
Mathematical Geology, I/ol. 2, No. 2, 1970 

Orthogonal Polynomial Trend Surfaces for Irregularly 
Spaced Data x 

E. H. Timothy Whitten 2 

The advantages of  using orthogonal rather than nonorthogonal polynomials for trend-surface analysis 
are discussed briefly. A method for calculating orthogonal polynomial trend surfaces of  any degree on 
the basis o f  irregularly spaced data is described. The method is illustrated with subsurface data for the 
elevation on top of  the Devonian Dundee Limestone, Michigan. 

INTRODUCTION 

In earth sciences mapping problems, there is commonly one dependent variable 
value X i for each sample point, but to define the geographic location two coordinate 
values (u j, v j) are required. It will be assumed that the coordinates are measured along 
orthogonal axes, although, of course, other coordinate systems could be used. It is 
necessary to express Xj = f ( u  i, vj). In trend-surface analysis, it has been common to 
use simple power-series polynomials of the form 

X j  = '~0 + ?lUj+'~21)j+'Y3 u2 +'~4UjVj + •51)2 + ' ' '  -I-~,j (1) 

The data points (ui, v j) either may be equally spaced on a rectangular grid, or irregu- 
larly spaced. A regression analysis with uncorrelated ?i is called orthogonal (Graybill, 
1961, p. 172; Kendall and Stuart, 1967, p. 356). One important application of ortho- 
gonal polynomials arises if the regressor variables u and v take values at equal intervals, 
for example, where the data points are equally spaced over a map area. In such 
situations, the arithmetic involved in solving for the coefficients ~ is easier and can be 
completed readily with a desk calculator. As a result, earlier work in the earth sciences 
used orthogonal polynomials and much of the terminology of trend-surface analysis 
developed at that time; the definitive paper is that of Grant (1957). Later, with the 
growing availability of digital computers, nonorthogonal polynomials were used 
extensively for analyzing many types of irregularly spaced data; the definitive paper is 
by Krumbein (1959). More recently, several investigators in the petroleum industry 
and elsewhere have recognized the importance of using orthogonal polynomials for 
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trend-surface analysis studies of irregularly spaced data (for example, IBM, 1969a 
and b, abstracts of which were given by Lea, 1969, p. 83-84). The method used by 
Grant (1957) requires that values be available at each node of an orthogonal grid. 
In most earth science applications, the geographical locations of samples are irregu- 
larly spaced and it is difficult, if not impossible or prohibitively expensive, to obtain 
samples at grid nodes. For such irregularly spaced data, polynomial trend surfaces can 
be developed by one of three methods. 

"Orthogonalize" the data. Use is made of one of several available techniques for 
estimating the value of the dependent variable at the nodes of an arbitrary grid. For 
example, if the data are manually or machine contoured (Waiters, 1969) values can 
be read at the desired grid points for use with the standard orthogonal system des- 
cribed by Grant (1957). Unfortunately, all available methods of orthogonalizing a 
data set are subject to severe criticism (Grant, 1957, p. 335) and are not recommended 
in a majority of situations. 

Use nonorthogonalpolynomials. This is the most widely used technique but it has 
several disadvantages that are not associated with orthogonal polynomials. At least 
three are important in the present context. First, solution of the requisite simultaneous 
equations to obtain the coefficients ~i may be a difficult and complex problem, even 
with a large digital computer (Mandelbaum, 1963; Whitten and others, 1965); 
this is true particularly for polynomials of degrees five and higher, and the machine 
time involved tends to be high. Second, unlike the orthogonal polynomial coefficients, 
the coefficients are not independent. Third, existing methods do not permit identifi- 
cation and separation of the trend as defined by Grant (1957). 

Make direct use of orthogonal polynomials. This technique involves simple 
arithmetic operations that are executed extremely fast by computer; no matrix 
inversion is necessary. The orthogonal coefficients are independent so that the pro- 
portion of the total sum of squares associated with each coefficient is easily computed. 
Following DeLury's (1950) method, Grant (1957) used the z 2 array as a basis for 
defining the trend; this array is developed immediately from the orthogonal coeffi- 
cients. Mapping functions are developed readily from the orthogonal coefficients and 
permit contoured maps of the trend component and of any part of the residual com- 
ponent to be computed. 

