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Abstract. Fractal variation of dynamical attractors is observed in complex-valued neural 
networks where a negative-resistance nonlinearity is introduced as the neuron nonlinear 
function. When a parameter of the negative-resistance nonlinearity is continuously changed, 
it is found that the network attractors present a kind of fractal variation in a certain parameter 
range between deterministic and non-deterministic attractor ranges. The fractal pattern has a 
convergence point, which is also a critical point where deterministic attractors change into 
chaotic attractors. This result suggests that the complex-valued neural networks having 
negative-resistance nonlinearity present the dynamics complexity at the so-called edge of 
chaos. 

I. Introduction 

The complex-valued neural networks are the 
extended version of conventional real-valued neural 
networks [1, 2]. Input and output signals, weighting 
factors, and neuron nonlinear functions are 
determined using complex number so that the 
information geometry of the network is constructed 
in complex space. This feature is advantageously 
used especially for smooth learning and expression 
of dynamical attractors [3]. The complex-valued 
neural networks can treat the signal phase in 
microscopic neurons as well as macroscopic neural 
networks [4]. 

On the other hand, chaotic aspects in biological and 
artificial neural networks are very attractive when we 
deal with time-sequential behaviour of  the networks 
[5, 6]. Such chaotic characteristics of the neural 
networks are sometimes related to spontaneous 
process in brains or probabilistic operations of  
biological networks. In many cases, the chaotic 
behaviour originates from the neuron dynamics 
having negative-resistance-type nonlinearity. 

In this paper, a fractal variation of attractors in 
complex-valued neural networks is reported. When a 
negative-resistance nonlinearity is introduced in a 
complex-valued associative memory which has 
originally periodic attractors, the phase relation 
between neuron outputs becomes unstable. As a 

loose nonlinearity varies continuously to a steeper 
one, the attractor-variation diagram shows a kind of 
fractai pattern between the parameter ranges of 
deterministic and non-deterministic attractors. The 
fractal pattern converges at a critical point, at which 
the deterministic attractor also changes into the non- 
deterministic one. This result suggests that the 
complex-valued neural networks having negative- 
resistance nonlinearity present the dynamics 
complexity at the so-called edge of chaos [7]. 

2. Network contruction 

Figure 1 shows the construction of  the complex- 
valued associative memory. The memory has one 
connection layer, where both the weighting factors 
W -  [w~.] and the neuron nonlinearity are determined 
in complex space. A complex-valued input signal 
vector x - [xj] is fed to the associative memory as a 
trigger. Obtained output signals are iteratively fed to 
and transformed through the network. After a certain 
number of iteration, an attractor is recalled 
depending on the input signals x and the weighting 
matrix W. 

In the complex-valued neural networks, the signal 
amplitude is transformed nonlinearly at each neuron, 
whereas the phase information is left almost 
unchanged. When the neuron nonlinearity is a simple 
saturation function such as sigmoidal function, we 
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obtain stationary, circular, or quasi-periodic 
attractors. Such smooth dynamical attractors arise 
mainly from the phase information of the signal 
vector and the weighting factors. 

Iteration loop _ _ ~  

input II C ' ~  . ~ ' -  ~ =0  
signals II 0 w'2~I~ ~ " ~ " ~ '  
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output 
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Fig. 1. Basic construction of complex-valued associative 
memory. 

In this paper, on the other hand, we introduce a 
negative-resistance nonlinearity. The nonlinear 
function f, which is used at each neuron in this 
network, is defined as 

~Ej WkjXjl=(]Ej wkjxj[lexf iarf~wkjxj l] '  

(1) 

where the real-number function r(u), which 
determines the output-signal amplitude, is a 
negative-resistance nonlinear function that is a 
modified version of the sigmoidal function with a 
parameter a: 

l - u / a  (O<u<a) 
r (u)  = (2) 

tanh(u / a -  1) (a _< u). 

In the range that the amplitude of  weighted and 
summed input u -- ]Y.j wk~c j I is less than the 
parameter a, the function r(u) is monotonically 
reducing (negative-resistance characteristic); 
otherwise it is a conventional sigmoidal function. 
When the parameter a becomes smaller, the gradient 
in both the negative-resistance and sigmoidal regions 
becomes steeper. 

3. Experiment 

In this experiment, the numbers of both the input and 
output neurons are 50, respectively, and all 
operations are synchronous in discrete time steps. 
Before the negative-resistance nonlinearity is 
introduced, the neurons have learned sinusoidal 
trajectories having different frequencies. The output 

signal of each output neuron x~t) is sinusoidal 
oscillation expressed as 

Xk(t ) = A exp[Rokt], (3) 

where the angular frequencies are chosen 
co k - k x 2n/T depending on the neuron index k 
(1 < k < 50) with a long-term time step T (= 64 unit 
time steps). In equation (3), A denotes an amplitude 
constant and chosen at 0.64 in this case. 

Figure 2 shows a typical attractor variation obtained 
for the complex-valued associative memory with a 
negative-resistance nonlinearity expressed by (2) 
when the parameter a is varied. In figure 2, small 
dots present the real part of one of the output signals 
Re[xl(t)] which is recorded when the output signal 
value of a neighbour neuron x2(t) crosses the real 
axis (i.e. arg[x2(t)]=0). This attractor-variation 
diagram shows the output behaviour in a temporal 
term of 50 x T which follows a long period (20 x T) 
after the recalling trigger, so that the recorded data 
present attractors without transient. 

Since the original attractor is periodic as is expressed 
by (3), the phase relation between the two neurons 
(xl(t) and x2(t)) is stable when the negative-resistance 
nonlinearity is loose. This loose parameter range 
corresponds to the larger values of parameter a in 
figure 2 (1.19 < a). In this range, two lines of dots 
express the doubled frequency of  x2(t) compared 
with that ofxl(t), i.e o)2 = 2o)l. On the other hand, as 
the parameter a decreases, the steepness of the 
nonlinearity expressed by (2) increases. In such a 
small-a range in figure 2 (a < 0.82), the output signal 
is extremely noisy. 

In the middle range (0.99 < a < 1.18), it is found that 
the dotted region shows a kind of fractal pattern. 
Each attractor (which corresponds to a certain value 
of parameter a) is recorded as dots within restricted 
segments of lines, and the overall attractor variation 
constructs the fractal pattern. The fractal pattern has 
a convergence point at a ,~ 1.18. (Two- 
dimensionally on the variation diagram, there are 3 
convergence points for the same value of parameter 
a.) This convergence point is recognized also as a 
critical point at which deterministic attractors 
(1.18 <a)  change into chaotic attractors ( a<  1.18). 
Accordingly it is found that the complex-valued 
neural networks having negative-resistance 
nonlinearity present clearly the so-called edge of 
chaos. This result also suggests that this network has 
the dynamics complexity at the edge of  chaos. 



8 Neural Processing Letters, Vol. 1, No. 1, 6-8, 1994 

Fig. 2. Attractor-variation diagram dotted for a neuron output value Re[xt(t).] when the output of  a neighbour neuron x2(t) 
crosses the real axis; i.e., arg[x2(t)] = O. 

4. Conclusion 

Fractal variation of dynamical attractors has been 
observed in complex-valued neural networks when a 
parameter of negative-resistance nonlinearity is 
continuously changed. The fractal pattern has a clear 
convergence point in the attractor-variation diagram. 
This parameter point is also the critical point at 
which deterministic attractors change into chaotic 
attractors. This result suggests that this network 
presents the dynamics complexity at the edge of 
chaos. 
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