1=2
2

C
e

n

X

i;j

jjeijjj�e��v�jj
2
0;X

o1=2
for all v � �vi� 2 V�X�;

in fact, such an inequality also holds if the set C0 � c� �ÿ1; 1� where the
functions in the space V�X� vanish is replaced by the more general set
c0 � �ÿ1; 1�, where c0 is any subset of c with length c0 > 0. This relation is a
generalized Korn inequality, the functions eijjj�e��v� of (2.7)–(2.9) replacing
the ‘‘traditional’’ functions

eij�v� :�
1
2�@jvi � @ivj�:�4:1�

It is remarkable that, in some cases, the ‘‘constant’’ C=e may be replaced
by a constant that is independent of e (at the expense, however, of replacing
jjv3jj1;X by jjv3jj0;X in the left-hand side). More specifically, under the crucial
assumption (4.3) (which is given a geometrical interpretation in Theorems
4.2, 4.3 infra), another generalized Korn inequality holds (cf. (4.4)), which
plays a key rôle in the proof of Theorem 5.1; it is used there to establish the
fundamental a priori bounds that the family �u�e��e>0 satisfies.

Theorem 4.1. Define the space

VM �x� :� fg � �gi�; ga 2 H1
0 �x�; g3 2 L2

�x�g � H1
0 �x� � H1

0 �x� � L2
�x�;

�4:2�

and assume that there exists a constant c > 0 such that
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(

X

a

k ga k
2
1;x � kg3 k

2
0;x

)1=2

2 c

(

X

a;b

k cab�g� k
2
0;x

)1=2

�4:3�

for all g � �gi� 2 VM �x�;

where the functions cab�g� are defined as in (3.17). Then there exists a constant
e1 satisfying 0 < e12e0 and a constant C such that, for all 0 < e2e1;

(

X

a

k va k
2
1;X � kv3 k

2
0;X

)1=2

2 C

(

X

i;j

k eikj�e��v� k
2
0;X

)1=2

�4:4�

for all v � �vi� 2 V�X�;

where the functions eikj�e��v� and the space V�X� are defined as in (2.7)–(2.10).

Proof. (i) We first establish that, for all 0 < e2e0;

(

X

a

k va k
2
1;X � kev3 k

2
1;X

)1=2

�4:5�

2c1

(

X

i;j

k eikj�e��v� k
2
0;X �

X

i

k vi k
2
0;X

)1=2

for all v � �vi� 2 H1
�X�: Given v � �vi� 2 H1

�X�; let v�e� :� �v1; v2; ev3�

2 H1
�X� for e2e0: Then

eab�v�e�� � eakb�e��v� � Cp
ab�e�vp;

ea3�v�e�� � eeak3�e��v� � eCr
a3�e�vr;

e33�v�e�� � e2e3k3�e��v�;

where the functions eij��� are those of (4.1), and consequently, by (3.2),

X

i;j

k eij�v�e�� k
2
0;X

( )1=2

2 c2

X

i;j

k eikj�e��v� k
2
0;X �

X

i

k vi k
2
0;X

( )1=2

�4:6�

since e021 by assumption. By the ‘‘classical’’ Korn inequality (cf. the proof
given in DUVAUTUVAUT & LIONSIONS [1972, p. 110] and its extension to domains with
Lipschitz-continuous boundaries given, e.g., in CIARLETIARLET [1997a]),

k v�e� k1;X �

X

a

k va k
2
1;X � k ev3 k

2
1;X

( )1=2

�4:7�

2 c3

X

i;j

k eij�v�e�� k
2
0;X � k v�e� k2

0;X

( )1=2

;

and inequality (4.5) follows from inequalities (4.6) and (4.7).
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(ii) In order to establish (4.4), it suffices to show that there exists
e1 2 �0; e0� such that, for all 0 < e 2 e1;

X

i

k vi k
2
0;X

( )1=2

2c4

X

i;j

k eikj�e��v� k
2
0;X

( )1=2

for all v 2 V�X�;�4:8�

because inequalities (4.5) and (4.8) together imply

min 1;
cÿ2

4

2

� �

�

cÿ2
1

X

a

k va k
2
1;X � k v3 k

2
0;X

�

22
X

i;j

k eikj�e��v� k
2
0;X :

Assume that inequality (4.8) is false. Then there exist em > 0 and
vm

� �vm
i � 2 V�X�;m � 0; 1; . . . ; such that (the Latin letters m and n are used

here for indexing sequences)

em ! 0 as m !1;�4:9�

eikj�em��v
m
� ! 0 in L2

�X� as m !1;�4:10�

X

i

k vm
i k

2
0;X� 1 for all m:�4:11�

By (4.5), (4.10), (4.11), both sequences �vm
a �

1

m�0 are bounded in H1
�X�.

Hence there exist subsequences �vn
a�
1

n�0 and there exist functions
va 2 H1

�X� satisfying va � 0 on C0 and a function v3 2 L2
�X� such that

vn
a * va in H1

�X�; vn
a ! va in L2

�X� and vn
3 * v3 in L2

�X��4:12�

as n ! 1; where ! and * denote strong and weak convergences, respec-
tively (to ensure that va 2 H1

�X�; consider subsequences �vn
a�
1

n�0 that
weakly converge in H1

�X��. The remainder of the proof consists in showing
that the sequence �vn

3�
1

n�0 converges strongly in L2
�X� and that the three limit

functions vi appearing in (4.12) vanish, in contradiction to (4.11). To these
ends, we proceed in three steps.

