The Final Version of the Mean Value Theorem for Harmonic Functions

V. V. Volchkov

ABSTRACT. We construct examples of nonharmonic functions satisfying the mean value equation for some set of spheres. These results permit us to obtain the two-circle theorem in its definitive form.

§1 Introduction

Suppose that $n \ge 2$ is a positive integer, f is a locally integrable function on real Euclidean space \mathbb{R}^n (we write $f \in L_{loc}(\mathbb{R}^n)$), and E is a given set of positive numbers. Suppose that for all $r \in E$ and for Lebesgue almost all $x \in \mathbb{R}^n$ we have

$$f(x) = \int_{S(x,r)} f \, d\sigma, \qquad (1)$$

where S(x, r) is the sphere with center x and radius r in \mathbb{R}^n equipped with the standard normalized measure $d\sigma$. For what E does this imply that

$$\Delta f = \sum_{m=1}^{n} \frac{\partial^2 f}{\partial x_m^2} = 0$$

in the sense of distributions? The well-known Delsarte two-circle theorem asserts that $\Delta f = 0$ if E consists of two numbers r_1 and r_2 such that r_1/r_2 is not a ratio of roots of the entire function

$$\eta(z) = 1 - 2^{n/2 - 1} \Gamma\left(\frac{n}{2}\right) \frac{J_{n/2 - 1}(z)}{z^{n/2 - 1}}$$

([1]; see also [2]). Simple examples (e.g., see [2]) show that the cited condition on r_1/r_2 is necessary.

The Delsarte theorem was further developed and improved in numerous papers (see [2-6] and the survey [7], which contains an extensive bibliography). The "local" version of this theorem, in which a function f satisfying condition (1) is given in the ball $B_R = \{x \in \mathbb{R}^n : |x| < R\}$, where $|\cdot|$ is the Euclidean norm in \mathbb{R}^n and $R > r_1 + r_2$, is of particular interest ([5]; see also [7]). Note that an analog of the Delsarte theorem holds for a function $f \in C^{\infty}(B_R)$ satisfying condition (1) even if $R = r_1 + r_2$ (see [5]). In the general situation, so far it was not known whether f is harmonic for $R \leq r_1 + r_2$.

The case $R \leq r_1 + r_2$ is completely studied in the present paper. Let us state the definitive version of the two-circle theorem.

Theorem 1. Let $A = \{\alpha/\beta : \eta(\alpha) = \eta(\beta) = 0\}$, $E = \{r_1, r_2\}$, and $R > \max(r_1, r_2)$. Suppose that $f \in L_{loc}(B_R)$ satisfies Eq. (1) for all $r \in E$ and for almost all $x \in B_{R-r}$. Then the following conditions hold:

- 1. If $r_1 + r_2 < R$ and $r_1/r_2 \notin A$, then $\Delta f = 0$.
- 2. If $r_1 + r_2 = R$, $r_1/r_2 \notin A$, and $f \in C^{\infty}(B_R)$, then $\Delta f = 0$.
- 3. If $r_1 + r_2 = R$, then for each integer $s \ge 0$ there exists a nonharmonic function $f \in C^s(B_R)$ that satisfies the assumptions of the theorem.
- 4. If $r_1 + r_2 > R$, then there exists a nonharmonic function $f \in C^{\infty}(B_R)$ that satisfies the assumptions of the theorem.
- 5. If $r_1/r_2 \in A$, then there exists a nonharmonic real-analytic function f that is defined on the entire space \mathbb{R}^n and satisfies condition (1) for all $r \in E$ and all $x \in \mathbb{R}^n$.

Translated from *Matematicheskie Zametki*, Vol. 59, No. 3, pp. 351-358, March, 1996. Original article submitted August 19, 1994.

0001-4346/96/5934-0247\$15.00 ^o1996 Plenum Publishing Corporation

As was already mentioned, assertions 1, 2, and 5 are known (see [2, 5, 7]). Assertions 3 and 4 are new; they are proved in §5.

