
C o m p u t i n g 5 3 , 3 2 3 - 3 3 5 (1994) C o] ~ [~

�9 Springer-Verlag 1994
Printed in Austria

Safe Starting Regions by F ixed Points and Tightening*

H. Hong and V. Stahl , Linz

Received November 23, 1993; revised April 27, 1994

Abstract -- Zusammenfassung

Safe Starting Regions by Fixed Points and Tightening. In this paper, we present a method for finding safe
starting regions for a given system of non-linear equations. The method is an improvement of the usual
method which is based on the fixed point theorem. The improvement is obtained by enclosing the
components of the equation system by univariate interval polynomials whose zero sets are found. This
operation is called "tightening". Preliminary experiments show that the tightening operation usually
reduces the number of bisections, and thus the computing time. The reduction seems to become more
dramatic when the number of variables increases.

Key words: Nonlinear equation systems, interval arithmetic, safe starting regions, tightening.

Startintervalle mit garantierter Konvergenz dureh Fixpunktiteration und Einengung. In dieser Arbeit wird
eine Methode zur Bestimmung von Startintervallen mit garantierter Konvergenz fiir ein gegebenes
nichtlineares Gleichungssystem vorgestellt. Die Methode ist eine Verbesserung der gebr~iuchlichen, auf
dem Fixpunkt Theorem basierenden Methode. Die Verbesserung wird durch EinschlieBen der Kom-
ponenten des Gleichungssystems durch univariate Intervallpolynome, deren Lfsungsmengen berechnet
werden, erzielt. Diese Operation wird "Einengung" genannt. Erste experimentelle Untersuchungen
zeigen, dab Einengung im allgemeinen die Anzahl der Intervallhalbierungen und somit die Rechenzeit
reduziert. Die Reduktion scheint umso signifikanter, je hSher die Anzahl der Variablen ist.

I. Introduction

Fi nd ing safe s tar t ing regions for all the real so lu t ions of a given system of equa t ions
is a very i m p o r t a n t p rob l em in scientific comput ing , geometr ic model l ing, cons t ra in t
logic p r o g r a m m i n g , etc. In [3, 7 -10 , 14-18-1 var ious me thods for f inding safe
s tar t ing regions have been descr ibed, which are based on the K r a w c z y k o p e r a t o r
[4] and var ious improvements .

In this paper , we p rov ide ano the r improvemen t by add ing an ope ra t ion called
"t ightening". Rough ly put, t ightening is an ope ra t i on which takes an equa t ion and
a box and p roduces (sufficiently) small boxes such tha t they together still con ta in

* The research was done within the framework of the ACCLAIM project sponsored by European
Community Basic Research Action (ESPRIT 7195) and Austrian Science Foundation (P9374-PHY).

324 H. Hong and V. Stahl

all the zeros of the equations in the original box. This operation has been investigated
in the AI community [2, 5, 13] for solving some simple equations and inequalities
such xy = z and x > 0. The Hansen-Sengupta operator [3] applies a special form
of tightening to preconditioned linearized equation systems. Our contribution lies
in that we allow arbitrary equations and in that tightening is combined with the
fixed point methods developed in the interval mathematics community.

Preliminary experiments show that the tightening operation usually reduces the
number of bisections, and thus the computing time. The reduction seems to become
more dramatic when the number of variables increases.

In Section 2, we fix the notational conventions and state precisely the problem of safe
starting regions. In Section 3, we give a brief description of the known methods
based on the fixed point theorem. In Section 4, we give a precise definition of the
tightening operation. In Section 5, we describe an algorithm for finding safe starting
regions, which uses the tightening operation. In Section 6, we illustrate the algorithm
described in the previous section on a simple example. In Section 7, we give a general
description of a tightening procedure, and a detailed one for multivariate polyno-
mials in particular. In Section 8, we report some experimental results.

2. Notations and Problem Statement

The notational and typographical conventions used in this paper are as follows:

the set of all real numbers
1~ the set of all closed intervals over
lower-case real number (vector, matrix, function)
upper-case interval (vector, matrix, function)
italic scalar
bold vector
roman matrix

For instance, an interval vector will be written such as X, and a real matrix will be
written (though against tradition) such as m, for consistency.

The alphabets f , g will stand for functions, the alphabets x, y for variables, the
alphabets i, j, k, I, m, n for indices, and the others for constants. In particular,
throughout this paper, let f : ~" ~ ~" be a differentiable function, and let X ~ l t" .
We are interested in the solutions o f f = 0 in X.

