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ABSTRACT. Previously investigated models are further elaborated here, with
particular application to DNA.  Accepting the premise that DNA may be
characterized as an intrinsic semiconductor with a band gap energy of approx-
imately 2 eV, a self-consistent method reveals term energies of reasonable
magnitude. The treatment also determines that the mobilities are of the order
of 10 to 102 em?/V sec, indicating delocalization of the electrons with respect
to the base pairs.

I. Introduction

In this paper we compare two models which have been hitherto considered
by Rosen! and Krizan® as semiempirical approaches to the complex problem
posed by periodic biomolecules such as DNA. Other approximation
schemes have been exhaustively applied to organic molecules by Pullman
and Pullman® and Ladik and Hoffman,* and many others; such calculations,
although differing somewhat in their results at present, may well contain
the germ for a more complete understanding of the role of electronic
structure in complex biomolecules.

For the present, however, we continue to investigate the problem of the
exact determination of band structure for simplified one-dimensional
models, and apply the calculations to DNA. The Kronig-Penney model
was first applied by Rosen' to the problem; here we re-examine this
model and the Harmonic Potential model.2 While our treatment is exact
as far as the band structure is concerned, we do introduce the effective
mass approximation, in a self-consistent procedure. This has the effect
of producing term energies which have quite realistic values. As in previous
work,!> we accept the premise that biomolecules such as DNA may be
treated as intrinsic semiconductors.®® We would note that Rosen® has
recently shown how a model involving electron exchange can lead to very

J. Biol. Phys. Volume 3, 1975 103



TABLE I

NaDNA Conductivity Data®

Source Form o E; Reference
(Qlem™) (eV)
Calf thymus solid gel 6X102 2.44 15
Calf thymus solid gel 4X10% 1.27 15
Calf thymus fibers 3.2X103 2.42 16
(denatured)
Calf thymus fibers 5X107 2-2.2 17
Chicken erythrocyte fibers 10° 1.9 17
Calf thymus dry fibers 102 2.36 18
Salmon sperm
Herring sperm oriented 3.5X10% to 2.8 5
films 3.5X10%
Calf thymus compressed 4X103 2.4 7
Salmon sperm films and 2.43 19
compressed
tablets

*in part from Vasilescu2?

narrow band widths, suggesting contact with models which treat energy
exchange between monomers in terms of excitons.!**? The band widths
obtained here are larger than those of Rosen'® and this is possibly more
consistent with the mechanism of intrinsic semiconduction. We also
obtain mobilities which are of the order of magnitude of those estimated
by Suhait}?

II. Band Gap Energy

Organic molecular crystals and macromolecules such as DNA exhibit
a dc conductivity which varies according to the relation”

o= ooe-W/kT (1)

where o, is a constant, and W is the experimentally determined activation
energy. The equations (with classical statistics) for intrinsic semi-conductors
are assumed to apply and so E; = 2W is the band gap energy: this is the
minimum energy an electron must acquire if it is to make a transition from
the valence band to the conduction band. Many researchers have measured
the resistance of DNA as a function of temperature and have determined
that E, lies between 2 and 2.4 ev, but there is a large variation in the
value for g, because of the difference in the water content of the samples.
Table I is a compilation of some of the experimental results.

*
For detailed aspects of conduction in polymers, see the paper by Pohl.1*
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The conductivity measurements are usually made on samples which are
in the form of dried films, microcrystalline powders, or compressed tablets
so that the native two-stranded complementary structure may not be
present. However, O’Konski” reasons that

‘“‘a substantial portion of the hydrogen bonded structure is probably restored
upon cooling the solution, even if a complementary rematching of the strands
over the entire lengths is not possible under the experimental conditions. Although
separated from its complement, a given polynucleotide chain can apparently fold
back upon itself and find complementary sections intramolecularly, perhaps with
the formation of additional short loops consisting of one or more bases which
cannot match the opposite chain.”

The models presented here take into account the double periodicity of
DNA in the sense of Refs. 1 and 2. That is although the unit cell is
defined according to the base periodicity, the helical periodicity is treated
implicitly by means of a coordinate transformation, according to Tinoco and
Woody.?! The effect of the parameter associated with the helix pitch is,
however, suppressed in what follows due to the use of a self-consistent
effective mass approximation.

The order of bases in the macromolecule is assumed to have no effect
on the band structure. Carrier motion is postulated to take place by
tunneling between the bases, or by conduction along the sugar phosphate
backbone.