(iii) We first show that

vn
! 0 in the space VM �x� as n ! 1:�4:13�

To see this, observe that, by (3.12),

eakb �en� �v
n
� ! 0 in L2

�X� �) eakb�en��vn
� ! 0 in L2

�x�;

and that, by (3.18),

eakb �en� �vn
� ! 0 in L2

�x� �) cab�v
n
� ! 0 in L2

�x�

as n ! 1. Hence the convergence (4.13) follows from assumption (4.3).
(iv) We next show that

vn
a ! 0 in L2

�X�:�4:14�

By (3.2), (4.9)–(4.11),
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@3vn
a � en@avn

3 � 2eneak3�en��v
n
� � 2enC

r
a3�en�vn

r ! 0 in L2
�X�:

Let u 2 D�X�; since the sequence �vn
3�
1

n�0 is bounded in L2
�X�, we have

(recall that va :� lim
n!1

vn
a in L2

�X�; cf. (4.12))

Z

X

@3va u dx � ÿ

Z

X

va@3u dx � ÿ lim
n!1

Z

X

vn
a@3u dx � en

Z

X

vn
3@au dx

8

<

:

9

=

;

� lim
n!1

Z

X

�@3vn
a � en@avn

3�u dx

8

<

:

9

=

;

� 0;

and thus @3va � 0 in L2
�X�: Hence va can be identified with va by Lemma

3.2(i); but

vn
a ! va in L2

�X� �) v n
a ! va in L2

�x�

on the one hand, and va � 0 by (4.13) on the other. Hence the convergence
(4.14) is established.

(v) Finally, we show that

vn
3 ! 0 in L2

�X�:�4:15�

By (4.10),

@3vn
3 � ene3k3�en��v

n
� ! 0 in L2

�X�;

and by (4.13),
vn

3 ! 0 in L2
�x�;

as n !1. The convergence (4.15) is then a consequence of Lemma 3.2(iii).
We have therefore reached a contradiction, and the proof is complete. u

We next show that assumption (4.3) is in fact an assumption ‘‘in disguise’’
about the allowed ‘‘geometries’’ of the surface S. To this end, we need a
definition : A surface S � u�x� with u 2 C2

�x;R3
� is elliptic if there exists

a constant b > 0 such that

j bab�y�n
anb

j 3 bnana
�4:16�

for all y 2 x and �na
� 2 R2; equivalently, the two principal radii of cur-

vature are either > 0 at all points of S or < 0 at all points of S; and their
moduli lie in a compact interval of ]0, +1[.

The following sufficient conditions guaranteeing that the crucial as-
sumption (4.3) holds were announced in CIARLETIARLET & SANCHEZANCHEZ-PALENCIAALENCIA

[1993] and CIARLETIARLET & LODSODS [1994], and proved in CIARLETIARLET & SANCHEZANCHEZ-
PALENCIAALENCIA [1996] and CIARLETIARLET & LODSODS [1996a], respectively:

Theorem 4.2. Assume either that the boundary c of x is of class C3 and
u : x ! R3 is the restriction to x of an analytic mapping or that c is of class C4

and u 2 C5
�x;R3

�: Then relation (4.3) is satisfied if the surface S � u�x� is
elliptic.
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Remarkably, this condition is also necessary, as recently shown by *LI-LI-

CARUCARU [1996]:

Theorem 4.3. Assume that c is Lipschitz-continuous, u 2 C2
�x;R3

�; and re-
lation (4.3) holds. Then the surface S is elliptic.

Remark. BREZZIREZZI [1994] has shown that the rather stringent regularity
conditions of Theorem 4.2 can be substantially relaxed, and parts of the
proof significantly simplified, when the mapping u takes the special form
u�y1; y2� � �y1; y2; h�y1; y2�� for �y1; y2� 2 x:

5. Asymptotic analysis as e ! 0

We now establish our main results, namely that the scaled three-dimen-
sional solutions u (e) converge (in a specific sense ; cf. (5.2)) as e ! 0 toward
a limit u, and that this limit, which is independent of the ‘‘transverse’’ variable
x3, can be identified with the solution u of a two-dimensional problem (cf.
(5.5)), posed over the set x. This limit problem will be identified in Sec. 7 as a
two-dimensional ‘‘membrane’’ shell problem.

The functions cab��� and aabrs defined in the next theorem respectively
represent the covariant components of the change of metric tensor of the
surface S and the contravariant components of the elasticity tensor of S.

Theorem 5.1. Let the space VM �x� and the functions cab�g� be defined by

VM�x� :� fg � �gi�; ga 2 H1
0 �x�; g3 2 L2

�x�g

� H1
0 �x� � H1

0 �x� � L2
�x�;

cab�g� :�
1
2�@agb � @bga� ÿ Cr

abgr ÿ babg3 for g � �gi� 2 VM �x�;

and assume that there exists a constant c such that
n

X

a

jjgajj
2
1;x � jjg3jj

2
0;x

o1=2
2 c

n

X

a;b

jjcab�g�jj
2
0;x

o1=2

�5:1�

for all g � �gi� 2 VM�x�:

For 0 < e 2 e0; let u(e) denote the solution of the scaled variational problem
(2.11), (2.12). Then there exist functions ua 2 H1

�X� satisfying ua � 0 on C0

and a function u3 2 L2
�X� such that

ua�e� ! ua in H1
�X�; u3�e� ! u3 in L2

�X� as e ! 0;�5:2�

�5:3� u :� �ui� is independent of the ``transverse00 variable x3;

u :� �ui� :�
1
2

Z

1

ÿ1

u dx3 2 VM �x�;�5:4�
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and u satisfies the two-dimensional variational equations

Z

x

aabrscrs�u�cab�g�
���

a
p

dy �

Z

x

n

Z

1

ÿ1

f idx3

o

gi
���

a
p

dy�5:5�

for all g � �gi� 2 VM �x�;

where (cf. (1.1) and (1.4) for the definitions of the functions aab and a)

aabrs
�

4kl
�k� 2l�

aabars
� 2l�aarabs

� aasabr
�:�5:6�

Proof. For the sake of clarity, the proof is divided into eight steps, numbered
(i) to (viii). For notational brevity, we let

eijjj�e� :� eijjj�e��u�e��

throughout the proof.
(i) A priori bounds and extraction of weakly convergent sequences: The

norms k eikj�e� k0;X; k ua�e� k1;X; k u3�e� k0;X are bounded independently of
e 2�0; e1�: Consequently, there exists a subsequence, still denoted �u�e��e>0 for
convenience, and there exist functions eikj 2 L2

�X�; ua 2 H1
�X� satisfying

ua � 0 on C0; and u3 2 L2
�X� such that

eijjj�e�* eijjj in L2
�X�;�5:7�

ua�e�* ua in H1
�X�; ua�e� ! ua in L2

�X�;�5:8�

u3�e�* u3 in L2
�X�:�5:9�

Recall that ! and * denote strong and weak convergence, respectively.
From inequalities (1.5) and (3.4), we infer that there exist constants g0

and g1 such that

0 < g0 2 g�e��x� 2 g1 for all e 2 �0; e0� and all x 2 X:�5:10�

From the variational equations (2.11), inequality (3.10), and the generalized
Korn inequality (4.4), we infer that

