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T h e  F i n a l  V e r s i o n  o f  t h e  M e a n  V a l u e  T h e o r e m  
f o r  H a r m o n i c  F u n c t i o n s  

V. V. Volchkov  UDC 517 

ABSTRACT. We construct examples of nonharrnonie functions satisfying the mean value equation for some set 
of spheres. These results permit us to obtain the two-circle theorem in its definitive form. 

w I n t r o d u c t i o n  

Suppose that n >_ 2 is a positive integer, f is a locally integrable function on real Euclidean space R n 
(we write f E Lloe(Rn)), and E is a given set of positive numbers. Suppose that for all r E E and for 
Lebesgue almost all z E R n we have 

I s  /do', (1) /(x)= 

where S(z,  r) is the sphere with center z and radius r in R n equipped with the standard normalized 
measure d~. For what E does this imply that 

~'~ 0 2 f  
f = oZk  = o 

trl~- I 

in the sense of distributions? The well-known Delsarte two-circle theorem asserts that A f  = 0 if E 
consists of two numbers rl and r2 such that rl/r2 is not a ratio of roots of the entire fimction 

"(Z) --" 1 -- 2 n / 2 - 1 r ( ~ )  JTn/ '-I ('Z) z n / 2 _ l  

([1]; see also [2]). Simple examples (e.g., see [2]) show that the cited condition on rl/rz is necessary. 
The Delsarte theorem was further developed and improved in numerous papers (see [2--6] and the 

survey [7], which contains an extensive bibliography). The "local" version of this theorem, in which a 
function f satisfying condition (1) is given in the ball BR = {z E R" : I=1 < R}, where I" I is the 
Euclidean norm in R" and R > rl + r2, is of particular interest ([5]; see also [7]). Note that  an analog 
of the Delsarte theorem holds for a function f E C~176 satisfying condition (1) even if R = rx + rz 
(see [5]). In the general situation, so far it was not known whether f is harmonic for R _< rl + r2. 

The ease R _< rl + r2 is completely studied in the present paper. Let us state the definitive version of 
the two-circle theorem. 

T h e o r e m  1. Let A = {a//~ : r / ( a ) =  r /( /~)=0},  E =  {r l , r2} ,  and R >  max( r l , r2 ) .  Suppose that 
f E LIoc(BR) satis~es Eq. (1) for M1 r E E and for almost all z E BR-r.  Then the following conditions 
hold: 

1. f f  rl + r2 < R and rl/r2 f~ A, then A f = O. 
2. If  rl + r2 = R, rl/r2 ~ A, and f E C~176 then A f = O. 
3. f f  rl + r9 = R,  then for each integer s >_ 0 there exists a nonharmonic 1function f E C'(BR) that 

satisJ~es the assumptions of the theorem. 
4. If  rl + r2 > R, then there exists a nonhazrnonic function f E C~176 that satisfies the assump- 

tions of the theorem. 
5. ff  r l / r2  E A, then there exists a nonharmonic real-analytic function f that is defined on the entire 

space R n and satisfies condition (1) for a/1 r E E and a/1 z E R".  
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As was already mentioned, assertions I, 2, and 5 are known (see [2, 5, 7]). Assertions 3 and 4 are new; 
they are proved in w 

w Main notation 

Let S =  {z G R" : [z[ = 1}, and let (p, cr) be the polar coordinates on R "  (for each z E R" we 
have p = [zl, and if z ~ 0, then ~ - z /p  E S). As usual, SO(n) is the ro ta t ion  group of the space 
R" equipped with the normalized Haar measure dg. The quasiregular representat ion T(g) (for each 
f E L2(S) we set (T(g)f)(cr) = f(g-1~r), where ~ G S and g E SO(n)) is known to be the direct sum 
of palrwise nonequivalent irreducible unitary representations Tt(9) acting on the spaces 7~k of kth-order 

homogeneous harmonic polynomials [8, p. 426 of the Russian translation]). Let {~(t)(~)}, I < l < at, be 
an orthonormal basis in the space 7~t regarded as a subspace in L2(S), and let {ttkp(g)}, I _< l, p _< at,, 

be the matrix of the representation Tt(g); thus, 
ak 

= 

p = l  

To each function f E Lloc(BR) there corresponds a Fourier series 
c o  ~l/I 

k=0 I=1 

where 

Note the identity 

ft,(p) (9) 

ftt(p)Y(t)(~) = a t  Is f(g-lz)t~p(g)dg (3) 
o(.) 

(for the proof, see [6]). In the following, we use the standard symbols JA and NA for the Bessel and the 
Neumann functions of index A, respectively. For a vector z = (Zl, ..., z,) e R n , we write [z] = Zl. 

Let r > 0 be fixed. For R > r, by Hr(BR) we denote the set of functions f E Lloc(BR) that satisfy (1) 
for almost all z E BR-r. For any nonnegative integer rn we set 

Hy(BR) = Hr(BR) n C~(BR). 

w Properties of the roots of r/(z) 

We need some results [6] concerning the roots of r/(z). It follows from the general statements established 
in the theory of entire functions that r/has infinitely many roots. Furthermore, all these roots except for 
z = 0 are simple, whereas the root z -- 0 is of multiplicity 2. Moreover, r/ does not have real or pure 
imaginary roots other than z = 0 [6]. 

