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Although several goodness of fit tests have been developed for the Rasch model for dichot- 
omous items, most of them are of a global, asymptotic, and confirmatory type. This paper, based 
on ideas from a recent thesis by Van den Wollenberg, offers some suggestions for local, small 
sample, and exploratory techniques: difficulty plots for person groups scoring fight and wrong on 
a specific item, a slope test per item based on a binomial distribution per score group, and a 
unidimensionality check based on an extended hypergeometric distribution per score group. 

Key words: logistic latent trait model, Rasch assumptions, exploration of model fit. 

1. lntroductDn 

Let n subjects, each characterized by a latent subject parameter 0 v (v = 1, 2 . . . . .  n), 
give answers to k dichotomous items, each characterized by an easiness parameter ei 
(i = 1, 2 . . . . .  k). Under the four postulates of monotonicity, sufficiency of total number of 
items correct for the subject parameter, unidimensionality, and local independence, the 
probability of a positive response is given by 

Ov ei 
P(A~, = 1)= 1 +--'~oe---'~-" (1.I) 

For a full discussion of the logical equivalence of (1.1) and the four postulates see Fischer 
[1974, Ch. I2]; it is important that up to trivial reparametrizations only (1.1) satisfies the 
postulates. Properties of this so-called Rasch model, or one-parameter logistic model, 
have been investigated for the past twenty years: for reviews see e.g., Fischer [1974], 
Wright and Stone [1979], Van den Wollenberg [1979], Wainer, Morgan and Gustafsson 
[1980]. Several computer programs for conditional maximum likelihood estimation of the 
item parameters are available, cf. Fischer [1974], Allerup and Sorber [Note 1], Gustafs- 
son [Notes 2 & 3], Raaijmakers and Van den Wollenberg [Note 4]. 

The postulates mentioned above are a stumbling block against regular application of 
the Rasch model in two respects. First, they deal with aspects of latent quantities, and 
thus are difficult to check by statistical tests based on observed data for a random sample 
of persons. Second, they are rather strong assumptions, in many cases not valid for the 
total data matrix but only for a subset of items and or persons as yet to be selected. There 
is a need for goodness of fit tests for the model which can simultaneously serve as diag- 
nostic aids in such a selection process. 

Tests have been proposed among others by Andersen [1973; 1982], Fischer and 
Scheiblechner [1970], Martin-L6f [Note 5], Wright and Panchapakesan [1969], and 
Stene [Note 6]. In their introduction to the EBA computer program, Allerup and Sorber 
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[Note 1] list a few more. Recently Van den Wollenberg [1982] added two more tests, 
which will be discussed here. 

Gustafsson [1980] presents a review of the problems involved in using the tests, of 
which several are incorporated in his PML program [Gustafsson; Notes 2 & 3]. 

Our discussion will center around the following themes: 

(i) The use of exploratory rather than confirmatory techniques will suit the needs of 
many users: although guards against chance capitalization should be provided, 
formal significance tests are of limited value only. 

(ii) A test should give specific information regarding the nature of a bad fit (which postu- 
late, which item(s) or which persons contribute most?). 

(iii) An exploratory tool for detecting Rasch homogeneous subsets of items is very useful. 
(iv) Unless the data are already close to fulfilling the Rasch postulates the use of the total 

score per person for subdivision into homogeneous groups is inadequate. 
(v) Once a reasonably good Rasch scale has been found, local tests per score group per 

item (or per item pair) should preferably use the exact rather than the asymptotic 
distribution of the test statistic. 

2. Exploration by Splitting on an Item 

Most analyses of the Rasch postulates are based on the principle of specific objectiv- 
ity, which implies that essentially the same item difficulty estimates should be obtained for 
any subdivision of the persons into two or more groups. If an external criterion is avail- 
able (e.g., sex or age of the person taking the items) for which a violation of the principle 
is a realistic alternative, the well known Andersen likelihood ratio test should be carried 
out after subdivision based on the criterion. It goes without saying that a main effect of 
the criterion, reflecting unequal ability distribution in the subgroups, is well incorporated 
in the model; a criterion x item interaction, on the other hand, violates the principle. A 
thorough discussion of this point is, e.g., found in Fischer [1974]. 

Subdivision on the basis of an internal criterion (i.e., obtained from the results on the 
k items to be analyzed) is a rather common alternative. Nearly always this is done on the 
basis of the total correct score, either in the form of a dichotomy of high and low scores, 
or in the form of an analysis per score group (concatenating low frequencies in most 
applications). 

Referring back to our theme iv, we claim that this is a useful strategy when nearly all 
items do form a Rasch scale for one latent trait, but not when the item set considered is 
still rather heterogeneous. Van den Wollenberg [1979, p. 100] presents a theorem stating 
conditions under which the concatenation of two internally Rasch homogeneous sub- 
scales for different latent traits appears to be one homogeneous Rasch scale when the 
Andersen test is based on the total score. 

Based on section 3.4.1 of Van den Wollenberg [1979] we propose to single out one 
item, here to be called the splitter, and to consider the two subgroups for which the 
answer to the splitter is zero and one, respectively. The difficulties of the remaining items 
are then estimated in both groups and plotted against each other (see also Formann, 
1981). 

While a more complete discussion will be presented after the presentation of some 
examples, we predict that items measuring the same latent trait as the splitter will be more 
difficult for the persons scoring zero on the splitter and more easy for persons scoring one. 
Items unrelated to this trait should in principle be equally easy for both groups; thus the 
graphical plot may enable us to distinguish between the two kinds of items. 

For some examples we use a dataset in which 685 secondary school students replied 
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to 20 items on their attitude towards school (items 1-10) and towards teachers (items 
1 1 - 2 0 ) ;  details on the data are available on request. We want to see whether our graphical 
plot can single out items having nothing to do with the latent trait measured by the other 
items. For  this purpose we shall add to our 20 real items two fictitious ones: item 21 
equals 1 if the respondent's sequence number is even and 0 otherwise; item 22 equals 1 if 
the sequence number is 343 or more and 0 otherwise. 

The illustrations below plot the conditional maximum likelihood estimates, obtained 
via Gustafsson's P M L  program, of the item ditficulties tr i = - l o g  ei for the two groups of 
persons in which the splitter is zero (horizontal axis) and one (vertical axis). In Figures 
1-3 this is done for the 22 items just described, omitting the splitter in each case. This 
omission is necessary to prevent an artifact, see Van den Wollenberg [1979; p. 111-114]. 
The Andersen test for the two groups is also given, but  we shall see that the plots contain 
more information, namely about the behavior of the individual items. 

In Figure t, where the meaningless item 21 is the splitter, the subgroups of persons 
with V21 = 0 and V21 = 1 respectively can be viewed as two random samples from the 
same population. Up to small sampling variations, the two estimates of item difficulty are 
thus equal, and indeed all item points lie very close to the main diagonal. 