HI. The Model

The dispersion relation for the energy as a function of wave number
was obtained in Ref. 2. This relation holds in general for any periodic,
symmetric potential form. In particular it was applied to a periodic
harmonic potential, for which the Schrédinger fundamental solutions
were confluent hypergeometric functions. In general however, in the
notation of Ref. 2,

F(z') = +1 + 2(y,'y2 )+ = -1 + 2(y;y5').+ (2)
where y,;, y, are the fundamental solutions of the Schrédinger equation,
for any symmetric potential. The relation could also be used for the
Kronig-Penney model; however, care would have to be taken not to
actually pass to the limit of infinitely high and infinitesimally thin barrier,
since continuity of function and derivative were assumed in derivation
of (2).

The function F(z") is restricted to lie between the values +1. This
restriction determines the band edges. In Ref. 2 only a single filled band
was plotted analytically for the Harmonic Potential model. In the present
paper we apply the above relation to a DNA realization with nine filled
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bands, where the calculation has been extended with the aid of a computer.”
According to the above, the zeroes of y,, y»' and y,, y,  determine
the locations of the bands.

The band gap energy is chosen as 2.4 eV. (See Table I) for use in both
the Harmonic Potential model and in the Kronig-Penney Potential model,
and the band structure is found by means of a self-consistent method where
the bandwidth of the conduction band determines the effective mass of the
electron.

The location of the zero set associated with the 10tA (conduction) band
and the upper limit of the 9th (valence) band was determined by requiring
that the band gap be fixed at 2.4 eV. The width of the conduction band
in turn is related to the effective mass, according to a relation given by
Shockley,22 m*. = h%?/8%° &, where h is Planck’s constant, £ is the unit
cell lattice constant and &£ is the width of the conduction band (this may
be obtained by assuming a parabolic density of states for the thin band).
A similar relation can be developed from the Uncertainty Principle,
namely m,* = wh® /@2 §¢. Either form may be used without changing the
final results very much and we will use the former expression for the
effective mass. The procedure is self-consistent since the value of &¢
is used to generate the parameter z* in equation (2) and one proceeds
iteratively until the parameter group consisting of z*, 8%, m.”, and the
band gap edges form a self-consistent set.

At this point we comment on the choice of a number of bands: based
on the results of Subertova and Drobnik® and Ladik and Hoffman* there
are an average of 18 7 electrons in each base pair, so there are nine filled
bands. While the actual number of 7 electrons is 12 for adenine and
thymine, 14 for guanine and 10 for cytosine, Subertova’s values for the
band gap of 2 to 2.2 eV indicate that 17 to 19 = electrons per base pair
form the valence bands. Ladik’s HMO-LCAO calculations on G-C and A-T
show that when the base pairs are in close proximity (as in DNA) some
of the energy levels coalesce to form a single energy band, resulting in
9 valence bands. In fact, however, our results do not differ very markedly
if one assumes 10, rather than 9, filled bands (for comparison we include
term energies for both cases).

By incorporating the 18 electrons per base pair, the effective mass
relation and the band gap energy of 2.4 eV into two computer programs,
the band structure given in Table II results. The self-consistent procedure
was followed for the Kronig-Penney model by passing to the delta function
limit and using the well-known relation,! rather than Eqn. (2). Without
the effective mass relation, and simply using the Tinoco-Woody?!

TFor computational details, see J. Altieri, University of Vermont, M.S. thesis,
1974 (unpublished).

106 J. Biol. Phys. Volume 3, 1975



TABLE 11
Energy Band Edges for the Harmonic Potential and Kronig-Penney Potential Models.

Harmonic Potential Kronig-Penney Potential

Band Nine Filled Bands Ten Filled Bands Nine Filled Bands Ten Filled Bands
(eV) (eV) (eV) (eV)
30.19 17.51
11 29.57 16.87
27.91 27.17 16.46 14.47
10 27.21 26.94 15.73 13.94
24.81 24,26 13.33 11.72
9 24.55 24.18 12.74 11.29
21.83 21.38 10.53 9.26
8 21.75 21.36 10.06 8.92
18.90 18.53 8.06 7.09
7 18.88 18.52 7.70 6.83
15.98 5.92 5.21
6 15.98 15.67 5.66 5.02
4.11 3.62
5 13.08 12.82 3.93 348
2.63 2.32
4 10.17 9.97 251 998
1.48 1.30
3 7.27 7.13 141 1.95
0.66 0.58
2 4.36 4.28 0.63 0.56
0.17 0.15
1 1.45 1.43 0.16 0.14
m, /m 4.67 5.26 4.49 5.10
mp/m 12.46 13.96 5.50 6.14