An example of the use of orthogonal polynomials for irregularly spaced data does 
not seem to have been described in the geological literature previously. A simple 
situation based on subsurface data for the Michigan Basin is presented in this paper. 

ORTHOGONAL POLYNOMIALS FOR IRREGULARLY SPACED DATA 

Wishart and Metakides (1953), Forsythe (1957), and Robson (1959) showed how 
orthogonal polynomial coefficients can be calculated for irregularly spaced indepen- 
dent variables in the one-dimensional case. Robson (1959) used a simple recursive 
technique to build a table of polynomial values analogous to those listed by Beyer 
(1966), DeLury (1950), Fisher and Yates (1963), and Pearson and Hartley (1958) for 
grid data. It is impracticable to construct a general set of tables for irregularly spaced 
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data because the values depend on both the number of points n and the varying 
interval between each of the (u, v) coordinate points. Price and Simonsen (1963) 
described the logic for constructing orthogonal polynomials with a single irregularly 
spaced independent variable and outlined a computer program based on SHARE 
program RWCF2F. Dempsey (1966) also gave the logic and published an ALGOL 
computer program for the same general purpose. 

Robson (1959) indicated how his method could be extended to the two-dimen- 
sional case but his particular technique is of little current application in earth science 
problems because his data points are required to lie at the nodes of a grid composed 
of orthogonal lines with unequal spacing. 

Spitz (1966) described a more general method for fitting orthogonal polynomials 
appropriate to genuinely irregularly spaced data. Following Forsythe's (1957) method, 
he generated orthogonal polynomials: 

= f(u,v)  = ~ ~ AijPi(u)Qj(v ) 
i = O j = O  

where P~(u) was calculated for ,~ =f1(u),  and Q.i(v) for A" =f2(v). For approxi- 
mations higher than the first degree, cross-product terms in u and v occur and remove 
the equation from the general linear model class. Although Spitz showed how cross- 
product terms can be accommodated, it is more convenient to develop the orthogonal 
polynomials for )? = f(u, v) directly. 

Suppose that Xiy is measured at n irregularly spaced locations (ui, v j). Consider 
the vectors: 

(1 ,1 ,1 ,1 , . . . , 1 )  = Vo 
( up  u2, u3, u ,  . . . .  , u.) = VL 

(vl ,  v2, 03, v , , . . . ,  vo) = V2 
2 2 2 2 

(U l ,  U2, U3, U 4 . . . . .  Un 2) = V 3 

(U 1/)1, U2/.)2, U3D3~ t / 4 / ) 4 , . . . ,  tint)n) = V 4 
(U2,02,  2 2 2 V3,04,. �9 .,On) ---- V 5 

and so on, for terms of type u 3, u2v, uv 2, v 3, u 4, u 3 v , . . . ,  corresponding to vectors 
V6, V7, V8 . . . . .  Vk, respectively. 
It now is possible to define a set of polynomials as 

~b o (u~, v,) = aooV o (2a) 

r (Un, Vn) = ao tVo+a l lV l  (2b) 

~2 (Un, On) ---- ao2Vo -I- a l 2Vj + a2 2V2 (2c) 

~b k (u., v.) = a okVo + a lkVl + . . .  + akkVk (2k) 
Now, if 

P = P l ,  P2,  P 3 , .  �9 �9 

q = ql~ q2 ,  q 3 , ' -  �9 
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the dot product is (p, q) = Zpiq~, which is called orthogonal if the summation equals 
zero (Kendall and Stuart, 1967, p. 356). It is required that all of the k polynomials 
defined above be orthogonal; for this purpose, it is necessary to find values of the 
coefficients aoo . . . . .  akk that establish 

(4'0 (Un' On)' 4'h (gin, On)) = ~ 4'0 (Urn, 1)m) " 4'h (l'lm, [)m) = 0 (3) 
m m l  

f o r g = 0 ,  1 ,2  . . . . .  k a n d h = 0 , 1 , 2  . . . . .  k a n d g : ~ h .  
Equation (2a) yields 

4'o (u,,v,) = aooVo = (1, 1, 1 , 1 , . . . )  

and therefore aoo = 1. If  a vector Wo is defined as 

4'0 4'0 
w~ -- II 4'~ II - Jm= E4'o (urn, Om)Y 

where 114'oli is the length of vector 4'0, then 

Wo = (x/n 1 1 1 ) 
,Jn ,  jn'  . . . .  

and, using the Gram-Schmidt orthogonalization process (Thomas, 1969, p. 451) it 
follows that 

4'l(U,,Vn)=Vl--(Vl,Wo)Wo=(UDu2,t,3 .... ) - n / / ( ~  1 1  ) n , x / n , x / n , . . .  