The situation is rather different in Figure 2 where the split is based on item 13. All 
items correlating positively with item 13 obtain on average lower scores, and thus higher 
difficulty estimates, in the V13 = 0 group than in the V13 = 1 group. Especially items 14 
and 20, which have a high association with item 13, lie clearly below the main diagonal. 
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- -  - 3  

FtGVRE 1 
Plot oft~ i for items 1-22 with item 21 as splitter. Andersen test X 2 = 19.5, df = 20, P = 0.49. 
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Plot  of  d~ for i tems 1-22 wi th  i tem 13 as splitter.  The  do t t ed  l ines ind ica te  m o r e  meaningfu l  coord ina te  axes, s e e  

text. Andersen  test  X 2 = 165.3, d f  = 20, P < 0.00001. 

At first sight the position of items 21 and 22 is a little surprising. They seem to be of 
average difficulty in the V13 = 0 group, and rather difficult for the V13 = 1 group. As the 
positive attitudes towards school and teachers have nothing to do with the scores on 
items 21 and 22, we would have expected to find these items near the main diagonal, and 
all others dear ly  below and to the right of it. 

This would be the case if the coordinate axes were given by the dotted lines in Figure 
2. Such a translation of axes is permissible in the Rasch model:  when the item parameters  
ej or aj = - log e~ are estimated in one group of persons, one obtains a ratio scale for ei. It  
is well known that multiplication of all ei by the same factor, or addition of the same 
constant to all ai, leaves the model invariant as it can be compensated for in the subject 
parameters. It  is customary to avoid this indeterminacy by a conventional norming con- 
dition for the item estimates, namely 

k k 

I-[ ~, = 1 or E # ,  = O. (2.1) 
l = 1  i = 1  

As the P M L  program uses (2.1) for each subgroup separately, the sum of all x-coordinates 
in each plot is zero, and the same holds for the y-coordinates. Our  outside knowledge that  
a difference in difficulty for items 21 and 22 is meaningless enables us to interpret the plot, 
using the dotted axes, as a sign that all other items are easier for the V13 = 1 group than 
for the V13 = 0 group. 

Space does not permit us to exhibit all 22 plots of our item collection, but we may 
summarize that a split on item 22 leads to a plot resembling Figure 1, and a split on any 
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FIGURE 3 
Plot of#~ for items 1-22 with item 12 as splitter. Andersen test I2 = 69.6, (If = 20, P < 0.00001. 

other item to a plot more or less resembling Figure 2. By "more or less" we refer to two 
reasons why a less satisfactory plot may appear, as illustrated in Figure 3. 

With item 12 as the splitter, only 51 people belong to the V12 = 0 group, and 616 to 
the V12 = 1 group (the two numbers do not add up to 685, as persons with a zero or 
perfect total score cannot be used for estimation). In a group of 51 persons the item 
estimates are rather unreliable; as an indication the asymptotic 95 percent confidence 
intervals are plotted in Figure 3 for some items. 

The second reason for a less satisfactory plot is that some of the 20 meaningful items 
may exhibit, by pure chance, a substantial correlation with items 21 and/or 22. As r(12, 
21) = 0.073, item 12 is not the best splitter. 

We conclude that it is wise to avoid the use of splitting items with very low or very 
high popularities, and to inspect plots for a few different splits, placing confidence only in 
the features that they have in common. In our example of 22 items, this would lead to the 
rejection of items 21 and 22, that consistently measure something not related to the trait 
underlying the other items. Our prior knowledge that these two items indeed measure no 
meaningful property is not necessary for our conclusion that they should be removed. 
Indeed they also will be rejected on the basis of the binomial plots discussed in the next 
section. 

Some plots for the remaining 20 items are given in Figures 4 and 5. It appears that 
items 3, 9, and 6, and to a lesser extent 4, 8, 7, and 2, are positively related to the splitter 
item 10, and items 2, 3, 4, 7, 8, 9, 10 are positively related to the splitter item 6: they are 
more difficult for persons who responded zero to the splitter than to people responding 1. 
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FIGU~ 4 
Plot ofd i for items 1-20 with item 10 as splitter. Andersen test X 2 = 146.9, (if = 18, P < 0.0000I. 

Although all items lie at a relatively close distance to the main diagonal, the plots 
suggest a closer relation between the items just mentioned. The items 11 to 20 (possibly 
also 1 and/or 5, and possibly not 18) seem to lie above and to the left of the main 
diagonal, which may again be an artifact of the convention (2.1). 

Figures 6 and 7 illustrate that the reverse behavior occurs when the splitter is 17 or 
19; note that 18 now seems to belong to the 11-20 scale, and 5 comes closer to the 1 - 1 0  
scale. As the plots using other splits roughly yield the same conclusion and as the Ander- 
sen test based on total score indicates that the complete item set 1-20 is not a Rasch- 
scale, we conclude from the plots that meaningful subscales may very well center around 
2, 3, 4, 7, 8, 9, 10, and around 11 to 20 respectively. 

From the item contents it is clear that attitudes towards school and towards teachers 
may indeed be distinguished. Item 1 (I believe the lessons are worthwhile) may perform 
better in the teacher subscale (items 11-20). We shall continue our analysis of the sub- 
scales in the next section. 

Summarizing, we conclude that plots based on an item split are attractive when a 
total scale does not conform to the Rasch assumptions, for the following reasons: 

a) the total score, which is unreliable if it is partly based on items not belonging in the 
scale, is not used in the plots, whereas it is in most other testing and plotting pro- 
cedures; 

b) both isolated items unrelated to the others and internally homogeneous subscales can 
be detected. 
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FIGLnXI~ 5 
Plot of S~ for items 1-20 with item 6 as splitter. Andersen test %2 = 140.4, df = 18, P < 0.00001. 

As a drawback, we mention that plots based on different splitters are not always similar, 
and that exploration by plots may lead to chance capitalization. Therefore, we shall dis- 
cuss methods of a more inferential character in the next two sections. 

3. Binomial Tests Per Item Score Group 

3.1 Existing Tests 

For  this section, we shall need the following notation. Under the assumptions stated 
in the introduction, let n randomly chosen persons respond to k dichotomous items with 
success probabilities (1.1). Using capitals for random variables, let N, be the number out 
of the total of n persons who have exactly r items correct (r = 0, 1 . . . . .  k). Such persons 
are said to form the r-th score group. Within this group, let N,~ denote the number  of 
persons who have item i correct (i = 1, 2 . . . .  , k). It  follows from our  definition that triv- 
ially Noi = 0 for all i and N u = Nk for all i; score groups with zero or perfect score will 
not be considered any longer. If  one conditions on N,  = n,, as we shall do in the sequel, 
then N,~ has a binomial distribution with parameters n, and 

def ~(r i)- 1 
~ , ,  = ~, - - ,  ( 3 . 1 )  

7, 

where the gamma symbols denote the elementary symmetric functions of the {eh} in the 
usual way (see e.g. Fischer, 1974, p. 226 and 231). 