Cÿ2
X

i

jjui�e�jj
2
0;X 2 Cÿ2

�

X

a

jjua�e�jj
2
1;X � jju3�e�jj

2
0;X

�

2
X

i;j

jjeijjj�e�jj
2
0;X 2 C2 gÿ1=2

0

Z

X

Aijkl
�e�ekjjl�e�eikj�e�

��������

g�e�
p

dx

� C2 gÿ1=2
0

Z

X

f iui�e�
��������

g�e�
p

dx

2 C2 gÿ1=2
0 g1=2

1

n

X

i

jjf i
jj

2
0;X

o1=2nX

i

jjui�e�jj
2
0;X

o1=2
;

hence the assertions follow.
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(ii) The limit functions ui found in (5.8), (5.9) are independent of x3: By
(3.2) and Step (i),

@3ua�e� � e@au3�e� � 2efeajj3�e� � Cr
a3�e�ur�e�g ! 0 in L2

�X�:

Let u 2 D�X�; since ua�e�* ua in H1
�X� and �u3�e��e>0 is bounded in L2

�X�
by Step (i),

Z

X

@3ua u dx � lim
e!0

Z

X

@3ua�e�u dx;

lim
e!0

n

Z

X

e@au3�e�u dx
o

� ÿlim
e!0

n

Z

X

eu3�e�@au dx
o

� 0;

whence
R

X
@3ua udx � 0. Therefore @3ua � 0 in L2

�X�. Likewise, by Step (i),

@3u3�e� � ee3jj3�e� ! 0 in L2
�X�:

Let u 2 D�X�; since u3�e�* u3 in L2
�X� by Step (i),

Z

X

u3@3u dx � lim
e!0

Z

X

u3�e�@3u dx � ÿlim
e!0

Z

X

@3u3�e�u dx � 0;

whence @3u3 � 0 in the sense of distributions; it then suffices to apply Lemma
3.2(i).

(iii) The limit functions eijjj found in (5.7) are independent of x3; they are
moreover related to the limit u :� �ui� by

eajjb � cab�u� :�
1
2 �@aub � @bua� ÿ Cr

abur ÿ babu3;�5:11�

eajj3 � 0;�5:12�

e3jj3 � ÿ

k
k� 2l

aabeajjb:�5:13�

The convergences eajjb�e�* eajjb in L2
�X�; ua�e�* ua in H1

�X�;
u3�e�* u3 in L2

�X�, and Cr
ab�e� ! Cr

ab;C
3
ab�e� ! bab in C0

�X� (cf. Lemma
3.1), imply that

eajjb�e� � 1
2�@aub�e� � @bua�e�� ÿ Cp

ab�e�up�e� * cab�u� � eajjb in L2
�X�;

which shows that the functions eajjb satisfy (5.11) and are independent of x3

(the functions ui are independent of x3; cf. Step (ii)).
Let v � �vi� be an arbitrary function in the space V�X� of (2.11). The

following relations are immediate consequences of definitions (2.7)–(2.9) of
the functions eijjj�e��v�:

eeajjb�e��v� ! 0 in L2
�X�;�5:14�
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eeajj3�e��v� ! 1
2 @3va in L2

�X�;�5:15�

ee3jj3�e��v� � @3v3 for all e > 0:�5:16�

Using the variational equations (2.11) of the scaled three-dimensional
problem, and relations (3.6), we have

Z

X

Aijkl
�e�
n

eekjjl�e�eijjj�e��v�
o

��������

g�e�
p

dx

�

Z

X

n

Aabrs
�e�erjjs�e� � Aab33

�e�e3jj3�e�
on

eeajjb�e��v�
o

��������

g�e�
p

dx

�

Z

X

n

4Aa3r3
�e�erjj3�e�

on

eeajj3�e��v�
o

��������

g�e�
p

dx

�

Z

X

n

A33rs
�e�erjjs�e� � A3333

�e�e3jj3�e�
on

ee3jj3�e��v�
o

��������

g�e�
p

dx

� e
Z

X

f ivi

��������

g�e�
p

dx:

Keep v 2 V�X� fixed and let e ! 0. Using relations (3.4), (3.5), (3.7), (3.8),
(5.14)–(5.16), and the weak convergences (5.7), we obtain

Z

X

n

2laarerjj3@3va � �karserjjs � �k� 2l�e3jj3�@3v3

o

���

a
p

dx � 0:

Letting v vary in V�X� then yields relations (5.12), (5.13) (if w 2 L2
�X� and

R

Xw@3vdx � 0 for all v 2 H1
�X� that vanish on C0, then w � 0; cf. CIARLETIARLET

[1990, p. 19]).
(iv) The function u :� �ui� belongs to the space VM �x� and satisfies the

variational equations (5.5). Consequently, since these equations have a unique
solution, by the positive-definiteness of the fourth-order tensor �aabrs

� de-
fined in (5.6) (cf. e.g. Lemma 2.1 of BERNADOUERNADOU, CIARLETIARLET & MIARAIARA [1994])
and by assumption (5.1), the convergences (5.7)–(5.9) hold for the whole family
u�e��e>0 (if the functions ui are unique, so are the functions ui and eikj by
Steps (ii) and (iii)).