: ~ Um--/ ' /U (4)  
m= 1 

Equation (2b) also gives 

4'1 = ao iVo+a l lV1  = naot +all ~ Ull, = ~ t lm--HU (5 )  
II1= i in = 1 

(by equating with the previously derived expression). Using eq (3) we have 

4'O(Um, 1)m)'4'l(Um,[)ra) = ~ aooVo'(aolVo+atlV,) 
m= I m= 1 

= ~ (aooaotV~+aooa,lVoV,)=aooaotn+aooal, ~ l ' l m = O  
m = l  m = l  

Therefore, by rearranging this last expression, aol = -alia, and substitution of 
this value in eq (5) yields 

- - a l l n U q - a l l  ~ t/In = --l lU-I- ~ U.,,, 
m = 1 m m 1 

and thus a~ 1 = 1. Hence, aoo = a ~  = 1 and, in general, it can be shown that a,k = 1. 
The general formula for the orthogonal coefficients now can be derived by use of eq (3) 
with g = 1 and h = 4 but with the subscripts generalized as follows: 
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~ l  (Un, On) = r 1)n) = a i_ l , , i_3  +ai ,  j _ 3 V l  

and 

@4 (u., v.) = 4~,i (u., v.) = a i -  1. j + ai,iVl + ai+ 1. ,iV2 + as+ z, jV3 + as+ 3. iV4 

where i = j -  3. Now,  the or thogonal i ty  condit ion requires that  

{~,(u., v.), ~j  (u., v.)} = 0 

Therefore,  

a i - l , j - 3 a i - l , f l l + a i - 1 , , i - a f l U  ~ U,n- t -a i - l , j -3a i+l , . i  k vm 
r t l f l  m = l  

-Fa,-,,,i-3ai+2, j ~ u~q-al-,.j-aai+3.j ~ u.,Vmq-ai-l,j ~. Um 
m : l  m : l  m : l  

u., + ai + l, ,i urn+ 0 q_ ai,i 2 UmOm -~- ai + 2 ,  'i Ural)m = 
In: 1 m=l  m :  1 m= 1 

but f rom eq (6) 

a i _ l , j _  3 ~ - -~  
SO 

(--ai_,.j+ai_,,j_aaij+ai_,./) ~. Um+aij ~ u.~ 
m = L  r a = t  

=--ai+"J( ai-' ' j-3 m= Vm+ .= UmVm~--ai+2'j(ai-"Y-3,n,,~' U2m+.~= . \ ' u3 ) 

( ) --a,+a.,i a,-,.J-3m~= , U,,,Vm+m~= U2mVm 
Therefore  

-a,+..,i ~ [v,.'(a,-,.,i-3+u,.)] 
m =  l 

ai,i= -a,+2, j ~.. [u~'(ai-,,j-a+u,.)] 
m = l  

-~,+3.j ~] [,,.,~.,'(~,-,.~-3+.,,,1] 
m :  I 

Hence,  akk = 1 and 

II 'Z [.,.(a,_,,j_3+u.,)] 
nl = 1 

a i j = - -  ~ as~ [Vs'gPi(u,,,vn) [Vi'd~i(U,,,Vn)] (6) 
s = i + l  m = l  m 1 

The polynomials  4~o, q~l . . . . .  ~k are now defined and X m can be represented as 

X. .  = bogPo(U..,v,n)+blgpl(u,,.,vm)+b2gP2(u,.,Vm)+... +bkgpk(U,.,V,.)+e,,, (7) 

2 be where 8 is the error  term. The s tandard least-squares criterion requires that  ~,. 
minimized; that  is, tha t  .... 