Definition 1 (Safe Starting Region). A box X is called a safe starting region for a
function f iff it contains exactly one solution of f = 0 and a Newton-like method
converges to the solution from anywhere in the box. []

Now the problem of safe starting regions can be stated as follows:

Given: a func t ionfand a box X,
Task: find a set of disjoint safe starting regions o f f such that each solution o f f

within X is contained in one of them.

Safe Starting Regions by Fixed Points and Tightening 325

3. Review of Fixed-point Methods

The usual method is based on the following operator or its improvements.

Definition 2 (Krawezyk). Let p be a point in X. Let m be any non-singular matrix
over ~. Let g(x) = x - mr(x). Let G' be an interval extension of the Jacobian of g.
Then the Krawczyk operator K: n~" ~ H~" is defined by

K(X) =g(p) + G ' (X) (X - p) . []

The usual methods essentially repeat the following operations until safe starting
regions for all the real solutions of f a r e found.

1. Ranoe test: If 0 r F(X), then X does not contain a solution.
2. Intersection test: If K(X) n X = ~Z~, then X does not contain a solution.
3. Inclusion test: If ~ ~ K(X) = int(X) then X is a safe starting region.
4. Bisection: Replace a box X by two sub-boxes X I1) and X 12) of equal

size such that X tl) ~ X t2) = X.
5. Intersection: Replace a box X by X c~ K(X).

It is important to add that if the Hansen-Sengupta operator H I-3] is used instead
of K, the Intersection and Intersection test usually lead to better results. For details,
see the excellent monographs [6, 1, 12].

4. Tightening

In this section, we define the notion "tightening". Throughout this section, we
assume that f is a function from E" to E, and X = (X 1 X,) is a box DR".

Definition 3 (Variety). The variety of f , written as F(f), is defined by

V(f) = {x ~ R"If(x) = O} []

Definition 4 (Projection). Let x = (x l , . . . , x,) ~ R". The i-th projection of x, written
as Try(x), is defined by

~,(x) = x, .

Let S ~_ ~". Then the i-th projection of S, written also as n~(S), is defined by

~,(S) = {~ , (x) lx ~ S } . []

Definition 5 (Optimal Tightening). The optimal tightenin9 of X on x i by f is defined
as the set

~(v(f)nX) . []

Proposition 1 (Solution Preservation). Let X~ be the optimal tightenin9 of X on xi
by f , and let X ' = (X 1 Xi-1, X~, Xi+l X,). Then we have

V (f) n X = V (f) n X ' . []

326 H. Hong and V. Stahl

Thus, we can always safely replace X by X' when we are interested only in the
solution of f i n X. But, it is expensive to compute the optimal tightening, since it in
general requires exact computations with real algebraic numbers. Thus we relax the
definition as follows:

Definition 6 (Tightening). A tightening o f X on x~ by f is a f ini te set o f disjoint
subintervals o f X i whose union contains the optimal tightening. More precisely, it is
a set

{X1, . . . ,X t}

such that X k ~ D ~, X k ~_ Xi, X k n X j = ~ for k ~ j, and ~ k x k ~ h i (V (f) c~ X). []

Definition 7 (Tightening operator). A tightening operator is a procedure that, given
f , X and i, produces a f ini te set o f boxes X 1 X l such that for every k = 1, . . . , l

x ~ = (x , x~_~, x~ , x~+~ x .)

1 1 where the set {X i X i } forms a tightening o f X on x i by f . []

One extreme tightening operator is the most expensive one which computes the
optimal tightening and the other extreme is the cheapest one which trivially returns
{X}. Obviously, we are interested in one between these two extremes, which strikes
a "good" compromise between accuracy and computational cost. One such tight-
ening operator for multivariate polynomial functions will be described in Section
7. In fact, we have developed a tightening operator for arbitrary elementary func-
tions (involving exponentials, trigonometric functions, etc.), and it will be reported
elsewhere.

5. Algorithm for Finding Safe Starting Regions

In this section, we describe an algorithm for the problem posed in Section 2, namely
that of finding safe starting regions for all the zeros of a function within a box. The
general structure of the algorithm is similar to the usual ones. The difference is that
we allow during the execution the tightening operation defined in the last section.

Algorithm 1 (Safe Start Region).

In: f : ~n ~ ~
X ~ DR".

Out: Ssafe, a finite set of safe starting regions o f f in X.
Ssma~l, a finite set of sub-boxes of X that are too small to work on.

Local: Swork, a finite set of sub-boxes of X that need to be worked on.