That u 2 VM �x� follows from Lemma 3.2. Let v � �vi� 2 V�X� be in-
dependent of the variable x3; then (cf. inequality (3.2))

eajjb�e��v� ! cab�v� :�
n

1
2�@avb � @bva� ÿ Cr

abvr ÿ babv3

o

in L2
�X�;�5:17�

eajj3�e��v� !
n

1
2@av3 � br

avr

o

in L2
�X�;�5:18�

e3jj3�e��v� � 0;�5:19�
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as e ! 0. Keep such a function v 2 V�X� fixed in the variational equations
(2.11) and let e ! 0. Relations (3.4)–(3.9), the strong convergences (5.17),
(5.18), relation (5.19), and the weak convergences (5.7) to the limits eijjj given
by (5.11)–(5.13) together yield

Z

X

(

2kl
k� 2l

aabars
� l�aarabs

� aasabr
�

)

erjjscab�v�
���

a
p

dx�5:20�

�

Z

X

f ivi
���

a
p

dx;

which we may also write as (both functions u and v are independent of x3)

Z

x

aabrscrs�u�cab�v�
���

a
p

dy �

Z

x

(

Z

1

ÿ1

f idx3

)

vi
���

a
p

dy;�5:21�

where the functions aabrs are those defined in (5.6).
Given g � �gi� 2 H1

0�x�, let v � �vi� be defined by

v�y; x3� � g�y� for �y; x3� 2 X:

Then v 2 V�X�, v is independent of x3, and thus equations (5.21) are satisfied
with v � g (Lemma 3.2). Since both sides of (5.21) are continuous linear
forms with respect to v3 � g3 2 L2

�x� for fixed va 2 H1
0 �x�, and since H1

0 �x�
is dense in L2

�x�, these equations are valid for all g 2 VM�x�
� H1

0 �x� � H1
0 �x� � L2

�x�:
(v) The weak convergences of (5.7) are strong, i.e.,

eijjj�e� ! eijjj in L2
�X�:�5:22�

Combining inequalities (3.10) and (5.10) with the variational equations
(2.11) where we let v � u�e�, we first infer that

Cÿ1
2 g1=2

0

X

i;j

jjeijjj�e� ÿ eijjjjj
2
0;X 2 K�e�;�5:23�

where

K�e� : �
Z

X

Aijkl
�e��ekjjl�e� ÿ ekjjl��eijjj�e� ÿ eijjj�

��������

g�e�
p

dx

�

R

X
f iui�e�

��������

g�e�
p

dx �
Z

X

Aijkl
�e��ekjjl ÿ 2ekjjl�e��eijjj

��������

g�e�
p

dx:

Using the weak convergences (5.7)–(5.9) and the convergences (3.4), (3.5),
we next have

K :� lim
e!0

K�e� �
Z

X

f iui
���

a
p

dx ÿ
Z

X

Aijkl
�0�ekjjleijjj

���

a
p

dx:�5:24�
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Using (3.7)–(3.9), then (5.12), (5.13), we finally obtain
Z

X

Aijkl
�0�ekjjleijjj

���

a
p

dx

�

Z

X

(

h

kaabars
� l�aarabs

� aasabr
�

i

erjjs � kaabe3jj3

)

eakb
���

a
p

dx

� 4l
Z

X

aarerjj3eajj3
���

a
p

dx �
Z

X

n

karserjjs � �k� 2l�e3jj3

o

e3jj3
���

a
p

dx

�

Z

X

n 2kl
k� 2l

aabars
� l�aarabs

� aasabr
�

o

erjjseajjb
���

a
p

dx:

Hence

K � 0�5:25�

(let v � u in (5.20) and use (5.11)), and the convergences (5.22) follow from
(5.23)–(5.25).

(vi) The family �u�e��e>0� converges strongly to u in the space VM �x�, i.e.,

ua�e� ! ua in H1
�x�; u3�e� ! u3 in L2

�x�:�5:26�

By virtue of assumption (5.1), proving (5.26) is equivalent to proving

cab�u�e�� ! cab�u� � eajjb in L2
�x�;�5:27�

by (5.11). But, since eajjb�e� ! eajjb in L2
�X� by Step (v), we infer from

Lemma 3.2 (i) that

eajjb�e� ! eajjb in L2
�x�;

on the one hand, and we infer from Lemma 3.2 (iv) that
ÿ

eajjb�e� ÿ cab�u�e��
�

! 0 in L2
�x�;

on the other hand (recall that eajjb�e� :� eajjb�e��u�e���. Hence the strong
convergences (5.27) hold.

(vii) The weak convergence of (5.9) is strong, i.e.,

u3�e� ! u3 in L2
�X�:�5:28�

First, we have @3u3�e� � ee3jj3�e� ! 0 in L2
�X�; secondly, we have already

shown that u3�e� ! u3 in L2
�x� (cf. (5.26)). Hence the conclusion follows

from Lemma 3.2(iii) and from the independence of the function u3 with
respect to the ‘‘transverse’’ variable x3.

(viii) It remains to show that the weak convergences of (5.8) are strong, i.e.,

ua�e� ! ua in H1
�X�:�5:29�

To this end, we observe that proving (5.29) is equivalent to proving that

eij�u0�e�� ! eij�u 0

� in L2
�X�;�5:30�
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where the functions eij��� are those of (3.20) and

u 0

�e� :� �u1�e�; u2�e�; 0�; u 0

:� �u1; u2; 0�:

(By Korn’s inequality,
n

P

i;j
jjeij���jj

2
0;X

o1=2
is equivalent to jj � jj1;X over the

space V�X��. We have shown (cf. (5.11) and (5.22)) that

eajjb�e� � feab�u 0

�e�� ÿ Cp
ab�e�up�e�g�5:31�

! feab�u 0

� ÿ Cr
abur ÿ babu3g � eajjb in L2

�X�:

Combining inequality (3.2) with the strong convergences ui�e� ! ui in L2
�X�

(cf. (5.8), (5.28), (5.31)), we therefore obtain

eab�u 0

�e�� ! eab�u 0

� in L2
�X�:�5:32�

Notice in passing that, if we do not use the strong convergences ua�e� ! ua

in H1
�x�, we definitely need here the strong convergence u3�e� ! u3 (all these

convergences are established in Step (vi)), which in turn implies the strong
convergence (5.28) in Step (vii).