transformation, we get the same values as Rosen in his paper (apart from
an apparent typographical error: the bottom of his seventh band should
read 29.0 eV). Both the Kronig-Penney and Harmonic Potential models,
with self-consistent effective mass approximation, appear to be good
representations of the band structures of DNA inasmuch as reasonable
term values are obtained. Note that Pullman and Pullman (see also
Rosen'®) obtain an energy difference of about 28 eV between the lowest
and highest 7 electron energies (see Table II); our corresponding w energy
values, particularly for the Harmonic Potential model, give surprising
approximate agreement. Without such a self-consistent approach Rosen®
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found the energy difference between the top of the 10tk valence band
and the bottom of the first valence band to be 73 eV (assuming ten filled
bands), while Ladik and Hoffman determined this energy difference to
be only 10 eV (for nine filled bands). For both the models the conduction
band widths are of the order of tenths of an electron volt, which indicates
that the electrons are relatively mobile. The top of the potential barrier in
the Harmonic Potential model is 19.6 eV which is below both the conduction
band and the 9th valence band, and this also implies mobile charge carriers.

IV. Mobilities

For biological materials, there may be several ways of defining mobilities,
and these frequently do not agree with each other.!* Here we estimate the
ohmic mobility after making several assumptions and approximations for
the charge carriers in the Harmonic and Kronig-Penney Models. The ohmic
mobilities are smaller than the local mobility for electrons in DNA as
estimated by Suhai'® but are larger than the drift mobilities measured
for anthracene.24:2® The local mobility, u, = vy /E is the mobility of a charge
carrier in a single crystallite, whereas the drift mobility, us = v4/E, is
the mobility of a charge carrier in a macroscopic polycrystalline sample.
The distinction is necessary, of course, because in a measurement of the
drift mobility the charge carriers undergo intermolecular motion and may
be scattered by structural defects or impurities, or may be influenced by
the surface of the sample. The ohmic mobility u,, may be estimated from
the conductivity data given in Table I, since py = o/nq. The following
expression also then results if one assumes DNA to be an intrinsic semi-
conductor?®?

27kTm \*?% [ m*,m*, \*/*
0o = 2q(p. + uh)< Y ) (_im?—h> (3)

where q is the electron charge, u, and uj, are the electron and hole mobilities,
and m is the rest mass of the electron. For calculating u, we here take as
a reasonable experimental estimate O’Konski’s value of g, = 4X10°
ohmlcm™. The “constant” 6, is a function of temperature, but a
calculation for ¢, at 300°K differs from one at 400°K by only a factor
of 1.5 which is small compared to the uncertainty in o, of an order of
magnitude or more. The effective masses m, and m;, taken from Table II
are found through the Shockley relation and are the effective masses of
the charge carriers within a single crystal of DNA. However, here we will
assume they are reasonable approximations of the carriers’ effective
masses anywhere within the DNA sample. Making a final assumption
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that the electron and hole mobilities are equal, then the mobilities for
the two models are u, = 24 cm?/V sec for the Harmonic Potential and
Mo = 45 cm?/V sec for the Kronig-Penney Potential.

Few organic semiconductor mobilities have been measured, but typically
they are very small compared to those of semiconductors like Si and Ge.
The drift mobilities for anthracene lie in the range of 102 to 10 cm?/V sec
and an estimate of the local electron mobility in DNA has been made by
Suhai from O’Konski’s ac conductivity data. Suhai reasons that the ac
conductivity levels off at 10* Hz because motions of the electrons are
totally confined to the molecules. They make no intermolecular jumps,
so they are not impeded by intermolecular barriers and are not scattered
by structural defects or impurities. Suhai notes that this value is only
approximate since the lengths of the molecules are not accurately known.
The calculations presented here show that the models do not give unreason-
able values for the ohmic mobility, but because of the uncertainty in oy,
because of the number of approximations, and because of the lack of
experimental data on po there is some doubt in the validity of the
calculations.

V. Summary

We have applied simplified models to the problem of the determination
of term energies in DNA. Similar calculations may be carried out for
other molecules for which periodicity may be exploited. No perturbation
approximations have been employed in the 7 electron calculation here
although an effective mass has been defined. This effective mass arises
in a self-consistent manner, where the physical band gap is assumed given
by the experimental data. While admittedly the effective mass approx-
imation seems crude compared to an approach from first principles, it
does bring in the fact that the electrons may exchange energy with the
lattice and with other electrons (albeit in a phenomenological way). In
any event, the concept of effective mass does continue to be a useful
one in diverse solid state applications.

The model calculations show that the conducting electrons are relatively
mobile and that the conduction widths are of the order of tenths of an
electron volt. The mobilities are high and better comparison will have to
await more exact and reproducible measurements. The term energies
compare favorably with those obtained by more complicated approximations.
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