§2. Main notation

Let $S = \{x \in \mathbb{R}^n : |x| = 1\}$, and let (ρ, σ) be the polar coordinates on \mathbb{R}^n (for each $x \in \mathbb{R}^n$ we have $\rho = |x|$, and if $x \neq 0$, then $\sigma = x/\rho \in S$). As usual, SO(n) is the rotation group of the space \mathbb{R}^n equipped with the normalized Haar measure dg. The quasiregular representation T(g) (for each $f \in L^2(S)$ we set $(T(g)f)(\sigma) = f(g^{-1}\sigma)$, where $\sigma \in S$ and $g \in SO(n)$) is known to be the direct sum of pairwise nonequivalent irreducible unitary representations $T^k(g)$ acting on the spaces \mathcal{H}_k of kth-order homogeneous harmonic polynomials [8, p. 426 of the Russian translation]). Let $\{Y_l^{(k)}(\sigma)\}$, $1 \leq l \leq a_k$, be an orthonormal basis in the space \mathcal{H}_k regarded as a subspace in $L^2(S)$, and let $\{t_{lp}^k(g)\}$, $1 \leq l, p \leq a_k$, be the matrix of the representation $T^k(g)$; thus,

$$Y_{l}^{(k)}(g^{-1}\sigma) = \sum_{p=1}^{a_{k}} t_{lp}^{k}(g) Y_{p}^{(k)}(\sigma)$$

To each function $f \in L_{loc}(B_R)$ there corresponds a Fourier series

$$f(x) \sim \sum_{k=0}^{\infty} \sum_{l=1}^{a_k} f_{kl}(\rho) Y_l^{(k)}(\sigma),$$

where

$$f_{kl}(\rho) = \int_{S} f(\rho\sigma) \overline{Y_{l}^{(k)}(\sigma)} \, d\sigma.$$
⁽²⁾

Note the identity

$$f_{kl}(\rho)Y_p^{(k)}(\sigma) = a_k \int_{\mathrm{SO}(n)} f(g^{-1}x)\overline{t_{lp}^k(g)} \, dg \tag{3}$$

(for the proof, see [6]). In the following, we use the standard symbols J_{λ} and N_{λ} for the Bessel and the Neumann functions of index λ , respectively. For a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we write $[x] = x_1$.

Let r > 0 be fixed. For R > r, by $H_r(B_R)$ we denote the set of functions $f \in L_{loc}(B_R)$ that satisfy (1) for almost all $x \in B_{R-r}$. For any nonnegative integer m we set

$H^m_r(B_R) = H_r(B_R) \cap C^m(B_R).$

§3. Properties of the roots of $\eta(z)$

We need some results [6] concerning the roots of $\eta(z)$. It follows from the general statements established in the theory of entire functions that η has infinitely many roots. Furthermore, all these roots except for z = 0 are simple, whereas the root z = 0 is of multiplicity 2. Moreover, η does not have real or pure imaginary roots other than z = 0 [6].

Let $\Lambda = \{\nu_1, \nu_2, ...\}$ be the sequence of all roots of η in the half-plane Re z > 0 arranged in ascending order of their absolute values (for roots with equal absolute values the numbering is chosen arbitrarily).

Lemma 1. a) For any $\varepsilon > 0$ one has $\sum_{q=1}^{\infty} |\nu_q|^{-1-\varepsilon} < \infty$.

b) Let $\rho > 0$ and $m \ge 0$. Then

$$o^{n/2-1}N_{n/2-1}(\nu_q\rho) = O(|\nu_q|^{(n-1)\rho/2}), \qquad J_m(\nu_q\rho) = O(|\nu_q|^{(n+1)\rho/2}),$$

where the constants in the O-estimates are independent of q and ρ .

c) As $q \to \infty$, one has

$$|J_{n/2}(\nu_q)| = \frac{|\nu_q/2|^{n/2-1}}{\pi\Gamma(n/2)} + O(|\nu_q|^{n/2-2}).$$

d) As $q \rightarrow \infty$, one has

$$\sqrt{\pi}|\nu_q|^{(n-1)/2} = e^{|\operatorname{Im}\nu_q|} 2^{(n-3)/2} \Gamma\left(\frac{n}{2}\right) + O(|\nu_q|^{(n-3)/2}).$$

e) Let $\alpha > 0$ and $\alpha \neq 1$. Then $|\eta(\alpha \nu_q)| > |\nu_q|^{1-n/2}$ for all sufficiently large q.

Proof. Assertions a)-d) are proved in [6]. Assertion e) follows from d) and from the asymptotic expansions of the Bessel functions as $z \to \infty$ (e.g., see [9, p. 175 of the Russian translation]).