Since e33�u 0
�e�� � e33�u 0

� � 0, relations (5.30) will be proved if we show
that �@3ua � 0 by Step (ii))

@3ua�e� � 2ea3�u 0

�e�� ! 0 � 2ea3�u 0

� in L2
�X�;�5:33�

or equivalently, that

@3ua�e� ! 0 in Hÿ1
�X�; @i@3ua�e� ! 0 in Hÿ1

�X�:�5:34�

The equivalence between (5.33) and (5.34) is a consequence of a lemma of
J.-L. Lions (first mentioned in MAGENESAGENES & STAMPACCHIATAMPACCHIA [1958, p. 320, Note
(27)] and proved in DUVAUTUVAUT & LIONSIONS [1972, p. 111], then extended to Lip-
schitz-continuous boundaries in BORCHERSORCHERS & SOHROHR [1990] and AMROUCHEMROUCHE &
GIRAULTIRAULT [1994]), which, together with the open mapping theorem, implies
that the mapping v 2 L2

�X� ! �v; @1v; @2v; @3v� 2 Hÿ1
�X� is an isomorphism

(cf. also DAUTRAYAUTRAY & LIONSIONS [1984, Lemma 2, p. 1261]).
Since @3ua�e� � 2e�eajj3�e� � Cr

a3�e�ur�e�� ÿ e@au3�e�, we first have, for all
u 2 D�X�, that

Z

X

@3ua�e�udx � e
Z

X

2�eajj3�e� � Cr
a3�e�ur�e��u� u3�e�@au

� 	

dx;

and consequently, by (3.2) and step (i),

jj@3ua�e�jjÿ1;X 2 ce;

where, here and subsequently in this proof, c denotes constants that are
independent of e. Hence the first convergence in (5.34) is proved.

We next have the identity

@b@3ua�e� � @3eab�u 0

�e�� � @b�eeajj3�e� � eCr
a3�e�ur�e���5:35�

ÿ@a�eebjj3�e� � eCs
b3�e�us�e��
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in D0
�X�. From (5.32), we infer that

@3eab�u 0

�e�� ! @3eab�u 0

� � 0 in Hÿ1
�X�;

since @3@bua � 0 in D0
�X�. Denoting by h�; �i the duality between D0

�X� and
D�X�, we thus have, for all u 2 D�X�,

h@b�eeajj3�e� � eCr
a3�e�ur�e��;ui � ÿe

Z

X

feajj3�e� � Cr
a3�e�ur�e�g@bu dx;

and consequently, by (3.2) and Step (i),

jj@b�eeajj3�e� � eCr
a3�e�ur�e��jjÿ1;X 2 ce:

The last term in (5.35) is treated in an analogous manner. Hence
@b@3ua�e� ! 0 in Hÿ1

�X�.
Finally, we have, for all u 2 D�X�,

h@3@3ua�e�;ui � ÿ

Z

X

@3ua�e�@3u dx

� ÿ2e
Z

X

feajj3�e� � Cr
a3�e�ur�e�g@3u dx � e2

Z

X

e3jj3�e�@au dx;

and consequently, by (3.2) and Step (i),

jj@3@3ua�e�jjÿ1;X 2 ce:

Hence @3@3ua�e� ! 0 in Hÿ1
�X�, and all the convergences in (5.34) are es-

tablished. u

6. Consideration of surface forces

The notation is that of Secs. 1 and 2. The area element along the
boundary of the set U�X e

� is

d ^C e
� �detr eU�jr eUÿT n e

jdC e
;

where r
eU is the matrix with .1

e
; .2

e
; .3

e as its column vectors, n e is the
unit �jn e

j � 1� outer normal vector, and dC e is the area element, along the
boundary of the set X e. If surface forces are acting on the ‘‘upper’’ and
‘‘lower’’ faces U�C e

�
� and U�C e

ÿ
� of the shell, the unknown u e

�

�u e
i � 2 V�X e

� satisfies
Z

X e

Aijkl;ee e
kjjl�u

e
�e e

ijjj�v
e
�

�����

g e
p

dx e
�

Z

C e
�
[C e

ÿ

hi;ev e
i d ^C e

�6:1�

(compare with (1.12)) for all v e
� �v e

i � 2 V�X e
�, where hi;e

2 L2
�C e

�
[C e

ÿ
� are

the contravariant components of the applied surface force density. Without
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loss of generality, we assume in this section that the applied body force
vanishes.

In addition to (2.2), we assume that there exist functions hi
2 L2

�C�[Cÿ�

independent of e such that (the points x e
2 C e

�
[C e

ÿ
and x 2 C

�
[C

ÿ
are related

as in Sec. 2):

hi;e
�x e

� � ehi
�x� for all x 2 C

�
[C

ÿ
:�6:2�

Remark. Additional regularity will be assumed later on the function h3; cf.
Lemma 6.2.

The scaled unknown now satisfies a scaled three-dimensional shell problem
with a ‘‘new’’ right-hand side (cf. (6.3), (6.4); note that the space V�X� is the
same as in Theorem 2.1):

Theorem 6.1. The scaled unknown u�e� defined in (2.1) satisfies

u�e� 2 V�X� � fv � �vi� 2 H1
�X�;v � 0 on C0g;�6:3�

Z

X

Aijkl
�e�ekjjl�e��u�e��eijjj�e��v�

��������

g�e�
p

dx
�6:4�

�

Z

C�[Cÿ

hivir�e�dC for all v 2 V�X�;

where the function r�e� : C�[Cÿ ! R is defined by

r�e��x� :� �detr eU�x e
��jr

eU�x e
�
ÿT n e

�x e
�j for all x e

2 C e
�
[C e

ÿ
;�6:5�

dC is the area element along the boundary of the set X, and the other notations
are as in Theorem 2.1.

In order to carry out the asymptotic analysis as e ! 0, two ‘‘technical
preliminaries’’ (in addition to those of Sec. 3) are needed for properly hand-
ling the right-hand side of the variational equations (6.4). If w 2 C1

�x�, let
jjwjj1;1;x � jjwjj0;1;w �

X

i

jj@iwjj0;1;x:

Lemma 6.1. Let the functions r�e�� : x ! R and r�e�ÿ : x ! R be defined by

r�e���y� :� r�e��y; 1�; r�e�ÿ�y� :� r�e��y;ÿ1� for all y 2 x;�6:6�

where the function r�e� : C
�
[C

ÿ
! R is defined in (6.5) and let the function

a : x ! R be defined as in (1.4). Then

jjr�e�� ÿ
���

a
p

jj1;1;x � jjr�e�ÿ ÿ
���

a
p

jj1;1;x 2 C3e:�6:7�

Proof. The relations r eUÿT ne � �a3 for x e
3 � �e and a1 � a2 �

���

a
p

a3 imply
that
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r�e�� � j � �f�a1 � e@1a3� � �a2 � e@2a3�g � a3�a3j �
���

a
p

� O�e�

in C1
�x�. (The assumption that u 2 C3

�x� is needed there, since second-
order partial derivatives of u appear in @aa3.) u

