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Abstract. In most applications of the multilayer perceptron (MLP) the main objective is to 
maximize the generalization ability of the network. We show that this ability is related to the 
sensitivity of the output of the MLP to small input changes. Several criteria have been 
proposed for the evaluation of the sensitivity. We propose a new index and present a way for 
improving these sensitivity criteria. Some numerical experiments allow a first comparison of 
the efficiencies of these criteria. 

1. Introduction 

Let us consider a MLP as a functionfl/~---}/~, 

Xx) = (1) 
where W~ stands for the weight matrix and #i stands 
for diagonal non-linear operators; the elements of  
which are activation functions. 

It has been proved [I] that, under some weak 
assumptions, any function g: R " ~ / ~  can be 
approximated with an arbitrary accuracy by an MLP. 
Given the architecture, the learning process consists 
in computing weight matrices minimizing a given 
citerion: 

d = (1/2)< II g(xj)-Xxj) II ~> (2) 

where <~ is a statistical expectation with respect to 
input xj, j=l. . .N, while I]. 11 denotes a Euclidian norm. 
This minimization is performed by the well known 
backpropagation method. 

In practice we have to take into account that system 
inputs and outputs may be noise-contaminated. The 
real value of xj and g are unknown, we only know 
xj + 4 and g(xj) + ej, where ~ and ej are random 
noise. Thus, the best data interpolation may not be 
the best solution. What is expected is that small input 
variations may not induce too large an output 
variation and that MLP does not model the noise. 
The well known phenomenon of  overfitting amounts 
to noise modelling. This overfitting appears when the 
complexity of  the network is greater than the 
complexity of  the system. In this case a small input 
variation causes a large output variation. Thus, 

methods of optimization of the network size have 
been proposed [2]. 

Usually overfitting is controlled by using a subset of 
the data for validation. This subset is not used for the 
computation of the weight matrix but for stopping 
the training process checking the model 
generalization ability. Separation of  the data into the 
two subsets is not straight-forward. Several methods 
have been proposed belonging to the class of cross- 
validation methods. In this class of  methods several 
questions arise. They are discussed in [3]: 
�9 Part of  the data is not directly used for estimating 

the weights. 
�9 If the stop criterion is a given threshold for the 

generalization ability on the validation set, then 
this threshold may be reached from several initial 
conditions, corresponding to several solutions for 
W. On the other hand several local minima of (2) 
may be reached in the learning set after various 
learning phases which all meet the stop criterion, 
leading to different performances with the 
validation set. 

�9 The solution is highly dependent on the dividing 
up of  the data and on the initial conditions. 

On the other hand there is not just one solution for 
the minimization of (2). The number of solutions is 
related to the size of  the network and to the number 
and the distribution of  the inputs. Thus, common 
sense leads to the choice of the local minimum with 
the lowest sensitivity. 
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2. Sensitivity criteria 

The link between the modification of inputs, xj,  and 
the variation of outputs, yj=J(xj), is the Jacobian 
matrix dy/dx r=  [@/~gX]mx,. It represents the 
sensitivity of the network outputs according to small 
input perturbations. For a network with n layers the 
Jacobian is: 

dy/dx 7'= DnWnDn-tWn-t...DiWi...~DtWt (3) 

where Di stands for a diagonal matrix the elements of 
which are the first partial derivatives of each 
activation function r with respect to its input. The 
upper bound of the Jacobian norm measures the 
sensitivity of the network. This norm depends upon 
the number of weights which is related to the number 
of layers and the number of nodes per layer [4]. 
Matsuoka [5] proposed that this norm be added to 
the function J thus modifying the learning rule of the 
backpropagation. For a network with n inputs, one 
hidden layer with ni nodes, and one output (i.e. 
re=l), the gradiant vector of y) with respect to xj is 
4= [dj/,...,die,...,din] 1~ with: 

ni 
dj~ = s) ~_, w~,.lo( l -lo)we/ (4) 

i=1 

(under the assumption that a logistic sigrnoid 
function is used for the activation). When sj is the 
derivative of the output node with respect to its 
input, I o is the output of the ith hidden node for the 
input xj, the scalars w~:,. and wei are the weights 
between the output node and the /th hidden node, 
and between the eth input node and the ith hidden 
node. 

Let ]ldA[ be the norm of the gradient in xj. Then the 
sensitivity of the network for the learning data set is: 

N 

SSD = ~.~ 114.112 (5) 
j = l  

However, this norm does not account for the 
variation of the sensitivity in the neighbourhood of 
xj. Thus, networks with small first derivatives should 
be preferred even if the derivatives have a wide 
dispersion on the learning set. The dispersion may be 
represented by the second derivatives. Assuming that 
between several approximators the smoothest is the 
best one Bishop [6] proposed a modification of 
function J by adding a term which represents the 
curvature. Thus, the learning process minimizes the 
curvature of f as well as the error function (2). The 
curvature at xj is: 

kj = (a~)2/[1 +(dj)2] 3 (6) 

where ddj stands for the derivatives of dj (i.e. the 
second derivatives ofyj  with respect to xj). Deriving 
the gradient leads to the Hessian matrix with 
diagonal elements: 

ni  

ddje = ys( l'yj)( l'2yj)[ ~_a w,,Io( l'l~j)we/] 2 
i=1 

(7) 
ni 

+y)(1-yj) ~z~ w~,.Io(1-Iu)(l-2lo)wf 
i=1 

Webb [7] proposed to add to J a term dependent on 
ddj. The coefficient of this term is proportional to the 
variance of the input noise. 
An estimate of the curvature o f f  is: 