Next, let

$$u_q(t) = \frac{J_{n/2-1}(\nu_q t)}{(\nu_q t)^{n/2-1}}, \qquad v_q(t) = (\nu_q t)^{n/2} \big(J_{n/2-1}(\nu_q t) N_{n/2-1}(\nu_q) - J_{n/2-1}(\nu_q) N_{n/2-1}(\nu_q t) \big).$$

Furthermore, let $v_0(t) = t - t^n$. Then [6]

$$\int_{0}^{1} u_{q}(t) v_{m}(t) dt = \begin{cases} 0 & \text{if } q \neq m, \\ \frac{1}{\pi} J_{n/2}(\nu_{q}) & \text{if } q = m. \end{cases}$$
(4)

§4. Examples of functions of class $H_r(B_R)$

The classical mean value theorem for the Helmholtz equation (e.g., see [10, p. 289 of the Russian translation]) asserts that a necessary and sufficient condition for a function $f \in C(\mathbb{R}^n)$ to satisfy the equation $\Delta f + \lambda^2 f = 0$ is that

$$\int_{S(x,r)} f \, d\sigma = f(x) \big(1 - \eta(\lambda r) \big)$$

for all $x \in \mathbb{R}^n$ and r > 0. In particular, this equation holds if f(x) is equal to

$$\psi_{\lambda}(x) = J_{n/2+k-1}(\lambda\rho)(\lambda\rho)^{1-n/2}Y_{l}^{(k)}(\sigma)$$

Thus, if $\eta(\lambda r) = 0$, then the functions $\sin(\lambda[x])$, $\cos(\lambda[x])$, and ψ_{λ} belong to $H_r(\mathbb{R}^n)$. Moreover, if $\varphi \in L(\mathbb{R}^n)$ is a compactly supported function that depends only on ρ , then the above equations imply the following expression for the convolution of φ and ψ_{λ} :

$$(\varphi * \psi_{\lambda})(x) = (2\pi)^{n/2} \psi_{\lambda}(x) \widehat{\varphi}(\lambda), \qquad (5)$$

where $\hat{\varphi}(\lambda) = \int_0^\infty \varphi(\rho) \rho^{n/2} \lambda^{(2-n)/2} J_{n/2-1}(\lambda \rho) d\rho$ is the Fourier transform of φ (see [11, p. 176 of the Russian translation]).

Lemma 2. For each $l \in \mathbb{N}$ there exists a nonconstant even function $h \in C^{l}(-R, R)$ with the following properties:

- 1) h is a polynomial on [-r, r];
- 2) $h([x]) \in H^{l}_{r}(B_{R}).$

Proof. Let $m, q \in \mathbb{N}$, $p(t) = t^{2m}(1-t^2)^m$, and $\mu = \sqrt{\pi}2^{n/2-2} \times \Gamma((n-1)/2)$. Since ν_q are simple roots of η , it follows that $J_{n/2}(\nu_q) \neq 0$. Set

$$c_q = \frac{\pi}{\mu J_{n/2}(\nu_q)} \int_0^1 p(t) v_q(t) \, dt.$$
 (6)

From the Bessel differential equation we have

$$v_q(t) = \left(\frac{n+1}{t^2}v_q(t)\frac{n-1}{t}v'_q(t) - v''_q(t)\right)\nu_q^{-2}.$$

Let us use this identity to integrate (6) by parts m-1 times. Then from the estimates in Lemma 1 and from the equalities $p^{(s)}(0) = p^{(s)}(1) = 0$, $0 \le s \le m-1$, we obtain

$$c_q = O(|\nu_q|^{n+2-2m}) \quad \text{as } q \to \infty.$$
⁽⁷⁾

249

Let $l \in \mathbb{N}$ and m > (n+1)R/2 + l + n + 2. We set

$$g(t) = \sum_{q=1}^{\infty} \cos(\nu_q t) c_q.$$

Then it follows from Lemma 1 that $g([x]) \in H_1^l(B_R)$. From the Poisson formula [11, p. 174 of the Russian translation], we obtain

$$\int_0^1 (1-u^2)^{(n-1)/2} g(tu) \, du \sum_{q=1}^\infty \mu c_q u_q(t). \tag{8}$$

We evaluate the c_q in (8) by using (4) and compare the result with (6); then it follows from the completeness of the system $\{v_q\}_{q=0}^{\infty}$ [6] that

$$\int_0^1 (1-u^2)^{(n-1)/2} g(tu) \, du = p(t) + c$$

where c is a complex constant. We solve this integral equation for g [12, p. 126 of the Russian translation] and find that g is a polynomial of nonzero degree on [-1, 1]. Then the function h = g(t/r) satisfies the desired conditions.

Lemma 3. Suppose that $k \in \mathbb{N}$, $\delta > 1$, and $\{c_q\}$ is a sequence of complex numbers such that

$$\sum_{q=1}^{\infty} |c_q \nu_q|^{(n+1)\delta/2} < \infty.$$

If the function

$$w_k(t) = \sum_{q=1}^{\infty} c_q J_{n/2+k-1}(\nu_q t)$$
(9)

vanishes identically on $[0, \delta]$, then $c_q = 0$ for all q.