Comparison of observed values for N,i to their expected values n, ~,~ (inserting esti- 
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Plot ofd~ for items 1-20 with item 17 as splitter. Andersen test X z = 101.4, df = 18, P < 0.00001. 

mated item difficulties) is attractive for several reasons. First, it avoids the iterative maxi- 
mum likelihood estimation of item parameters in each subgroup that is necessary for the 
Andersen likelihood ratio test: in (3.1) one only inserts the estimates for the total group. 
Secondly, the individual comparisons show for what item and what score group the ob- 
served behavior possibly deviates from the Rasch model. 

Binomial tests and plots are included in the computer  programs EBA [Allerup & 
Sorber, Note  1] and P M L  I'Gustafsson, Notes 2 & 3]. The combined statistic 

k - I  

T = ~ (N, - n ,  ~ , ) ' V ; - I ~ ,  _ n ,  ~ , ) ,  (3.2) 
" " 7 =  1 

where 

N', = (N,1, N,2 . . . . .  N,k ) 

re; = (re, l ,  n , 2  . . . .  , n , k )  

and the k x k covariance matrix V, has elements 

on the diagonal, 

o , , ( i ,  J) 
n, ~i oj ~,- 2 for i # j, 

(3.3) 

(3.4) 
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FIGURE 7 
P lo t  of#+ for i tem 1-20 wi th  i tem 19 as splitter.  Andersen  test  ;(2 = 73.4 df  = 18, P < 0.00001. 

is used by Mart in-L6f [Note  5, p. 128-129]. See also Gustafsson [1980], who includes this 
so-called M L - I C C S L  test [ T  is asymptotically chi-square with (k - 1)(k - 2) degrees of 
freedom when each n,--+ oo] in his P M L  program, where he also prints terms of (3.2) for 
individual r. 

Van den Wollenberg [1982, & 1979, p. 118-121] claims that 

[n,  - N , ,  - n,(1 - nr,)] 2 Z,  ] _ (N,i - n, n,i) 2 + (3.5) 
n, n_, n,(1 -- n,i) 

has a •2 distribution with one degree of freedom, if the true parameters are used for n,i 
and n, is assumed fixed. The claim is correct for n,---, oo, as (3.5) is equal to the square of 

(N,i - n, n,i) 
Z,~ - {n, n,i (1 - n,0} 1/2 (3.6) 

which as we saw is a standardized-binomial-random variable. Rather than using 
Martin-LiSf's covariance matrix, he proposed the test statistic 

k - 1  k k-1 
Q, = ~  ~ ~ . Z r  2, (3.7) 

| = 1  r = l  

which by the correction factor ( k -  1)/k has approximately a X 2 distribution with 
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(k - 1)(k - 2) degrees of freedom if {ei} are estimated from the data and the restriction 

k 

N,i = rn, (3.8) 
i = 1  

is accounted for. In the special case when all items are of equal difficulty, or rather when 
in the sample 

k 

N.i = ~ N,i (3.9) 
r = O  

has the same value for all i, the statistics T and QI are identical; see Van den Wollenberg 
[1982] for a discussion of this case. 

3.2 N e w  Proposals 

All authors quoted seem to concentrate their attention on the null hypothesis that 
the Rasch model is correct. The asymptotic chi-square test is powerful against any alter- 
native set of probabilities rc,~ not equal to (3.1). There are two special alternatives that we 
want to consider in detail. 

When one item with index i is unrelated to the remaining ones, the probability of a 
correct answer to it in score group r exhibits only a minor increase with r for this index i, 
caused by the contribution of the item to the total score. More generally, we may expect 

N,i > n, nrl for small r 
(3.10) 

Nr, < n, 7r,, for large r 

for an item with a less steep trace line than the remaining items. A too steep trace line will 
result in reversed signs in (3.10). Inspection of the individual binomial plots or tests for 
each item in turn will thus reveal important information as to the nature of a violation of 
the Rasch assumptions when the inequalities (3.10) or their reverse hold for certain items. 
Such systematic deviations, which are frequently found, are more easily interpreted than 
an incidental deviation or an oscillation of Nr, around their expected value. Note that 

k - I  k - I  

N,i = N.~ -- n k = ~ n, rc,i (3.11) 
r----I r = l  

if the item estimates ei based on the sufficient statistics N.i are used in (3.1). Thus any 
comparison between N,i and n, rcri results in the same sum when all score groups are used. 

The BINO option in the PML computer program lists per item, for each score group 
for which n, exceeds a user-specified minimum value (default = 5), the quantities n,, N,~, 
N,Jn ,  and n , ,  followed by the one-sided probability of exceedance 

Pri = n~Ji(1 -- re,i) " - J  when N,i > n,n, i ,  (3.12) 
j=Nrl J 

P,i = ~ z,l (1 -- ~,i) n'-J when N,i < n,  lr, ri.  
.i=O J 

For  an example we return to the 22 items discussed in section 2. Table 1 gives the 
results for item 21 when BINO was applied to all 22 items. The results for item 22 are 
similar, and no other item produced more than two P,~ values below 0.025 (corresponding 
to 0t = 0.05 two-sided). It is clear that items 21 and 22 are correctly inferred to show too 
little relationship with the remaining items. For  an easy comparison, the following signs 
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Table I. Output of the BINO option in the PML program for an analysis of 

all 22 items; results for item 21. 

score total number one-slded 
group freq. correct observed predicted (3.12, 3.13) 

r nr nri nri/nr ~rl P " rl 
m 

3 6 2 .333 >>>> .024 .0080 

4 8 5 .625 >>>> .035 .0000 

6 12 4 .333 >>>> .063 .0051 

7 6 4 .667 >>>> .080 .0005 

8 10 2 .200 > .101 .2677 

9 23 10 .435 >>>> .125 .0002 

t0 20 I0 .500 >>>> .154 .0003 

11 22 8 .364 >> .187 .0392 

12 28 17 .607 >>>> .225 .0000 

13 31 16 .516 >>>> .270 .0031 

14 42 16 .381 > .321 .2495 

15 47 24 .51 t  >>> .380 .0462 

16 65 29 .446 = .446 .5475 

17 60 30 ,500 < .521 .4329 

18 71 30 .423 <<<< .603 .0016 

19 77 37 .481 <<<< .694 .0001 

20 81 45 .556 <<<< .791 .0000 

21 51 35 .686 <<<< .894 .0000 

are printed in table 1 and 2 between N,Jnr and re,i: for the 

= when P,: > 0.50; 

> when 0.10 < P,~ < 0.50; 

> > when 0.05 < P,~ _< 0.10; 

> > > when 0.01 < P,~ < 0.05; 

> > > > when P,~ < 0.01, 

c a s e  Nri > rl r ~ r i  ; 

(3.14) 

and the reversed signs in case (3.13). 
Table 2 gives the results for items 3, 4, and 7 in the item set 2, 3, 4, 7, 8, 9, 10. 

Although only a few individual binomial tests reach the one-sided significance level of 
0.025, the printed signs indicate that item 3 has a steeper trace line than expected, and 
item 4 a less steep one. The signs for item 7 exhibit a random behavior that is confirmed 
by high Pri values. The complete results show that item 9 behaves like item 3. Figures 8 
and 9 show two split plots for the item set used in Table 2. The split on 10 confirms our 
conclusions that items 3 and 9 have steeper trace lines than the remaining ones, but the 
split on 2 is less informative. 
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Plot of~ for items 2, 3, 4, 7, 8, 9, 10 with item 10 as splitter. Andersen test X 2 = 21.8, df = 5, P = 0.0006. 