Let A = {vl, v2, ... } be the sequence of all roots of 17 in the half-plane Re z > 0 arranged in ascending 
order of their absolute values (for roots with equal absolute values the numbering is chosen arbitrarily). 

Lemma I. a) For any e > 0 one has Z~=I [Vq[ -I-~ < oo. 
b) Let p > 0 and rn > O. Then 

pn/2-aNn/2_l(Uqp ) _ _  O(ivqlC.-1)p/2), lm(v,,o) = O(IvqlC"+t)p/2), 
where the constants in the O-estlmates are independent of q and p. 

c) As q ~ co, one has 
I~q/9.1"/2-1 

IJ . /2(v,) l  = ~rr(n/2) + O([Vql"/2-2)" 

d) As q ~ co, one has 

V~lUql(n-1)/2 = el Im ~',lg.(n-3)/2r ( 2 ) - {- O(,uq,("-3)12). 

e) Le~ ~ > 0 and ~ ~ 1. Then Iw(~vq)[ > [Vq[ 1-"/2 for all su~ciently large q. 
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Proof. Assertions a)-d) are proved in [6]. Assertion e) follows from d) and from the asymptotic 
expansions of the Bessel functions as z --* co (e.g., see [9, p. 175 of the Russian translation]), f'] 

Next, let 

( v , t ) . / 2 - ,  , 

Furthermore, let vo(t) = t - t n . Then [6] 

/01 (t).=(Odt f 0 if q#,'r,, (4) 
-~J,,/2(vq) if q = m. 

w E x a m p l e s  o f  func t ions  o f  class Hr(BR) 

The classical mean value theorem for the Helmholtz equation (e.g., see [10, p. 289 of the Russian 
translation]) asserts that a necessary and sufl~dent condition for a function f 6 C(R n) to satisfy the 
equation A f  + A~f = 0 is that 

~sC,~,r) f d a  = f ( x ) ( 1 -  ~/(Ar)) 

for all x q R" and r > O. In particular, this equation holds if f ( x )  is equal to 

CA(x) ---- Jnl2+k-x(Ap)(Ap)1-nl2y/k)(o'). 

Thus, if ~/(Ar) = 0, then the functions sin(A[z]), cos(A[z]), and CA belong to Hr(R"). Moreover, if 
E L(R") is a compactly supported function that depends only on p, then the above equations imply 

the following expression for the convolution of ~ and CA: 

(~o * r = (21r)n/2r (5) 

where ~(A) = f~o ~(p)pn/2A(~_n)/~d,,/2_l(Ap)d p is the Fourier transform of ~ (see [11, p. 176 of the 
Russian translation]). 

L e m m a  2. For each I E N there exists a nonconstant even function h E C t ( - R ,  R) with the following 
properties: 

1) h is a polynomial on [ -r  , r] ; 
2) h([=]) e H~(BR). 

Proof. Let m,q 6 N, p(t)=t2m(1- t2) '~, and p= V~2"/2-2 x r((n- 1)/2).  Since v, are simple 
roots of t/, it follows that  dn/~(v,) # O. Set 

c, = ~./~(~,) p(,).,(,)d~. (8) 

From the Bessel differential equation we have 

n+l n - - I  , v,(t) = ( - - ' ~ v , ( t ) ' - - ~ v q ( t )  -- v~(t) )vq "2. 

Let us use this identity to integrate (6) by parts m - 1 times. Then from the estimates in Lemma 1 and 
from the equalities p(~)(O) = p(~)(1) = O, 0 < s < m - 1, we obtain 

c, = o(I~,I "+=-=~) as q -~ eo. (7) 
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Let I E N  and r n > ( n + l ) R / 2 + l + n + 2 .  We set 

g(t) = ~ cos(,,t)c,. 
q----1 

Then it follows from Lemma 1 that O([Z]) e H~(BR). From the Poisson formula [11, p. 174 of the Russian 
translation], we obtain 

j~o I ( 1 -  u')(n-1)/2g(tu)du ~-~l.tCqUq(t). (8) 
q----1 

We evaluate the cq in (8) by using (4) and compare the result with (6); then it follows from the completeness 
of the system {vq}~~ 0 [6] that  

~ ' (1  - = p(t) + ~, U 2 ) ( n - - 1 ) / 2 g ( t U )  du 

where c is a complex constant. We solve this integral equation for g [12, p. 126 of the Russian translation] 
and find that 0 is a polynomial of nonzero degree on [ -1 ,  1]. Then the function h = oCt~r) satisfies the 
desire(] conditions. El 

L e m m a  3.  Suppose that k E N, 5 > 1, and {cq} is a sequence of complex numbers such that 

o o  

lcq~d ("+*)s/'- < co. 
q = l  

If the function O0 

,,,,,(t) = ~ ~,,1,,/~+,,_1(,,,t) (9) 
q--1 

vanishes identicalJy on [0, g], then c~ = 0/ 'or a J /q .  