Proof. It follows from the condition of Lemma 3 and from statement b) of Lemma 1 that the series (9) uniformly converges on $[0, \delta]$, so that the function w_k is well defined. Let $0 < \varepsilon < \delta - 1$, and let φ be a radial function of class $C^{\infty}(\mathbb{R}^n)$ with support in B_{ε} . Since φ is smooth, it follows from the estimates proved in Lemma 1 that $|\widehat{\varphi}(\nu_q)|$ (see (5)) decreases as $q \to \infty$ more rapidly than any power of $|\nu_q|$. Set $f(x) = \rho^{1-n/2} w_k(\rho) Y_l^{(k)}(\sigma)$. Since the series (9) is uniformly convergent and Eq. (5) is valid, we have

$$(f * \varphi)(x) = \sum_{q=1}^{\infty} (2\pi)^{n/2} c_q \widehat{\varphi}(\nu_q) \psi_{\nu_q}(x).$$

It follows from the condition of the lemma that $(f * \varphi)(x) = 0$ for $x \in B_1$. Then

$$\sum_{q=1}^{\infty} c_q \widehat{\varphi}(\nu_q) J_{n/2+k-1}(\nu_q \rho) = 0, \qquad 0 \le \rho \le 1.$$
(10)

By applying the differentiation operator $(d/\rho d\rho)^k \rho^{n/2+k-1}$, which reduces the index of the Bessel function (e.g., see [9, p. 24]), to (10), we obtain

$$\sum_{q=1}^{\infty} c_q \widehat{\varphi}(\nu_q) \nu_q^{k+n/2} u_q(\rho) = 0, \qquad 0 \le \rho \le 1.$$

In conjunction with (4), this implies that $c_q \widehat{\varphi}(\nu_q) = 0$ for all q. Since φ is arbitrary, we obtain the desired statement. \Box

§5. Proof of Theorem 1

First, note that the first assertion of the theorem follows from the second assertion by the standard smoothing method (e.g., see [13, p. 409 of the Russian translation]). The proof of these assertions can be found in [5]. A different proof of assertion 2 can be obtained from the description [6] of the space of solutions to (1) for fixed r. Next, if $r_1/r_2 \in A$, then $r_1/r_2 = \alpha/\beta$ for some $\alpha, \beta \in \Lambda$. Set $\lambda = \alpha/r_1 = \beta/r_2$; then it follows from the results of §4 that the function $\sin(\lambda[x])$ satisfies the requirements in assertions 3-5 of Theorem 1. Therefore, in the following we assume that $r_1/r_2 \notin A$.

Proof of assertion 3. Let $r_1 + r_2 = R$. We set

$$\alpha_q \int_{S(0,r_2)} \cos\left(\frac{\nu_q[x]}{r_1}\right) d\sigma - 1 = -\eta\left(\frac{\nu_q r_2}{r_1}\right). \tag{11}$$

It follows from assertion e) in Lemma 1 and from (11) that $1/\alpha_q = O(|\nu_q|^{n/2-1})$ as $q \to \infty$. Let $s \in \mathbb{N}$ and m > (n+1)R + s + 4n. In the proof of Lemma 2 we constructed a nonzero function

$$h([x]) = \sum_{q=1}^{\infty} c_q \cos\left(\frac{\nu_q[x]}{r_1}\right), \qquad c_q = O(|\nu_q|^{n+2-2m}),$$

which coincides with a polynomial in B_{r_1} . Let

$$F([x]) = \sum_{q=1}^{\infty} \frac{c_q}{\alpha_q} \cos\left(\frac{\nu_q[x]}{r_1}\right).$$
(12)

Suppose that $g \in SO(n)$. Then, by (12), (11), and the definition of h, we have

$$h([g^{-1}x]) = \int_{S(g^{-1}x,r_2)} F \, d\sigma$$

Let us multiply this equation by $\overline{t_{lp}^{(k)}(g)}$ and integrate over SO(n); then we obtain

$$\int_{\mathrm{SO}(n)} h\bigl([g^{-1}x]\bigr) \overline{t_{lp}^{(k)}(g)} \, dg = \int_{S(x,r_2)} G_k \, d\sigma, \tag{13}$$

where

$$G_k(x) = \int_{\mathrm{SO}(n)} F([g^{-1}x]) \overline{t_{lp}^{(k)}(g)} \, dg.$$