The idea that systematic deviations between N,i and n,r~,i are the most plausible 
alternative to the binomial distributions predicted by the Rasch model, calls for a combi- 
nation of one-sided binomial tests rather than a combination of all squared deviations 
into a statistic like T or Q1. Moreover, it is informative to combine the evidence within 
one item across score groups rather than across items within a score group as advocated 
by Mart in-Lff  and Van den Wollenberg: an outlying item can be further studied and if 
necessary removed, but the information that a certain score group contributes much to 
the bad overall fit is hardly useful. 

A combination of one-sided tests runs into the problem that some values of n, may 
be large, making the test powerful, whereas other score groups contain so few individuals 
that the binomial test has little power and that any normal approximation may be inad- 
equate. We suggest a combination procedure based on an a priori division of the index set 
of all score groups into two extreme classes for which different signs can be expected 
under meaningful alternatives, and a middle class where no relation between N,~ and n, n,t 
is predicted. Let 

n m = n -- no -- n~, (3.15) 

and define r I and r 2 by 
r l  - -  1 n m  r l  k - -  1 t l  m k - 1 

Z n , < - ~ - <  ~ n , ,  ~ n , > - ~ - >  ~ , , .  (3.16) 
r = 1 r = I r = r 2  r = r 2  + 1 
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FIGURE 9 
Plo t  o f ~ t  for items 2, 3, 4, 7, 8, 9, 10 wi th  i tem 2 as splitter. A n d e r s e n  test Z 2 = 5.1, d f  -- 5, P = 0.41.  

It  will be convenient to use the notat ion 

L = {1, 2, . . . .  rt}, 

M = {r I + 1, r 1 + 2, . . . .  r 2 - 1}, (3.17) 

g = {r 2, r 2 + 1, . . . .  k -  1}, 

for an exclusive and exhaustive partition of our index set of  score groups (an empty set M 
is permitted, but an exceptional case in which (3.16) leads to r l  > r2 calls for revision). 

Recall that Z,i was introduced in (3.6) as the standardized version of the binomial 
variable N,i.  Our  new proposal  is the test statistic 

Ez,,-Ez,, 
U~= L R (3.18) 

(rl + k - r2) "'~ 

Large positive values of U~ indicate a trace line that is not steep enough, or even an item 
unrelated or negatively related to the remaining ones. Such an item is a candidate for 
removal from the scale. Large negative values of U~ are an indication that item i measures 
the latent trait with a steeper trace line than the other items. Although the item may be 
" too  good for the scale", its use in the unweighted total score may not be disastrous. 
Moreover, its position in the scale may well improve when items with very positive Ut are 
removed. 
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Table 2. Output of the BINO option in the PML program for an analysis of 

items 2, 3, 4, 7, 8, 9, I0; results for items 3, 4, and 7. 

item 3 

score total number one-sided 
group freq. correct observed predicted (3.12, 3.13) 

• nri n r • P . r n r nrl / Wrl rl 

I 28 3 .107 < .[80 .2315 

2 30 7 .233 <<< .405 .0384 

3 27 14 .519 < .617 .1957 

4 37 31 .838 > .786 .2952 

5 117 110 .940 > .907 .1387 

6 165 165 1.000 >>> .975 .0162 

item 4 1 28 16 .571 > .439 .1105 

2 30 21 .700 > .676 .4756 

3 27 22 .815 = .819 .5579 

4 37 33 .892 < .907 .4555 

5 117 i12 .957 < .961 .4760 

6 165 160 .970 <<< .990 .0271 

item 7 1 28 3 .107 > .074 .3440 

2 30 5 .167 < .188 .4938 

3 27 12 .444 > .346 .1898 

4 37 15 .405 << .551 .0533 

5 117 91 .778 < .782 .4941 

6 165 158 .958 > .940 .2194 

We claim that  U~ has under  H o asymptot ical ly (all n , - - ,  oo) a lmost  a s tandard  norma l  
dis tr ibut ion,  the numera to r  being the sum of r t + k - r 2 terms with mean  zero and  vari- 
ance one. The a rgument  would  be compel l ing if the Z,~ for different score groups were 
independent .  By the restriction (3.11) and  the inser t ion of est imated item parameters  into 

n,~, they are not. If we put  

#,i = n, n,i (3.19) 

2 n,i ( 1 7~,i ), T r i  = ?i r 

the numera to r  of (3.18) is of the form 

k-1 { z~ t  for r ~ L 

Y = ~ a,i(N,i - #,3 with a,, = 0 for r e M (3.20) 
r = l  

--z'~ l for r ~ R 
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k - I  The conditional variance of Y given that V = Y'.,=l N,~ is by (3.11) assumed to be fixed, is 
known for the case when Y and V have a bivariate normal distribution (which is approxi- 
mately true) to equal 

T r i  - -  T r i  

tr2(1 -- p 2 v )  = (r  I + k - -  r 2) - -  ~ - 1  , 
2 

(3.21) 

2 because cov (Y, V)=  ~_~-~ a,iz,~ can be simplified for the weights a,~ given by (3.20). 
Because of the partial cancellation of positive and negative terms, the total expression 
(3.21) usually is close to (rl + k - r2). As the conditional variance is smaller, it is conser- 
vative to treat Ui as standard normal. In the author's experience, the difference is only 
nonnegligible when rc,i is very close to I for all r ~ R and not close to 0 for all r e L, or 
vice versa, and/or when there is a rough bound in (3.16) due to the presence of a large 
score group. One could of course use (3.21) in the denominator of(3.18). 

When U~ contains some terms for which n, is small or moderate, say less than 30, 
then the corresponding Zr~ may be far from normally distributed under the null hypoth- 
esis, especially when simultaneously n,~ is close to zero or one. One might feel tempted to 
use other transformations of N,~ to normality than (3.6), or to replace Z,~ by the inverse 
normal cdf of the exact probability of exceedance P,~. One could also use Fisher's omni- 
bus procedure by which y ' ,  ( - 2  log P,)  is asymptotically Z 2 under Ho, using for P , i  the 
binomial probability of at least N,~ for 1 < r < rl and of at most N,i for r2 < r < k - 1, or 
for items with a too steep trace line just the reverse. It seems to us that none of these 
sophistications offers a satisfactory solution to the basic problem that both Z,~ itself and 
any transformation of it have a strictly discrete distribution if n, is small (say n, < 10, cf. 
Wallis, 1942). 

We have also studied a test statistic based on the raw difference ~L N,~ - ~ e  N,~. In 
many cases the most extreme score groups will simultaneously have low n, values and 
large deviations between N , i / n ,  and n,i. The new statistic would give such score groups 
less weight than groups with much larger n,, whereas all groups involved in the summa- 
tion get equal weight in U~. 