[bogPo (Um, Vm)+ bld?l (Um, Vm)+ . . . + bkgPk(u,,,, Vm)-- Xm] 2 = F 
t t l  = 1 
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be minimized. To achieve this, the partial differentials of  F with respect to b 0, b~ . . . .  , 
bk must be equated to zero. For  example, 

OF__ = ~ 2[bogPo(U,,, ,v. ,)+bl~l(u,. ,v, .)+.. .  
Ob k m = 1 

+ bk~k (u,~. o.,)-- X.,]" [ - -  ~k (u.,, v,.)] = 0 

and similarly for the partial differentials with respect to bo, b~ . . . . .  bk- ~. Rearranging 
this equation, 

bo*o(tt,,,,O,,,)'*k(Um, O,n)-{- ~ btt~l (tt,,,,Vm)'q~k(tlm, Om)'t- " " " 
lee = 1 m = I 

-t- ~ bk_l*k-l(Um, Vm)'~pk(ttm, Om)-[- ~ bk~p2(ttm, Om) = ~ Xm*k(tlm, Vm) 

but, because of the orthogonality of the polynomials, this reduces to 

f (8) 
m : I. m = | 

which immediately gives the value of b k. Thus, the independent coefficients bo, b~ . . . .  , 
bk of the orthogonal polynomials are immediately and easily calculated. Following 
the procedures of  DeLury (1950) and Grant  (1957), the percentage of the total cor- 
rected sum of squares associated with each of the coefficients can be calculated; in 
turn, this leads immediately to the z 2 array, although only those items of the z 2 array 
corresponding to the particular b coefficients can be calculated in this manner. 

By using the values of  a given by eq (6) to evaluate the orthogonal polynomials 
[eq (2)], the latter are used with the values of  b [eq (8)] to express eq (7) as a simple 

Table 1. Top of Devonian Dundee Limestone, 900-sq-mi Area 
of Central Michigan, 487 Wells (Not More than One per Square 

Mile) 

u coordinate, v coordinate, X, depth below 
Well number miles miles sea level, ft 

2 14.50 6.10 --2762 
7 10.61 6.61 --2754 

11 11.61 6.90 --2753 
15 12.52 6.50 -2770 
17 13.19 6.56 --2766 
31 15.82 7.20 --2718 
33 16.86 7.43 --2726 
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power-series polynomial: 

2 3 
X , n  -~- c O "~- C l t l ,n  "{- c20 , ,  , + c3  u2,  + C4ilml)m "~- C50 m "[- C6U m "~- . . . (9) 

This is the mapping equation that permits a contoured map to be drawn, or computed 
values to be calculated, at each (u,v)point. It will be recognized that, in principle, there 
is no limit to how high a degree polynomial is computed; however, the particular data 
array available and the geological problem will impose restraints on the degree equa- 
tion that should be used. 

If the trend is defined on the basis of the z 2 array (following Oldham and Suther- 
land, 1955; Grant, 1957), the orthogonal coefficients contributing to the trend are 
identified immediately. By setting the nontrend orthogonal coefficients to zero, the 
coefficients of eq (9) can be recalculated to yield the mapping equation of the trend 
component. 

MICHIGAN BASIN EXAMPLE 

The subsurface elevation on top of  the Devonian Dundee Limestone in a 900-sq-mi 
area of central Michigan is used here for an actual example of the method. The data 
set (based on 487 wells) was used for the third-harmonic double Fourier series trend 
surface published by Whitten and Beckman (1969, Fig. 13A); not more than one well 
comes from each square mile of an arbitrary square grid. 

A small part of the data is shown in Table I. Table 2 gives the matrix of ortho- 
gonaI coefficients up to the eighth degree [b coefficients of eq (8)], whereas Table 3 is 
the z 2 array. The percentage of  the total corrected sum of squares associated with 
each orthogonal coefficient is listed in Table 4. Those orthogonal coeffcients contri- 
buting to the trend were identified on the basis of the z 2 array by inspection (Grant, 
1957); the broken line in Table 3 separates trend (above) from nontrend (below) 

Table 4. Percentage of Total Corrected Sum of Squares Associated with Each 
Orthogonal Coefficient in Table 2 

52.241 2.576 0.310 0.419 0.732 
25.720 1.523 1.211 0.832 J . . . .  ] 
2.347 [ at._Q0.627 J 0.070' t 0.859 

__0.5__68_.~ 0.055 0.069 
0.143 0.115 0.072 0.006 0.054 0.007 
0.008 0.032 0.323 0.001 0.095 
0.010 0.450 0.184 0.000 
0.000 0.011 0.001 
0.006 0.007 0.015 

0.014 

0.898 0.635 
[ 

1.010 I 0.143 
0.006 

0.413 ] 



T
ab

le
 

5.
 A

rr
ay

 
o

f 
M

ap
p

in
g

 
C

o
ef

fi
ci

en
ts

 
B

as
ed

 
o

n
 

C
o

m
p

le
te

 
E

ig
h

th
-D

eg
re

e 
O

rt
h

o
g

o
n

al
 

P
o

ly
n

o
m

ia
l 

C
o

ef
fi

ci
en

ts
 

o
f 

T
ab

le
 

2 

--
2

8
2

7
.8

4
2

1
 

-2
2

.2
0

3
1

8
 

-1
.3

5
4

5
2

 
0.