Lemma 6.2. Assume that both functions h3
�

: x ! R and h3
ÿ

: x ! R defined by

h3
�
�y� :� h3

�y; 1�; h3
ÿ
�y� :� h3

�y;ÿ1� for all y 2 x�6:8�

belong to the space H1
�x�, where h3 is the function appearing in (6.2). Then the

function ~h�e� : X ! R defined by

~h�e��y; x3� �
1
2�x3 � 1�h3

�
�y�r�e���y� � 1

2�x3 ÿ 1�h3
ÿ
�y�r�e�ÿ�y��6:9�

for all �y; x3� 2 X belongs to the space H1
�X� for all e > 0, and

~h�e� ! ~h�0� in H1
�X� as e ! 0;�6:10�

where

~h�0��y; x3� :�

n

1
2�x3 � 1�h3

�
�y� � 1

2�x3 ÿ 1�h3
ÿ
�y�
o

���������

a�y�
p

�6:11�

for all �y; x3� 2 X; futhermore,
Z

C�[Cÿ

h3v3r�e�dC �

Z

X

~h�e�@ividx �
Z

X

@i
~h�e�vidx;�6:12�

for all v � �vi� 2 V�X�, and there exists a constant C4 such that

Z

C�[Cÿ

h3v3r�e�dC

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 C4

n

X

i;j

jjeijjj�e��v�jj
2
0;X

o1=2
;�6:13�

for all v � �vi� 2 V�X� and all 0 < e 2 e1, where the functions eijjj�e��v� are
those of (2.7)–(2.9), and the space V�X� is that of (6.3). The constant C4

depends on the norms jjh3
�
jj1;x and jjh3

ÿ
jj1;x.

Proof. Since both functions r�e�� and r�e�ÿ belong to the space C1
�x�, the

function ~h�e� defined in (6.9) belongs to H1
�X� if the functions defined in

(6.8) are in H1
�x�. By (6.7), both functions r�e�� and r�e�ÿ converge to

���

a
p

in C1
�x�; consequently, the convergence (6.10) holds, with ~h�0� given in

(6.11). Next, let v � �vi� 2 V�X�. Since v � 0 on C0 and ~h�e�v3 � �h3r�e� on
C�, we may write

Z

C�[Cÿ

h3v3r�e�dC �

Z

@X

~h�e�vinidC;�6:14�

where �ni
� is the unit outer normal vector along the boundary @X of the set

X. We thus obtain (6.12) by applying Green’s formula to the right-hand side
of (6.14). (Applying Green’s formula is legitimate here since
~h�e� 2 H1

�X�;v 2 H1
�X�, and @X is Lipschitz-continuous; see, e.g., NECASEČAS

[1967, p. 121].) From relation (6.12), we then deduce
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Z

C�[Cÿ

h3v3r�e�dC

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 jj
~h�e�jj1;X

�

jj@1v1jj0;X � jj@2v2jj0;X�6:15�

�jj@3v3jj0;X �
X

i

jjvijj0;X

�

;

and inequality (6.13) follows from (6.15) combined with the boundedness of
the norms jj~h�e�jj1;X for 02e2e0, the inequality

jj@1v1jj0;X � jj@2v2jj0;X �
X

i

jjvijj0;X 2
���

5
p

C
n

X

i;j

jjeijjj�e��v�jj
2
0;X

o1=2

for 0 < e2e1 (which itself follows from the fundamental inequality (4.4)),
and the inequality

jj@3v3jj0;X 2 jje3jj3�e��v�jj0;X

valid for 0 < e21: u

The behavior of the solution of problem (6.3), (6.4) as e ! 0 is described
in the following analog of Theorem 5.1:

Theorem 6.2. Define the functions hi
�

: x ! R and hi
ÿ

: x ! R by

hi
�
�y� :� hi

�y; 1�; hi
ÿ
�y� :� hi

�y;ÿ1� for all y 2 x;�6:16�

where the functions hi are those of (6.2), and assume that

ha
�
; ha

ÿ
2 L2

�x�; h3
�
; h3

ÿ
2 H1

�x�:�6:17�

Assume that there exists a constant c such that inequality (5.1) holds. For
0 < e2e0; let u�e� denote the solution of the scaled variational problem (6.3),
(6.4). Then there exist functions ua 2 H1

�X� vanishing on C0 and u3 2 L2
�X�

that satisfy relations (5.2)–(5.4), and the function u � �ui� 2 VM�x� satisfies
the two-dimensional variational equations

�6:18�
Z

x

aabrscrs�u�cab�g�
���

a
p

dy �

Z

x

�hi
�
� hi

ÿ
�gi

���

a
p

dy for all g � �gi� 2 VM �x�:

Proof. The proof involves the same eight steps as that of Theorem 5.1. We
only indicate the modifications needed for handling the ‘‘new’’ right-hand
side in equations (6.4).

In Step (i), the chain of inequalities that leads to the a priori bounds now
reads, thanks to inequality (6.13),
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Cÿ2
n

X

a

jjua�e�jj
2
1;X � jju3�e�jj

2
0;X

o

2
X

i;j

jjeijjj�e�jj
2
0;X

2 C2gÿ1=2
0

�

Z

C�[Cÿ

haua�e�r�e� dC�

Z

C�[Cÿ

h3u3�e�r�e� dC
�

2 C2gÿ1=2
0

�

C5

n

X

a

jjua�e�jj
2
1;X

o1=2

� C4

n

X

i;j

jjeijjj�e��v�jj
2
0;X

o1=2�

2 C2gÿ1=2
0 �CC5 � C6�

n

X

i;j

jjeijjj�e�jj
2
0;X

o1=2
;

and thus the conclusions are the same. Note that the constant C5 depends on
the norms jjha

jjL2
�C�[Cÿ�

and on the norm of the trace operator acting from
H1

�X� into L2
�C

�
[ C

ÿ
�.