(1) [-Initialization.] Swork ~-- {X}. Ssafe ~-- { }. Ssmal I 4-- (}.
(2) [Choice.] Choose (and remove) a box from Swork. Choose one of the following

operations: range test, intersection test, inclusion test, bisection, intersection,
and tightening.

Safe Starting Regions by Fixed Points and Tightening 327

(3) [Process.] Apply the operation on the chosen box, obtaining possibly one ore
more sub-boxes. Insert the resulting boxes into the proper sets: Ssaf~, Ssmal~, or
Swork"

(4) [Loop.] If there is a box in Swork then go to Step (2). Otherwise, we are done.
[]

The algorithm is correct no matter which boxes and operations are chosen in Step
(2). Since we are interested in finding all safe starting regions (not just one), the
efficiency of the algorithm does not depend on which box we choose, because we
need to analyze every box eventually. Thus, it is fine to choose the first one in the
data structure of Swork.

But the efficiency of the algorithm heavily depends on which operation is chosen.
Based on preliminary experimental study, we found that the following strategy
seems to work well (at least for the examples we have tested):

Strategy.

1. First, apply tightening with respect to every equation and variable until the state
does not change any more (or changes very slowly). During the tightening, carry
out range check, since it can be done cheaply using the intermediate results of
tightening.

2. Next, apply Krawczyk intersection and inclusion test.
3. Then carry out intersection.
4. If the state has been "significantly" changed, then go back to tightening, else

bisect and go back to tightening. []

In order to apply this heuristics, one should decide how much change is "significant"
to avoid bisection. In our current implementation, we consider a change significant
if it is greater than 10% in size, where the size of a box is the sum of the widths of
its components.

For purposes of comparison, we have implemented the method described in [3],
and we applied a similar strategy.

6. Illustration

Before going into the details of tightening operation, we illustrate the main algo-
rithm described in the previous section on a simple example. The purpose of such
exercise is to strengthen the intuitive understanding of the method, which will be
helpful in understanding and motivating the detailed discussions in the next section.
We will use the following example taken from [7].

X2 _{_ y2 _ 1

X 2 __

0.5

-0.5

-!

0.5

-i

\

I I I

-I -O.5 0

Krawczyk Operator
I I T i g h t e n l n ~

j
I !

0.5 1

/

-I -0.5 0 0.5

Hansen--Sengupta Operator
I I Range Test

Figure 1. Illustration of the main algorithm at a simple example

H. Hong and V. Stahl: Safe Starting Regions by Fixed Points and Tightening 329

See the two pictures in Fig. 1. The upper part traces the boxes produced during the
execution of the algorithm of the last section. The lower part provides the same
information produced by the algorithm of [3] which is basically run by Hansen-
Sengupta operator, range test, intersection, and bisection.

From the upper part of Fig. 1, we see that the initial box [-1 .5 , 1.5] 2, that is,
[- 1.5, 1.5] x [- 1.5, 1.5], is first tightened by the circle and then by the parabola.
The white patch is the portion that has been tightened out. The remaining box can
neither be reduced by the Krawczyk operator nor by tightening, so it is bisected
vertically. In each sub-box tightening is not successful, but Krawczyk intersection
leads to some reduction, pruning out the gray long strip. The remaining box is
bisected horizontally. The lower half box is tightened by the circle and then ruled
out during tightening by the parabola. The upper half box is tightened by both
curves and the Krawczyk operator detects that the remaining box is a safe starting
region.

See the lower part of Fig. 1; we do not go into details, but note that it produced
more intermediate boxes. It is partly due to the increased number of bisections (the
upper picture has 3 bisection, while the lower one has 5 bisections). The preliminary
experimental results in Section 8 show that this effect seems to become greater for
higher dimensional problems.

7. Algorithm for Tightening

In this section, we describe a general scheme for tightening continuous functions,
and in particular give a detailed procedure for the case of multi-variate polyno-
mials.1 Let us begin by recalling the problem of tightening.

In: f : ~n __, ~, a Continuous function, X �9] ~", and i �9 { 1 n}.
Out: a tightening of X on x~ by f.

In the following, we will reduce this problem to two subproblems. First observe the
following straightforward rewriting of the definition of the optimal tightening:

~i(V(f) n X)

= {x, �9 Xi](3x 1 �9 X 1) ' " (3 X i _ l �9 Xi_l) (3x i+ 1 �9 X i + l) ' " (3 x . �9 X ,) f (x) = 0}

-- {xi �9 X,10 �9 { f (x) l x , �9 X , x i - , �9 X i - l , X i+ l �9 Xi+ 1 X n �9 X n } } �9

The last expression can be simplified by defining the function F(x~): ~ --+ 2 ~ such
that

F(x ,) = { f (x) l x , �9 Xa x i - , �9 X i - , , x i + , �9 X,+, x , �9 X , } .