P roof i  It follows from the condition of Lemma 3 and from statement b) of Lemma 1 that  the series (9) 
uniformly converges on [0, 6], so that  the function wk is wen defined. Let 0 < e < 5 - 1, and let ~0 be 
a radial function of class C~176 n) with support in B, .  Since ~o is smooth, it follows from the estimates 
proved in Lemma 1 that  I~(v,)l (see (5)) decremses as q --* co more rapidly than any power of l~d. Set 

f (z )  = p]-"/2wk(p)Yi(k)(o ). Since the series (9) is uniformly convergent and Eq. (5) is valid, we have 

o o  

(.f �9 ~)(=)  = ~ ( 2 ~ ) - / ~ , , ~ ( , , , ) r  
q----I 

It follows from the condition of the lemma that ( f  * ~0)(z) = 0 for z q B1. Then 

c~(~,)s./2+k_~(~,p) = 0, 0 < p _< 1. (10) 
q = l  

By applying the differentiation operator (dip dp)*p "/2+k-z , which reduces the index of the Bessel function 
(e.g., see [9, p. 241), to (10), we obtain 

o o  

c,,E,, ,) , , ,"+"/2,, , (p) = o, 
q= l  

In conjunction with (4), this implies that cq~(vq) = 0 for all q. Since ~o is arbitrary, we obtain the desired 
statement. [] 
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w P r o o f  of Theo rem 1 

First, note that the first assertion of the theorem follows from the second assertion by the standard 
smoothing method (e.g., see [13, p. 409 of the Russian translation]). The proof of these assertions can be 
found in [5]. A different proof of assertion 2 can be obtained from the description [6] of the space of solutions 
to (1) for fixed r .  Next, if r~/r~ E A, then rl/r2 - a/~5 for some a , ~  E A. Set A = a/r1 -/3/r~; then 
it follows from the results of w that the function sin(A[x]) satisfies the requirements in assertions 3-5 of 
Theorem 1. Therefore, in the following we assume that r~/r~ ~_ A. 

P r o o f  of asser t ion  3. Let r~ + r~ = R. We set 

( ~, qr....~ ~ 
a'~s(0,~,)c~ =-~/\ rl /" (ii) 

It follows from assertion e) in Lemma 1 and from (11) that l / s ,  = O ( l u q l - / = - ' )  as q -~ oo. Let s E l~t 
and rn > (n + 1)R + s + 4n. In the proof of Lemma 2 we constructed a nonzero function 

q=l \ rl ] 

which coincides with a polynomial in Br~. Let 
oo 

= :C �9 

q=l ~q ~ rl ] 

Suppose that g E SO(n). Then, by (12), (11), and the definition of h, we have 

f s  Fda .  K b - ' = ] )  = ( , - ' , , , , )  

Let us mult iply this equation by ~ ) ( g )  and integrate over SO(n); then we obtain 

(12) 

(13) 

where 

Gk(z) - ~so(n) F([g-lz])t~:)(g) dg. 

Furthermore, it follows from (12) and from the behavior of cq and aq as q--*oo that F([z] )EH~ (BR). 
Then from the definition of Gk and (1) we obtain Gk E Hra~ (BR). Let k be greater than the order of 
the polynomial h in Br,. For these k, the support of the function on the left-hand side in (13) does not 
intersect Br~ (this follows from Eqs. (2) and (3) for h and from the fact that harmonics of different orders 
are orthogonal on S [11, p. 161 of the Russian translation]). Since rl + r2 = R, it follows from (13) that 
Gk E H~2(BR). Suppose that AGk - 0. Then from the definition of Gk, (12), and (2), (3) we have 

~ ' ~ ~ 1 7 6  .(k), , [uq[g-lx]) rig-- q~l cqVq2~ (vq[Pr]~Y'(k)(r)dT"Y'(k)(~r) 0 
q-----1 --- 

f o r  all x = p~ E BR. For odd k it follows that [12, p. 40 of the Russian translation]) 

q=t 

for o <_ p < R,  where e = (1, O, . . . ,  O) E S. If Y,(k~(e) # O, then, by L e n a  3, c, = 0 for all q, 
which contradicts the definition of h. Thus, for all sufficiently large even k the function Gk satisfies the 
requirements of assertion 3 for any l, 1 < l < ak, and for at least one p (for which Yp(k)(e) ~ 0). f7 
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P r o o f  o f  a s s e r t i o n  4. Let rl + r2 = r > R.  By assertion 3, there exists a nonharmonic function 
gEC2(Br) that satisfies the conditions of Theorem 1 in Br. Let ~0 E CZ~ n) and ~0 = 0 outside Br-R. 
Then the function f = g �9 ~o E C~176 satisfies the conditions of Theorem 1. It remains to note that, 
for appropriate ~o, the function f is not harmonic, since A f  = ( A g ) ,  ~o and Ag # 0. [] 
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