Step (ii) is the same. In Step (iii), the right-hand side of the relation
Z

X

Aijkl
�e�ekjjl�e�

n

eeijjj�e��v�
o

��������

g�e�
p

dx � e
Z

C�[Cÿ

hivir�e� dC

again converges to 0 as e ! 0 for v 2 V�X� fixed, thanks to (6.7). In Step (iv),
again let v � �vi� 2 V�X� be independent of x3; then, again by (6.7) and by
Lebesgue’s dominated convergence theorem,

lim
e!0

Z

C�[Cÿ

hivir�e� dC �

R

C�[Cÿ

hivi
���

a
p

dy �

Z

x

�hi
�
� hi

ÿ
�vi

���

a
p

dy:

The same denseness argument then shows that u satisfies equations (6.18).
In Step (v), we now have

K�e� �
Z

C�[Cÿ

hiui�e�r�e� dC�

Z

X

Aijkl
�e��ekjjl ÿ ekjjl�e��eijjj

��������

g�e�
p

dx:

Since ua�e�* ua in L2
�C

�
[ C

ÿ
� whenever ua�e�* ua in H1

�X�, it follows
from (6.7) that

lim
e!0

Z

C�[Cÿ

haua�e�r�e� dC �

Z

C�[Cÿ

haua
���

a
p

dC �

Z

x

�ha
�
� ha

ÿ
�ua

���

a
p

dy

as e ! 0, on the one hand. Identity (6.12) allows us to write
Z

C�[Cÿ

h3u3�e�r�e� dC �

Z

X

~h�e�
ÿ

@aua�e� � @3u3�e�
�

dx �
Z

X

@i
~h�e�ui�e� dx;

on the other hand. Since ~h�e� ! ~h�0� in H1
�X�, ua�e�* ua in H1

�X�;
@3u3�e� ! 0 in L2

�X� (cf. Step (ii)), and u3�e�* u3 in L2
�X�, we conclude that
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lim
e!0

Z

C�[Cÿ

h3u3�e�r�e� dC �

Z

X

~h�0�@auadx �
Z

X

@i
~h0ui dx:

Using Green’s formula as in the proof of Lemma 6.2, we obtain (note
that ua � 0 on C0)
Z

X

~h�0�@auadx �
Z

X

@i
~h�0�uidx �

Z

X

@3~h�0�u3dx

�

1
2

Z

X

�h3
�
� h3

ÿ
�u3

���

a
p

dx �
Z

x

�h3
�
� h3

ÿ
�u3

���

a
p

dy;

and thus we again conclude that K � 0, as in (5.25). The remaining Steps (vi),
(viii) are unaltered. u

7. Conclusions and comments

7.1. Assume that both body and surface forces satisfying assumptions (2.3)
and (6.2) respectively, are acting on the shell, and let u�e� � �ui�e�� 2 V�X�
denote the scaled unknown (cf. (2.1) and (2.10)) that satisfies the corre-
sponding three-dimensional shell problem. If there exists a constant c such
that inequality (5.1) holds, Theorems 5.1 and 6.2 together imply that there
exist functions ua 2 H1

�X� vanishing on C0 � c� �ÿ1; 1� and u3 2 L2
�X� such

that

ua�e� ! ua in H1
�X�; u3�e� ! u3 in L2

�X� as e ! 0;�7:1�

u � �ui� is independent of the transverse variable x3;�7:2�

f � �fi� :�
1
2

R

1

ÿ1
u dx3 2 VM �x�;�7:3�

e
Z

x

aabrscrs�f�cab�g�
���

a
p

dy �

Z

x

pi;egi
���

a
p

dy for all g ��gi� 2 VM �x�;�7:4�

where

VM �x� :� H1
0 �x� � H1

0 �x� � L2
�x�;�7:5�

the tensors �aabrs
�, �cab�g��, and the function a are defined in (5.6), (3.17) and

(1.4), and

pi;e
:�

Z

e
ÿef

i;edx e
3 � �hi;e

�
� hi;e

ÿ
�;�7:6�

where hi;e
�

:� ehi
�
; hi;e

ÿ
:� ehi

ÿ
and the functions hi

�
; hi

ÿ
are defined in (6.16).

Under the essential assumption that the surface S is elliptic (cf. Theorems
5.2 and 5.3), we have therefore justified by a convergence result (cf. (7.1)) two-
dimensional variational equations (7.4) that are classically those of a linearly
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elastic ‘‘membrane’’ shell (cf., e.g., DIKMENIKMEN [1982, eqs. (7.10)], GREENREEN &
ZERNAERNA [1968, Sec. 11.1], or NIORDSONIORDSON [1985, eq. (10.3)]). In so doing, we have
also justified the formal asymptotic approach of SANCHEZANCHEZ-PALENCIAALENCIA [1990]
(see also MIARAIARA & SANCHEZANCHEZ-PALENCIAALENCIA [1996] and CAILLERIEAILLERIE & SANCHEZANCHEZ-
PALENCIAALENCIA [1995]) in the ‘‘well-inhibited’’ case, according to the terminology of
SANCHEZANCHEZ-PALENCIA.ALENCIA.

7.2. The existence and uniqueness of a solution to the two-dimensional
membrane shell equations (7.4) is a corollary of Theorem 4.2 and of the
uniform positive-definiteness of the tensor �aabrs

� (cf., e.g., BERNADOUERNADOU,
CIARLETIARLET & MIARAIARA [1994, Lemma 2.1]). The regularity of the solution has
been established by GENEVEYENEVEY [1995]; her proof relies on the theory of elliptic
systems of AGMONGMON, DOUGLISOUGLIS & NIRENBERGIRENBERG [1964] (in the same vein, see also
GEYMONATEYMONAT & SANCHEZANCHEZ-PALENCIAALENCIA [1995]). Note in passing that the varia-
tional problem (7.4) is atypical, in that one of the unknowns ‘‘only’’ lies in
the space L2

�x�.