We are thus led to prefer U~ for an approximate significance test which is powerful 
against items for which the success probability as a function of r systematically deviates 
from re, in such a way that (3.10) or its reverse holds. To this end, Z,~ are printed for all r 
in our local modification of the BINO option in PML, and U~ is given for each item. If 
some values of n, fall below the user-specified bound (default = 5), U i can be modified to 
exclude the corresponding terms both in the summation and in the denominator. Other 
feasible modifications are the concatenation of adjoining score groups with small n,, and 
the use of a significance level accounting for the number of significance tests involved in 
examining a complete item set. Since satisfactory experience has thus far been collected on 
the adequacy of the test based on U~ and on the choice of n,,/4 in (3.16), the calculation of 
U~ may become part of the standard analysis of an item set. 

Let us summarize the results of this section. The comparison of individual observed 
Nr~ values with the expected values n, n,~ under the Rasch model should only be used 
when the graphical analysis has given support to the suggestion that the total score of the 
item set under consideration is a meaningful quantity. In such cases the Mart in-Lrf  test 
based on T given by (3.2) gives a good general impression about the deviations. If T 
reaches significance, comparison of the signs of the deviations within one item may give 
valuable clues about the way in which certain items deviate from the expected results. A 
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test based on (3.18) may be a useful formalization of such a sign comparison, which is 
already provided in the form of plots by some computer programs. 

4. Extended Hyperffeometric Tests Per Item Pair Per Score Group 

4.1 Existing Tests 

The assumptions of the Rasch model are monotonicity, sufficiency of total score, 
unidimensionality, and local independence. The binomial analysis of section 3 is particu- 
larly suited for detecting violations of the former two assumptions. A violation of the 
unidimensionality axiom will usually go hand in hand with a lack of local independence: 
people with the same total score on a test measuring two different latent traits will not all 
score the same position on one such trait, and thus items measuring the same trait will be 
positively related even in such a group. When specific subsets of items are suspected of 
measuring different latent quantities, one may use a test proposed by Mart in-Lrf  
[Note 51 incorporated in the P M L  program and briefly described by Wainer, Morgan, 
and Gustafsson [1980]. An interesting test for large sample sizes is suggested by Stene 
[Note 6]. 

Van den Wollenberg [1979, 1982] proposes an analysis of local independence via the 
2 x 2 tables of pairs of items within score groups. Let N,o denote the number of persons 
with total score r who have both i and item j correct, and N,o the number in score group 
r with i correct and j incorrect; similarly Nri I and N,o. Then such a table becomes 

observed frequencies 
i temj  

I 0 
i 1 NrO NrO 
t 
e 

m 0 Nr~ J NrO 

i Nrj N,~ 

N r i  I 

N r i  

nr  

probabilities 
i temj 

I 0 
~ri j  ~ri  - -  7~rij 

1 - -  :Zrt + 
0 7Erj - -  7~rij - - ~ r j  "~- 7~rij 

% i  1 - ~ r j  

~ri 

1 - -  % i  

Such tables are trivial for r = 0, 1, k - 1, k because of structural zero's; we shall restrict 
ourselves to 2 _<, r < k - 2 in the rest of this section. 

For fixed r, i and j, and given n, and e, the unconditional distribution of the entries in 
the four cells of the 2 x 2 table is multinomial and can be written as 

P ( N r l  j = x ,  Nri = n,i, N,j = nrj[  n r ,  g) 

= n r ' n r i / ( n r i  - -  r r r i i ) n " - X ( n r / - -  n'tl)'~-~(1 -- nri %/q- n r i / ) n ' - n ' l - n ' l + x  (4.1) 
X !(nri - -  X ) ! ( n , j  - -  x ) ! ( n  r - -  nri  - -  nr j  -F X) !  

where 

8 ~,(h) h Y r -  t 

(4.2) 
(s h) 

~g eh Y,'-' 2 . 
7~r# h .~- 

~r 

as before the gamma's denote the symmetric functions and their derivatives. 
We shall follow Van den Wollenberg in his preference for a conditional analysis of 

the 2 x 2 table, assuming Nrl and Nrj fixed. Possible deviations between N,t and nr ~ri 
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already having been detected by the binomial analysis, all we want to do now is find out 
whether N,. u deviates from its conditional expectation given the marginals. 

As was already observed by Lehmann [1959, p. 143-146], the conditional distri- 
bution of N,u given the marginals is the "extended hypergeometric distribution": 

P(N,.,. i = x  IN,., = n,,,  N,.j = n,.j, N,. = n,., r.) = c ( n ~ ' ~ (  n" - nr'~ A ~ (4.3) 
k x / \ n , . j  - x ~  

where A = A,o is the well known odds ratio 

A = n,.°(1 - n , -  z,j + n,u) 
(4.4) 

and the factor C is found from the requirement that the sum of (4.3) over its range max (0, 
n,~ + n,~ - n,) ~ x < min (n,~, n,j) is equal to I. Some properties of this extended hyper- 
geometric distn'ibuWon are given by Patit and Joshi [1968, p. 57]. A full discussion, includ- 
ing moments, estimation methods for A and various approximations was given by Hark- 
ness [1965]. Rewriting Harkness' theorem 3 in our notation, we obtain the following 
normal approximation. 

Let N,o have the extended hypergeometric distribution given by (4.3). Find the 
unique numbers Pl and Pz for which 

Next, let 

0 < p h < l ,  (h = 1, 2) 

Pl(1 - P2) = A p2(1 - Pl) 

n~ Pl + (n,. - n,~)p z = nrj. 

H1 = (n,,pl(1 - Pl)}- 1:2 

H2 = {(n, - n,i)p2(l - P2)}- 1/2 

(4.5) 

(4.6) 
l i e  = I_121 + 

z~ = (m - n,.~pl)B. 

Then Z = (N,o - n,i pl)H has approximately a standard normal distribution when n,-~ oo 
such that H-~  0; more specifically, if the integers a and b are chosen in the permissible 
range given below (4.4) such that H, Hz~ and Hz~ all tend to zero, then the ratio of 
P(a ~_ N , o  ~ b) and ~ Z ~ + l / 2 ) - - ~ Z a _ l / 2 )  tends to 1, where ~ denotes the standard 
normal cdf: 

cI)(z) = (2r 0-1/2 I ~ exp (-2Zu 2) du. (4.7) 
d -  o0  

As (4.3) is an exponential family and has monotone likelihood ratio in A, the hypothesis 
that A is given by (4.4) can now be tested either in the exact distribution or in its normal 
approximation. An extensive numerical comparison has taught us that the normal ap- 
proximation has less than two-digit accuracy unless H < s I. In most applications, H will 
be much larger. Fortunately the permissible range will then be moderate enough for exact 
evaluation with an electronic computer. One could also obtain confidence intervals for A 
using Harkness 11965]. The use of such a diagnostic test per score group per item pair has 
some advantages compared to the use of an overall test proposed by Van den Wollen- 
berg. One of the obstacles on the road to an overall test is the absence of a fully satisfac- 
tory combination procedure for the individual test statistics per item pair and score 
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group, which have different discrete distributions and are slightly dependent because of 
some side conditions analogous to (3.8), (3.9), and (3.11). 