Furthermore, it follows from (12) and from the behavior of c_q and α_q as $q \to \infty$ that $F([x]) \in H^s_{r_1}(B_R)$. Then from the definition of G_k and (1) we obtain $G_k \in H^s_{r_1}(B_R)$. Let k be greater than the order of the polynomial h in B_{r_1} . For these k, the support of the function on the left-hand side in (13) does not intersect B_{r_1} (this follows from Eqs. (2) and (3) for h and from the fact that harmonics of different orders are orthogonal on S [11, p. 161 of the Russian translation]). Since $r_1 + r_2 = R$, it follows from (13) that $G_k \in H^s_{r_2}(B_R)$. Suppose that $\Delta G_k = 0$. Then from the definition of G_k , (12), and (2), (3) we have

$$0 = \sum_{q=1}^{\infty} \frac{c_q}{\alpha_q} \nu_q^2 \int_{\mathrm{SO}(n)} \overline{t_{lp}^{(k)}(g)} \cos\left(\frac{\nu_q[g^{-1}x]}{r_1}\right) dg = \sum_{q=1}^{\infty} \frac{c_q \nu_q^2}{\alpha_q a_k} \int_S \cos\left(\frac{\nu_q[\rho\tau]}{r_1}\right) \overline{Y_l^{(k)}(\tau)} \, d\tau Y_p^{(k)}(\sigma)$$

for all $x = \rho \sigma \in B_R$. For odd k it follows that [12, p. 40 of the Russian translation])

$$\sum_{q=1}^{\infty} \frac{c_q \nu_q^2}{\alpha_q} J_{n/2+k-1}\left(\frac{\nu_q \rho}{r_1}\right) Y_p^{(k)}(\mathbf{e}) = 0$$

for $0 \le \rho < R$, where $\mathbf{e} = (1, 0, ..., 0) \in S$. If $Y_p^{(k)}(\mathbf{e}) \ne 0$, then, by Lemma 3, $c_q = 0$ for all q, which contradicts the definition of h. Thus, for all sufficiently large even k the function G_k satisfies the requirements of assertion 3 for any l, $1 \le l \le a_k$, and for at least one p (for which $Y_p^{(k)}(\mathbf{e}) \ne 0$). \Box

Proof of assertion 4. Let $r_1 + r_2 = r > R$. By assertion 3, there exists a nonharmonic function $g \in C^2(B_r)$ that satisfies the conditions of Theorem 1 in B_r . Let $\varphi \in C^{\infty}(\mathbb{R}^n)$ and $\varphi = 0$ outside B_{r-R} . Then the function $f = g * \varphi \in C^{\infty}(B_R)$ satisfies the conditions of Theorem 1. It remains to note that, for appropriate φ , the function f is not harmonic, since $\Delta f = (\Delta g) * \varphi$ and $\Delta g \neq 0$. \Box

References

- 1. L. Flatto, "The converse of Gauss's theorem for harmonic functions," J. Differential Equations, 1, No. 4, 483-490 (1965).
- 2. L. Zalcman, "Offbeat integral geometry," Amer. Math. Monthly, 87, No. 3, 161-175 (1980).
- 3. L. Zalcman, "Mean values and differential equations," Israel J. Math., 14, 339-352 (1973).
- 4. C. A. Berenstein and L. Zalcman, "Pompeiu's problem on symmetric spaces," Comment. Math. Helv., 55, 593-621 (1980).
- 5. C. A. Berenstein and R. Gay, "A local version of the two-circle theorem," Israel J. Math., 55, 267-388 (1986).
- 6. V. V. Volchkov, "New two-circle theorems in the theory of harmonic functions," Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 58, No. 1, 41-49 (1994).
- 7. C. A. Berenstein and D. Struppa, "Complex analysis and convolution equations," in: Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki. Fundamental nye Napravleniya [in Russian], Vol. 54, VINITI, Moscow (1989), pp. 5-111.
- 8. N. Ya. Vilenkin, Special Functions and Group Representation Theory [in Russian], Nauka, Moscow (1991).
- 9. B. G. Korenev, Introduction to the Theory of Bessel Functions [in Russian], Nauka, Moscow (1971).
- 10. R. Courant, Methods of Mathematical Physics, Vol. II, J. Wiley, New York (1966).
- 11. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton (1971).
- 12. S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York (1983).
- 13. S. Lang, $SL_2(\mathbb{R})$, Addison-Wesley, Reading, Mass. (1975).

DONETSK STATE UNIVERSITY

Translated by V. E. Nazaikinskii