17
41

3 
�9

 6.
79

29
3 

-0
.2

0
8

7
6

 
- 

0.
08

83
1 

-0
.0

0
7

2
7

 
0.

00
07

8 
0.

76
89

4 
0.

39
37

9 
-0

.0
1

2
1

9
 

-0
.0

0
2

7
6

 
0.

00
00

9 
0.

02
07

0 
-0

.0
1

5
9

1
 

0.
00

07
0 

0.
00

01
4 

- 
0.

00
00

1 
-0

.0
0

6
2

5
 

-0
.0

0
1

2
2

 
0.

00
01

2 
- 

0.
00

00
0 

0.
00

00
0 

- 
0.

00
00

7 
0.

00
01

0 
- 

0.
00

00
1 

0.
00

00
0 

0.
00

00
2 

- 
0.

00
00

0 
0.

00
00

0 
- 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
00

89
1 

-0
.0

0
0

8
0

 
-0

.0
0

0
0

0
 

0.
00

00
0 

-0
.0

0
0

0
0

 
0.

00
00

3 
-0

.0
0

0
0

0
 

0.
00

00
0 

0.
00

00
0 

-0
.0

00
00

 
0.

00
00

0 

O
 o a ~
o

 
ta

 

T
ab

le
 

6.
 A

rr
ay

 
o

f 
M

ap
p

in
g

 
C

o
ef

fi
ci

en
ts

 
B

as
ed

 
o

n
 

O
rt

h
o

g
o

n
al

 
C

o
ef

fi
ci

en
ts

 
in

 T
re

n
d

 
O

n
ly

 

g
~

 

t~
 

--
- 

28
12

.8
18

8 
--

 1
7.

44
95

3 
--

 1
.6

05
65

 
3.

62
44

1 
--

0.
43

31
4 

--
0.

07
97

8 
0.

00
03

3 
0.

00
05

0 
0.

52
47

6 
0.

19
78

2 
--

0.
00

06
2 

--
0.

00
18

9 
0.

00
00

3 
0.

02
08

1 
0.

00
20

1 
0.

00
00

3 
0.

00
00

3 
--

 0
.0

00
00

 
--

 0
.0

02
83

 
--

 0
.0

00
79

 
0.

00
00

6 
0.

00
00

0 
- 

0.
00

00
0 

-0
.0

0
0

0
3

 
0.

00
00

1 
--

 0
.0

00
00

 
0.

00
00

0 
0.

00
00

1 
- 

0.
00

00
0 

- 
0.

00
00

0 
--

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

0.
10

16
0 

0.
01

26
1 

-0
.0

0
0

6
2

 
--

0.
00

00
2 

0.
00

00
0 

0.
00

00
0 

0.
00

00
0 

-0
.0

0
0

0
0

 
0.

00
00

0 
0.

00
00

0 
-0

.0
00

00
 

0.
00

00
0 

CI
Q

 

r~
 

Ila
 z 



150 E.H. Timothy Whitten 

sel!~ 

8 2  

e .  o 

~ao 

~ 8  

" o ~  

' ~  ~ 0 

~ g g  

N ~ N ~  



Orthogonal Polynomial Trend Surfaces for Irregularly Spaced Data 151 

components .  Use o f  all the eighth-degree or thogona l  coefficients (Table 2) permits 
calculation o f  the mapping  coefficients [c coefficients o f  eq (9)] listed in Table 5; the 
coefficients are identical to those  computed  with a s tandard  p rogram for irregularly 
spaced data  (Whitten and others, 1965). Figure I A  is the trend surface constructed 
with these coefficients. However ,  using only those or thogonal  coefficients contr ibuting 
to the t rend (as defined in Table 3) results in a different set o f  mapping  coefficients 
(Table 6) and Figure IB is the map o f  the trend. 
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