Before proceeding with this discussion, let us compare our results to those obtained 
by Van den Wollenberg [1982], who claims in his formula (20) that 

, ,  o o ~ , ( i , j )  

E(N,ij I n,, I~) = n, n,ti = ' "  oi ~1 ~(,- 2) (4.8) 
3', 

He next proposes to compare observed and expected frequencies by means of 

D 2 D 2 D 2 D z 

Q,o - E~t,, j)  + ~ + E(N, + 'E(N,o)' (4.9) 

where D denotes the difference between N,q and its expectation. Finally he claims that 
Q,ij has a chi-square distribution with one degree of freedom, and combines them into 

k-1 ~ ~ - - 3 )  (4.1 
E I)" O) 

i = 1  j = i + l  

which is claimed to have approximately a chi-square distribution with ½k(k - 3) degrees 
of freedom. 

Examining the appropriateness of the three steps we shall distinguish four cases. 

Case 1: conditioning on n, and using general values e. 

Here the distribution of the four entries of the table is the multinomial (4.1) and E(Nro ) is 
correctly given by (4.8). Next, 

D~j = N,o - ENro = Nr~ - N,~j - nr(Tt,~ - 7r,O ) = N,~ - nrTrrj - D, (4.11) 

and similarly for the remaining two cells. The four squared deviations thus\are not iden- 
tical; indeed the table has three degrees of freedom and only the fourth entry is fixed by 
the remaining three through the requirement that they sum to n,. Some tedious algebra 
shows that Q,o given by (4.9) equals cD2/{nrTr, t j ( 1 -  n,ij)}: divided by c it would be 
asymptotically (n,--+ oo) chi-square with one degree of freedom, but the (complicated) 
expression c is a constant which will not equal 1 unless some very special choice is made 
for e. 

Case 2: conditioning on n, and substituting for e. the values estimated by conditional maxi- 
mum likelihood for this score group alone. 

Again E(N,i~) is given by (4.8), with the estimated e inserted. As observed by Van den 
Wollenberg, the special estimates ~, = (£,1, ~,2 . . . . .  ~,k) are such that 

^ a,f ~ , )  _ N , t  (4 .12)  
~'~ - 3',(~:,) n ,  

It follows that in (4.11) now D~j = --D; similarly D o = - D  and D o = D. If we put 

P l = ~ .  = ~,~j n ,  

nri N'i ' (4.13) 

(~'~ --~'O) = (N,: - n, ~,q) 
P2 = (1 - ~,i) (n,--  N,~) ' 

then, taking the first and third, and also the second and fourth term together, some al- 
gebra shows that 

1 1 1 1 1 1 

E(Nrij) -~ E(N,ij-""~) + E(Nri2-""~) -1- E(N,o-"~) N,,pI(1 -- Pl) + (n, -- N,i)p:(1 -- P2)' (4.14) 
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T a b l e  3. A summary o f  p r o p e r t i e s  o f  t h e  f o u r  c a s e s .  

C a s e  1 C a s e  2 C a s e  3 C a s e  4 

C o n d i t i o n i n g  on  ~ and  n y e s  y e s  y e s  y e s  
r 

C o n d i t i o n i n g  on n r i  and  n r j  no  no  y e s  y e s  

General values of c yes no yes no 

c by  CML f o r  s c o r e  g r o u p  r n o  y e s  n o  y e s  

E N r i  j = n r  W r i j  y e s  y e s  no  y e s  

= -Dv.ff i -D.v=Dvv no y e s  y e s  y e s  
DiJ  x3 2 x3 13 • 
Q r i j  h a s  Xl d i s t r i b u t i o n  no  no  no  a s y m p t .  

a result that we shall need in case 4. For a proof of the asymptotic chi-square character of 
(4.9) we should prove that (4.14) asymptotically equals {nz~m(1-z~z~i)}-l; we shall 
obtain in case 4 that this is not correct. 

Case 3: conditioning on n,, n,i, n,j and using general values of a 

The distribution of N,/~ now is extended hypergeometric, see (4.3). The mean E(N,o ) is no 
longer given by (4.8). No simple closed expression for it exists [Harkness, 1965], but it will 
be clear that E(N,o ) will be larger than n, rc,0 when N,~ > n, zc,~ and N,j > n,~,j,  and 
smaller when the reverse inequalities hold. 

By the conditioning on the marginals, the four squared deviations from the expec- 
tations are trivially equal. As an asymptotic chi-square distribution will be obtained in 
case 4 for a very special vector ~, it is extremely plausible that this will not hold here, with 
the use of a wrong expectation and of a variance which is not 1/H 2 (see below). 

Case 4: conditioning on n,, n,i , n,j and substituting for E the values estimated by conditional 
maximum likelihood for this score group alone. 

As in case 3, the expectation of N,o cannot be obtained in closed form, the distribution 
being again extended hypergeometric. But the numbers Pl and P2 defined by (4.13) now 
satisfy the three requirements (4.5) by Harkness, as is easily verified. It follows that 
n, ~,o = n,i Pl is equal to the asymptotic mean used in Harkness' normal approximation 
given below (4.6); thus E(N,o ) and n r ~,o are asymptotically equal. The equality of the four 
squared deviations follows from the conditioning, as in case 3. For the asymptotic distri- 
bution of Q,o, note that (4.14) can now be written as H 2 by (4.6), and thus Q,o is simply 
the square of a quantity of which the asymptotic normality was proven by Harkness. 

The four cases are summarized in Table 3. We conclude that the claim by Van den 
Wollenberg is asymptotically correct in case 4; in all other cases one of its parts fails to be 
true. 

4.2 New Proposals 

Earlier we have complained that most test proposals were global, asymptotic, and 
concentrated on the null hypothesis. This is very true for Q2c,~ given in (4.10): it does not 
consider separate items or item pairs, its components Q,i~ are based on 2 x 2 tables with 
rather small entries unless all score groups contain many persons, and it is powerful 
against all possible deviations between the quantities N,o and their expectations under the 
Rasch model. 

One could argue that the distribution of Q2tr~, being the sum of (~) quantities Qrij, 
will be almost chi-square under H o even for moderate sample sizes, because so many 
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contributions are summed. On closer inspection, this argument is not very compelling. 
Unless one has a large sample size and simultaneously a small number of items, a sub- 
stantial number of score groups may contain ten or less individuals. By the restrictions 
specified below (4.4), this means that N,ij can assume at most a few different values; for 
some item pairs only two or even only one value may be possible under the conditioning 
on N,i and N,j. For  such cases Q,ij will have a strange discrete distribution under Ho and 
little or no power against general violations of the Rasch model. 