Using this function, we can rewrite the above formulas as

~h(V (f) n X) = xi �9 X, lO �9 F(xi) } .

1 We have also developed a more general tightening procedure that allows elementary transcendental
functions and which will be reported elsewhere.

330 H. Hong and V. Stahl

Since f is continuous, F(xi) is an interval for every xi, and this motivates to defin,
the two functions _F, if: ~ ---, ~ such that

F(x3 = E_F(xl), F (x 3] .

Continuing using these two functions, we have

rci(V(f) n X) = {x i ~ X,]O ~ [F_(xi),ff(xi)]}

= {x~ E Xil_F(x3 _< 0 A F(X3 _ 0}

= {x , ~ X , l s <_ 0} ~ {xi ~ x , IF(xi) _> 0}

Thus, we have reduced the problem of optimal tightening into two sub-problems:
(1) finding the functions _F and if, (2) solving the inequalities _F(xl) _< 0 and F(xi) >- O.
Obviously for the purpose of just tightening (not necessary optimal), it will be
sufficient to over-estimate them. Thus we have the following main algorithm:

Algorithm 2 (Tightening).

(1) Compute the functions_F and ff (suitably over-estimate).
(2) Solve the two inequalities _F _< 0 and ff _> 0 (over-estimate again).
(3) Return the intersection of the two solution sets. []

In the following two subsections, we show the details of the first two steps. For the
first step, we will present an algorithm for polynomials only, while for the second
step, we will give a general algorithm. Thus we will present the second step first in
the order of generality.

7.1 Solving Inequalities

We begin with the second step, namely that of solving the inequalities. The two
inequalities are solved in the same way, and thus we describe how to solve only one
of them, ff > 0. So here is the sub-problem statement:

In: f : ~ ~ R and X ~ BR.
Out: disjoint intervals P1, . . . , P, such that ~ jP j _ {x e Xlf(x) > 0}.

The basic idea is to compute all the real roots o f f within X, which induces a finite
set of intervals on which the sign o f f is constant. From these, we only need to select
the ones with non-negative signs. In doing this, we face the following technical
problems: due to finite precision arithmetic and multiple roots, we do not get the
exact roots, but intervals which contain them. Moreover such an interval may
contain more than one root. The following algorithm handles such difficulties.

Algorithm 3 (Solving Inequality).

(1) Compute disjoint (root) intervals R1 R, such that ~ Rj ~ {x ~ X lf(x) = 0}.
(This can be done for instance by the Interval Newton Method.)

Safe Starting Regions by Fixed Points and Tightening 331

(2) The following code extracts intervals where f is non-negative. It essentially scans
the root intervals from left to right while picking up solution intervals. In the
code, R, is the current root interval being checked, k keeps track of the number
of the solution intervals extracted so far, b holds the upper end point of the
previous root interval, and Y is the interval evaluation o f f on the middle of the
gap between two consecutive root intervals.

Initialize b *- X and k *- 0.
f o r / = 1 , . . . , r

Y ~ f(1/2(b + _Ri)) using interval arithmetic.
case: Y < 0: k , - k + 1. Pk ~ Ri.
case: Y > 0 a n d k > 0 : Pk = Hull(Pk,[b, Ri]).
case: Y > 0 and k = 0: k +-- k + 1. Pk ~ [b, Ri].
b *-Ri.

if b # X" or (X = ~" and r = 0)
Y ~ f(1/2(b + X)) using interval arithmetic.
case: _ Y > 0 a n d k > 0 : Pk=HulI(Pk,[b,X]) .
case: Y > 0 a n d k = 0 : k ~ I . P k ~ X . []

7.2 Findin9 Boundin9 Functions

Now we tackle the problem of finding the bounding functions for the case of
polynomial functions. This can be generalized to allow elementary transcendental
functions, but due to page limit, it will be reported elsewhere. Here is the problem
statement.

In: f eREx l x .] , X s l R " , a n d i s { 1 n}.
Out: _F and ff as defined above (over-estimated).

For this, let us recall that _F and ff are defined by

F(xi) = {f(x)lxa ~ Xl , x . ~ Xi-l,Xi+l E Xi+l x. ~ X .} .

= [f (x i) , P (x i)] .

The following algorithm solves the problem.

Algorithm 4 (Bounding Functions for Polynomials).