7.3. The convergences (7.1), the scalings (2.1), and inequalities (3.12), (3.14)
together imply the following convergences of the averages across the thick-
ness of the shell of the covariant components of the ‘‘original’’ three-di-
mensional displacement:

1
2e

Z

e

ÿe

u e
adx e

3 ! fa in H1
�x�;

1
2e

Z

e

ÿe

u e
3dx e

3 ! f3 in L2
�x�:�7:7�

These convergences can be further improved and given a more ‘‘intrinsic’’
character by considering instead the averages of the tangential component
u e

aga;e and normal component u e
3g3;e of the three-dimensional displacement

vector itself (note that, along a given normal direction to the surface S, the
vectors ga;e and g3;e remain respectively parallel to the tangent plane and
normal to S, since g e

a � aa ÿ x e
3br

aar; g3;e
� a3; and g e

i � gj;e
� dj

i �. More
specifically, the convergences (7.7) combined with the behavior as e ! 0 of
the vectors gi;e (once ‘‘scaled’’ for convenience as vectors defined over the
fixed set X) imply that
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�x�;

1
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Z

e
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3g3;edxe
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�x�:�7:8�

7.4. The first convergence results for ‘‘membrane’’ shells have been obtained
by DESTUYNDERESTUYNDER [1980] in his doctoral dissertation. In particular, the con-
vergences established there in Theorem 7.9 (p. 305), under the assumption
that the surface S is elliptic, are almost identical to those established in
Theorem 5.1 for the components ua�e�, but ‘‘weaker’’ for the component
u3�e�, since DESTUYNDERESTUYNDER only established that eu3�e� ! 0 in L2

�X�. Besides,
the justification of the membrane shell equations remained partially formal in
that it still relied on an assumed asymptotic expansion of u3�e�.
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Using C-convergence theory, ACERBICERBI, BUTTAZZOUTTAZZO & PERCIVALEERCIVALE [1988] were
able to obtain convergence theorems for shells viewed as ‘‘thin inclusions’’ in
a larger, surrounding elastic body. As a consequence, the distinction between
‘‘membrane shells’’ and ‘‘flexural shells’’ (cf. Part II) is no longer related to
the geometry of the middle surface and the boundary condition as here, but
instead to the ratio (as a power of e) between the Lamé constants of the two
elastic materials in presence. This asymptotic analysis is thus reminiscent of
that of CIARLETIARLET, LEE DRETRET & NZENGWAZENGWA [1989], who considered a plate partly
inserted in an elastic body; if the shell were a plate, the approach of ACERBICERBI et
al. would only apply to the inserted portion, however.

7.5. Our asymptotic analysis covers two essentially distinct situations re-
garding the ‘‘geometry’’ of the surface S and boundary conditions: Either the
shell is clamped on its entire lateral surface and assumption (5.1) holds (this
is the situation considered here), or (cf. Part II) the space of ‘‘inextensional
displacements’’

VF �x� :�
n

g � �gi� 2 H1
�x� � H1

�x� � H2
�x�;

gi � @tg3 � 0 on c0; cab�g� � 0 in x
o

does not reduce to f0g, where U�c0 � �ÿe; e��, with c0 � c, denotes the por-
tion of the lateral face where the ‘‘original’’ three-dimensional shell is
clamped (here, c0 � c�. In addition to these cases, which were respectively
labeled ‘‘well-inhibited’’ and ‘‘non-inhibited’’ by SANCHEZANCHEZ-PALENCIAALENCIA [1989a,
1989b], there remain the ‘‘badly-inhibited cases’’ (following again the ter-
minology of SANCHEZANCHEZ-PALENCIAALENCIA), occurring when the space VF �x� reduces to
f0g, but relation (5.1) does not hold. This happens for instance if the surface
S is elliptic but c0 is only a portion of c (*LICARULICARU [1996]), or if the surface S is
a hyperboloid of revolution (MARDAREARDARE [1996]).

For such generalized membrane shells, a formal asymptotic analysis of the
three-dimensional shell equations can still be carried out (cf. CAILLERIEAILLERIE &
SANCHEZANCHEZ-PALENCIAALENCIA [1995]), and a convergence theorem has been established
by CIARLETIARLET & LODSODS [1995b,c]. The limit problems found in this fashion
possess two unusual features: Their solutions are not necessarily distribu-
tions, and they are ‘‘extremely sensitive’’ to arbitrary small perturbations of
the data. Examples of such problems have been recently studied by SANCHEZANCHEZ-
PALENCIAALENCIA [1993] and LIONSIONS & SANCHEZANCHEZ-PALENCIAALENCIA [1994, 1996].
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TRABUCHORABUCHO & J. M. VIANOIAÑO, editors), pp. 89–102, de Gruyter.

LEE DRETRET, H. & RAOULTAOULT, A. [1995b]: The nonlinear membrane model as variational
limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. 74, 549–578.
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MASCARENHASASCARENHAS, M. L.; TRABUCHORABUCHO, L. [1992]: Asymptotic, homogenisation and Ga-

lerking methods in three-dimensional beam theory, in Computational and Applied
Mathematics II (W. F. AMESMES & P. J. van der HOUWENOUWEN, editors), pp. 85–91, North-
Holland.

MIARAIARA, B. [1989]: Optimal spectral approximation in linearized plate theory, Ap-
plicable Anal. 31, 291–307.

MIARAIARA, B. [1994a]: Justification of the asymptotic analysis of elastic plates. I: The
linear case, Asymptotic Anal. 8, 259–276.

MIARAIARA, B. [1994b]: Justification of the asymptotic analysis of elastic plates. II: The
nonlinear case, Asymptotic Anal. 9, 119–134.

MIARAIARA, B. [1994c]: Analyse asymptotique des coques membranaires non linéairement
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NIORDSONIORDSON, F. I. [1985]: Shell Theory, North-Holland.
NORDGRENORDGREN, R. P. [1971]: A bound on the error in plate theory, Quart. Appl. Math.

28, 587–595.
PAUMIERAUMIER, J. C. [1991]: Existence and convergence of the expansion in the asymptotic

theory of elastic thin plates, Math. Modelling Numer. Anal. 25, 371–391.
PAUMIERAUMIER, J. C. [1995]: On the locking phenomenon for a linearly elastic three-di-

mensional clamped plate, to appear.
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BUCHOBUCHO & J. M. VIANOIAÑO, editors), pp. 237–254, de Gruyter.
ZERNERERNER, M. [1994]: An asymptotically optimal finite element scheme for the arch

problem, Numer. Math. 69, 117–123.

Laboratoire d’Analyse Numérique
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