In order to improve this by a directed search, let us analyze in more detail the null 
hypothesis that items i and j belong to the same Rasch scale. People in the same score 
group obtain the same estimated ability. At first sight this seems to imply that local 
independence is equivalent to A = 1, that is to 

E(Nrij ] nri , nrj , nr, v.) = nri nrJ (4.15) 
nr 

in the conditional distribution (4.3) of Nri j .  But within the score group we have brought 
together individuals of somewhat different latent trait value, although with the same esti- 
mated ability. As they have the same number r of items correct, individuals with item i 
correct will have a slightly lower probability of having item j correct than the average 
person in score group r. Even if the Rasch model is correct, the values of A given by 
evaluating (4.4) with (4.2) calculated for a vector of estimates ~: will therefore generally be 
slightly less than one: within score group r, items i and j will have a weak  negative corre- 
lation. The size of this correlation will be larger when the scale contains fewer items: for 
large k the restriction to total score r will have almost no influence. 

Let us now turn to the specific alternative in which the item set consists of some 
items measuring one latent trait and some other items measuring a different latent trait. 
The numbers correct on the two subsets of items, within the total score r, can then be any 
oair 

(r, 0), ( r - l ,  1), ( r - 2 , 2 )  . . . . .  (1, r -  1), (0, r), (4.16) 

subject to the restriction that some pairs may be impossible because the number of items 
per subtrait is limited. 

Table 4 sketches the situation in which a test of k = 10 items consists of 6 items 
measuring one trait and 4 items measuring a different one. Especially within the groups 
having a total score of 4, 5, or 6, people have widely differing scores on each of the 
subtests. 

In such a heterogeneous score group, we predict that two items from the same sub- 
test will be positively correlated. A pair consisting of one item from each subtest should 

T a b l e  4 . P o s s i b l e  c o m b i n a t i o n s  o f  s c o r e s  o n  t w o  s u b s e t s  c o n s i s t i n g  

o f  6 a n d  4 i t e m s  r e s p e c t i v e l y ;  i n  e a c h  c e l l  t h e  t o t a l  s c o r e  

i s  p r i n t e d .  

s c o r e  on 

s u b t e s t  2 

4 

3 

2 

1 

0 

4 5 6 7 8 9 i 0  

3 4 5 6 7 8 9 

2 3 4 5 6 7 8 

1 2 3 4 5 6 7 

0 1 2 3 4 5 6 

0 1 2 3 4 5 6 score on subtest I 
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show almost independence when both latent traits are uncorrelated. When the total 
number of items is small, the side effect mentioned under the null hypothesis also plays a 
role. It may then be expected, however, that item pairs from the same subset have a higher 
A than predicted by the Rasch model and item pairs from different subsets have a lower 
A. 

This result may be summarized as follows. For  each score r (2 < r _< k - 2) and each 
item pair (i, j), compare 

N r o ( n ,  - n,i - n, j  + N , q )  

~ri j  ~- (nri _ Nro)(nr i  __ Nri j  ) 
(4.17) 

to A,~j given by inserting the estimates of t in score group r into (4.2) and (4.4). If the item 
set can be subdivided into two subsets such that generally A,o > A,o for item pairs from 
the same subset and A,~j < A,o from item pairs consisting of one from each subset, then 
this is evidence that each subset of items measures a different latent trait. The significance 
of the difference between A,, i and Aro can be tested using the extended hypergeometric 
distribution (4.3). If all cell entries are large, one may also use the Harkness approxi- 
mation, which comes close to calculation of Q,~ by (4.9) and (4.8) when estimates of E per 
score group are used. In most cases it is better to use the one-sided version with conti- 
nuity correction, and • defined in (4.7); 

where 

P(N.j  < x) ~ ~[(x + ½ - n. ~,~j)H], 

P ( N , q  > x) ~ 1 - ~[(x -- ½ -- n, ;~,q)/-/], 
(4.18) 

1 1 1 1 
H 2 = --2--- + ^ + ^ + (4.19) 

and all r~ values are obtained by inserting the estimates of e for this score group alone into 
(4.2). 

More generally, we predict that item pairs for which A,o > A,o for (almost) all score 
groups, especially for all score groups with large nr, point to a very close association 
between such items, that might measure a subtrait which is less well measured by at least 
some of the remaining items. Combination of one-sided tests for item pairs could be 
developed in a way analogous to our derivation of (3.18). 

Once more we shall use the items on pupils' attitudes for an illustration. We shall use 
two different scales of six items, each of which consists of three items from the first sub- 
scale, and three items from the second one. Our selection was based on the two require- 
ments that (a) score groups 2, 3, and 4 should contain at least 70 persons each and (b) the 
three items chosen from the same subseale should not exhibit clear departures from the 
Rasch model. 

Table 5 gives the results. In each half of the table the first six lines give A o and A o for 
the pairs within a subscale, and the next nine lines for the pairs consisting of one item 
from each subscale. Thus we expect A o > A o in the first six lines and Ao < A~j in the next 
nine lines. Such inequalities indeed hold in 78 out of the 90 cases listed in the table; the 
twelve offenders are marked by printing a star instead of the expected sign. 

Note that, for k = 6 items only, all expected values A,i i are far less than one: by the 
restriction to a fixed total score r all pairs of items exhibit negative association. Observed 
values for item pairs within the same subscale are sometimes larger than one and some- 
times smaller. 
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T a b l e  5.  O b s e r v e d  A . .  c a l c u l a t e d  f rom ( 4 . 1 7 )  and  e x p e c t e d  A . .  f r o m  
r x j  r x j  

the ~ estimates per score group inserted into (4.2) and (4.4). 

Inequalities violating our prediction are replaced by a star. Items 

2,7,10,17,18,19(first half) and 6,9,10,15,16,18 (second half). 

item pair r=2 , nffi70 r=3 , n=105 r=4 , nffi128 

i j ~ A . ~ .  A . .  ~ .  A . .  
rxj rij rxj rIj rxj rij 

2 7 2.73 > 0.36 1.01 > 0.44 0.17 * 0.35 
2 10 0.62 > 0.31 1.56 > 0.39 0.52 > 0.34 
7 10 0 . 6 3  > 0 . 3 4  1 .00  > 0 . 4 2  8 . 6 6  > 0 . 3 5  

17 18 1 .28  > 0 . 3 3  0 . 9 4  > 0 . 4 0  0 . 9 6  > 0 . 3 2  
17 19 1 .38  > 0 . 3 1  1 .26  > 0 . 3 9  1 .03  > 0 . 3 2  
18 19 0 . 5 9  > 0 . 3 2  0 . 7 6  > 0 . 3 8  0 . 1 6  * 0 . 3 3  

2 17 0 . 0 4  < 0 . 3 0  0 . 1 8  < 0 . 4 0  0 . 1 9  < 0 . 3 3  
2 18 0 . 0 6  < 0 . 3 0  0 . 4 4  * 0 . 4 0  0 . 4 3  * 0 . 3 4  
2 19 0 . 0 6  < 0 . 2 7  0 . 0 9  < 0 . 3 9  0 . 3 9  * 0 . 3 4  
7 17 0 . 0 5  < 0 . 3 3  0 . 3 2  < 0 . 4 3  0 . 0 4  < 0 . 3 4  
7 I8 0 . 3 5  * 0 . 3 4  0 . 0 9  < 0 . 4 2  0 < 0 . 3 5  
7 19 0 . 2 5  < 0 . 3 2  0 . 4 4  * 0 . 4 2  0 < 0 . 3 5  