N 

c v R v =  (8) 
j = l  

Minimizing this index leads, of course, to smooth 
functions but their sensitivity may not be minimal. 
For instance the curvature of the exponential 
function y = e ~ is small (for x > 0) but it is obvious 
that its sensitivity is high; a large first derivative in 
comparison with the second derivative implies a 
small curvature. Thus, a good index of the sensitivity 
must take into account the norm of the Jacobian 
matrix but also the sensitivity of this matrix itself 
with respect to small disturbances of the network 
inputs. The smaller dj and ddj (the first and second 
derivatives of yj with respect to xj) the less the 
network is sensitive. Therefore, 

n 

Dj=~a (ddjedje) 2 (9) 
e = l  

indicates the sensitivity of the network in xj given 
that each term of the sum is only large if both dj and 
ddj are large. 
Let 

N 

c s l - -  (oj) 2 (10) 
j = l  

where k is the number of ddj sign modifications 
divided by N. We propose it be used to estimate the 
sensitivity of the network. 

Obviously none of the indices SSD, CURV or US! 
may be used as ending criteria for the learning phase, 
because they are not related to the behavior of the 
error function d. For instance if the weights of the 
network are initialized with values close to zero, GS1 
is small before the begining of the learning phase. 
Many of the well known approaches propose to add 
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a penalty term to J and thus optimize a linear 
combination of the two criteria: accuracy and 
sensitivity. However, in this way we can obtain 
several solutions which are local minima and there is 
no criterion for choosing one of them. Thus, we 
propose a hierarchical aggregation of the two 
criteria: several solutions which are each local 
minima of J are computed (all satisfying a given 
stopping rule) and the sensitivity index allows us to 
select the solution which should have the best 
generalization ability. In the following section we 
compare the three sensitivity indices on a few 
numerical examples. 

3. Examples 

The four experiments consisted of the approximation 
of two functions: gl(x) = 0.8 sin(2nx) and 
g~(x) = exp(-x 2) without and with an added noise. For 
these experiments we used the same network 
architecture with one hidden layer. Each experiment 
consists in computing the synaptic weights of the 
network 50 times with randomly chosen initial 
weights. The 50 learning phases are performed on 
the same learning set and are checked by a test which 
stops the learning phase before the begining of 
overfitting. This test is based on the average relative 
variance (ARV) computed on the learning set (a 
given part of the data). The learning phase is stopped 
when the ARV on the learning set falls under a given 
threshold. For a subset S A R V  is: 

_ I ~ ( g ( x j )  _ YJ )2 (I1) A R V ( S )  2 
(I  N N s  j 

where Cr2N is the variance computed over all the data 
and where Ns is the size of set S. This allows A R V t o  
be independent on the size of the data set belonging 
to S. The generalization ability of the networks is 
estimated by ARVval (ARV computed on the 
validation set). 

For the approximation of g;, x is equaly spaced in 
[0,1] and the learning set consists of 25 values 
randomly chosen among 1025 in [0,1]. For the 
approximation of  g~ we used I00 values of x 
randomly distributed in [-2,2] and 20 values among 
them were randomly chosen for the learning set. The 
relationship between one sensitivity index and the 
generalization ability (ARVval) of the obtained 
networks is shown in figures 1 and 2 for the three 
presented definitions of sensitivity. Figure 1 is 
related to the approximation of gt (without and with 
noise la and lb respectively), while figure 2 is 
related to the approximation of g2 (without noise 2a 
and with noise 2b). The correlation coefficients 

between the three indices of sensitivity and the 
generalization ability where computed and are 
presented in table I. 
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Fig. 1. Scattergrams of the three sensitivity indices versus 
the generalization ability, for gt without noise (a), and 
with noise (b). 
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Fig. 2. Scattergrams of the three sensitivity indices versus 
the generalization ability, for gz without noise (a), and 
with noise (b). 



4 Neural Processing Letters, Vol. 2, No. 6, 1-4, 1995 

Approximations 
gl 

gl + noise 
g2 

g;~ + noise 

Sensitivity indices 
SSD CURV GSI 

0.089 0.406 0.664 
0.874 -0.254 0.907 
0.394 -0.337 0.958 
0.694 -0.001 0.921 

Fig. 1. Correlation coefficients between the three indices 
of sensitivity and the generalization ability for the four 
fitnetion approximations. 

We performed too few experiments to be able to 
claim that the lower GSI is, the better ARVval. 
Nevertheless, we can compare the means of  two sets 
of  values: the first one consists of  solutions such that 
their ARVval values are smaller than the ARVval 
median and the other one consists of  solutions such 
that their ARVval values are larger than the median. 
For the four examples the difference of the two 
means is significant with a probability larger than 
98%. The same statistical test was performed for 
SSD and CURV leading to the acceptance of the null 
hypothesis in all examples for CURV and in half of  
the examples for SSD. Moreover, we can estimate a 
threshold of  GSI: for instance if we only choose a 
network such that its GSI is smaller than the first 
quartile of  the GSI values then we can say that its 
ARVval would have more chance of being smaller 
than network with larger values of  GSI. 

4. Conclusion 

Using a sensitivity index to choose a network allows 
us to avoid the local minima corresponding to the 
most sensitive networks. This computation can be 

easily implemented in the baekpropagation 
algorithm. Obviously, the computation of the set of  
W matrices can be performed in parallel. This 
method, used together with an approach optimizing 
the size of  the network, should be very efficient for 
designing networks with good generalization ability. 
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