10 17 1.71 * 0 . 3 4  0 . 1 0  < 0 . 4 0  0 . 1 2  < 0 . 3 6  
10 18 0 < 0 . 3 4  0 .21  < 0 . 3 9  0 .21  < 0 . 3 4  
10 19 0 . 4 3  * 0 . 3 2  0 . 2 0  < 0 . 3 7  0 . 2 0  < 0 . 3 3  

r=2 , n=79 r=3 , n=105 r=4 , n=llO 

6 9 0 . 9 3  > 0 . 2 5  0 . 6 4  > 0 . 3 5  0 . 5 2  > 0 . 2 9  
6 10 0 . 9 8  > 0 . 2 8  2 . 6 9  > 0 . 3 2  1 .02  > 0 . 2 3  
9 10 0 . 4 8  > 0 . 2 9  2 .50  > 0 . 3 7  4 .46  > 0 . 2 6  

15 16 0 . 6 2  > 0 . 2 3  1 .63  > 0 . 3 7  0 . 5 4  > 0 . 3 4  
15 18 2 .11 > 0 . 2 9  0 .71  > 0 . 3 t  1 . 38  > 0 . 3 4  
16 18 0 . 5 8  > 0 . 1 9  3 . 3 8  > 0 . 3 5  0 . 4 8  > 0 . 2 4  

6 15 0 < 0 . 2 9  0 . 2 2  < 0 . 3 2  0 .11  < 0 . 3 4  
6 16 0 . 0 3  < 0 . 1 8  0 . 0 9  < 0 . 3 4  0 . 2 9  * 0 . 2 6  
6 18 0 . 1 5  < 0.27 0 . 0 7  < 0 . 2 4  0 .  I0  < 0 . 2 3  
9 15 0 . 0 5  < 0 . 3 0  0 . 0 5  < 0 . 3 8  0 . 0 4  < 0 . 3 6  
9 16 0 . 4 7  * 0 . 3 5  0 . 5 2  * 0 .41  0 < 0 . 2 9  
9 18 0 . 0 7  < 0 . 2 6  0 . 2 2  < 0 . 3 6  0 < 0 . 2 7  

10 15 0 < 0 .31  0 . 2 8  < 0 . 3 6  0 . 2 8  < 0 . 3 4  
10 16 0 . 0 7  < 0.22 0 . 0 2  < 0 . 3 7  0 < 0 . 2 4  
10 18 0 < 0 . 2 9  0 . 0 6  < 0 .31  0 . 0 2  < 0 . 2 0  

5. Discussion 

T h e  t o o l s  p r o p o s e d  in  t h i s  p a p e r  c o u l d  b e  v i e w e d  as  a s p e c i a l i z a t i o n ,  fo r  t h e  c a s e  o f  

d i c h o t o m o u s  a n d  e q u i - d i s c r i m i n a t i n g  i t ems ,  o f  m o r e  g e n e r a l  p r i n c i p l e s  a p p l i c a b l e  in  o t h e r  

m e a s u r e m e n t  m o d e l s .  T h e  s p l i t t e r  i t e m  t e c h n i q u e  p l o t s  t h e  e s t i m a t e d  i t e m  di f f icu l t ies  ~ j  

fo r  a l l  i t e m s  j # i i n  t h e  s u b g r o u p s  w i t h  i t e m  i c o r r e c t  a n d  w r o n g ;  i f  N U p e r s o n s  s c o r e  

b o t h  i t e m s  r igh t ,  t h e n  s u c h  e s t i m a t e s  a r e  b a s e d  o n  t h e  suf f ic ien t  s t a t i s t i c s  N o a n d  N~ - N ~  

respec t ive ly .  E s s e n t i a l l y  t he  a s s o c i a t i o n  b e t w e e n  i t e m s  i a n d  j is p l o t t e d .  W i t h i n  t h e  R a s c h  

m o d e l ,  h o w e v e r ,  t h e  t r a n s f o r m a t i o n  f r o m  o b s e r v e d  d i c h o t o m o u s  sco re s  t o  p o p u l a t i o n  f ree  

i t e m  e s t i m a t e s  a l l o w s  a n  u n b i a s e d  f o r m  of  s u c h  p lo t s .  

S imi l a r ly ,  t he  b i n o m i a l  a n a l y s i s  in  s e c t i o n  3 c a n  b e  v i e w e d  as  a r e f ined  i t e m - t e s t  
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correlation and the extended hypergeometric analysis as a benchmark for a simple cluster 
analysis based on the odds ratio A. In both cases the conditioning on total score is similar 
to elimination of the first principal component. The difference is again that our analysis is 
specifically geared to the special assumptions of the Rasch model: it is more complicated 
than a classical form of item analysis, because it is carried out within a specifically objec- 
tive measurement model for dichotomous items. 

The results in sections 3 and 4 are special cases of a comparison of observed and 
expected frequencies for all score patterns, cf. Table 8 column 6 of Andersen [1982]. One 
could say that we have grouped such frequencies according to the result for one item, or 
for a pair of items. Low frequencies will presumably make a grouping desirable, and our 
grouping has the advantage of pinpointing properties of specific items. A search for specif- 
ic violations in the spirit of our paper, but now based on asymptotic properties, was 
advocated by Kelderman [Note 7]. 

The Birnbaum model with unequal item discriminations comes very close to the 
Rasch model when the slopes are assumed known [Andersen, Note 8]. Due to the high 
correlation between various weighted composites of item scores, the use of somewhat 
wrong slopes may not have serious effects. Lord [1981] advocates the estimation of both 
slopes and guessing parameters jointly with item difficulties. Our proposals are not di- 
rectly relevant for this case: the applications we have in mind do involve neither multiple 
choice achievement tests nor very large sample sizes. 

An overall goodness of fit test frequently leads to the conclusion that a given data 
matrix of scores of n persons on k dichotomous items does not obey the Rasch model. 
The exploratory tools proposed in this paper may be helpful in transforming this general 
conclusion to more specific information about the nature of the violations. They deal with 
most of the themes outlined in section 1. Although the violations may demand the use of 
more general item response models mentioned above, it may also be desirable to investi- 
gate whether removal of a few items brings us within the Rasch model with its desirable 
statistical properties. 

We agree with Gustafsson [19801 that some violations are not caused by the item 
itself but by the conditions under which it is taken: removal of items should never become 
a mechanical operation in which item content and circumstances are disregarded. Similar 
tools could be developed which exhibit outlying persons or subgroups of "Rasch homoge- 
neous persons", rather than items. Finally, "significant" violations of the Rasch assump- 
tions may be tolerable when they are only detected because a very large sample size has 
made the tests extremely powerful. More work on the robustness of procedures based on 
the Rasch model against minor violations of the assumptions would be highly welcome. 
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