(1) Obtain the coefficients Aj ~ n~ of an interval polynomial F(xi) = ~ = o Aj xJ by
evaluating f on xj = Xj for every j # i, using interval arithmetic.

(2) Compute the bounding functions of F (x): (We drop the subscript i for simplicity.)

F(x) =) "Ed=~ --Ajxj if x > 0
] ~" d A inf x j else LZ.~j=O j

| ~ ' d Asup~fj k~ j=o~ j ~ else

332 H. Hong and V. Stahl

where

 ,nf ifjiseven Asup ifjiseven
= if j is odd -J _A i if j is odd

[]

The proof of Step (2) is straightforward, thus is omitted. One remark is needed
here. The resulting bounding functions are piecewise differentiable but not
differentiable at 0. This does not cause difficulty in solving the corresponding
inequalities since one only needs to apply the method of the previous subsec-
tion on each piece separately and merge the resulting intervals. While merging,
it might be necessary to concatenate two intervals containing 0.

8. Experimental Results

The algorithms described in this paper are implemented in the C + + language
on a Silicon Graphics workstation with a 100 MHz processor MIPS 4000/4010.
In the sequel TKIB denotes the method of this paper (Tightening, Krawczyk
operator, Intersection, Bisection) and HRIB stands for the method described in [3]
(Hansen-Sengupta operator, Range test, Intersection, Bisection). We have tested
these programs on the following 10 examples.

A: This example is taken from [-7].

x~ + x~ = 1

x 2 - x 2 = 0

Starting box: [- 1.5, 1.5] 2.
B: This example is taken from [11].

x l + x 2 + x 3 + x 4 - 1 = 0

x l + x 2 - x a + x 4 - 3 = 0

x 2 + x 2 + x 2 + x42 - 4 = 0

~ + ~ + ~ + ~ - 2x~ - 3 = 0

Starting box: [' - 10, 10] 4.
CI: This example is taken from [9], where the specific values of the coefficients

ai, bi and the indices il, i2, i3 are given.

x i - a i - b i x i , x i 2 x i 3 = 0, i = 1, . . . , 10

Starting box: [- 2 , 2] l~
C2: This example is also taken from [9]. The difference from C1 is that it has 20

variables.

x i - - a i - - b i x q x ~ x i 3 = O, i = 1, . . . , 20

Starting box: [- 1, 2] 2~

Safe Starting Regions by Fixed Points and Tightening 333

C3: This example is also taken from [9] with 20 variables. The difference from C2
is that its starting box is bigger.

X i - - a i - - b i x i l x i 2 x i 3 ~. O, i = 1 20

Starting box [- 2, 2] 2~

C4: This example is a modification of C1 in that each variable x i is replaced by
x 2. Note that if(zl Zlo) is a solution of C4 then (+Za _+Zlo) is also a
solution, hence the number of solutions is a multiple of 1024. In fact, both
methods found exactly 1024 safe starting regions.

x 2 - a , - b i x 2 x 2 2 x 2 3 = O , i = 1 10

Starting box: [- 1, 1] 1~
C5: This example is another modification of C1, where we use the same coeffi-

cients but increase the degrees of some variables and add one more term.

x i - a , - blx3 x3 x3 + x 4 x? = 0, i = 1, t0.
~2 13 " " " '

Starting box: [- 1, 1] 1~
DI: This is a sparse system with 12 variables and low degree.

- - X 3 X l o X 1 1 - - X5X10X11 - - X 7 X I o X l l "~ X 4 X 1 2 -t'- X 6 X 1 2 "Jr X 8 X 1 2

X 2 X 4 X 9 Ac X 2 X 6 X 9 -t- X 2 X 8 X 9 -[~ X 1 X 1 0

X a X 9 .3ff X5X9 ~_ XTX9

3X2X 4 + 2XzX 6 + X 2 X 8

3xlx4 + 2xlx6 + xlx8

D2:

D3:

= 0.4077

= 1.9115

= 1.9791

= 4.0616

= 1.7172

3x 3 -k- 2x s + xv = 3.9701

x 2 + x/2+l = 1, i odd

[0.56,0.57] x [0.82,0.83] x Starting box: [0.38,0.40] x [0.92,0.93] x
[- 1,1] 8.
This example is the same as DI. The only difference is that its starting box is
larger. Starting box: [0.38,0.40] x [0.92,0.93] x [- 1 , 1] 1~
This example is again the same as D1. The only difference is that its starting
box is even larger. Starting box: [- 1, 1] 12.

In Table 1, we report various statistics. At the top, we report the computing times.
It seems that the TKIB method is faster, in particular for the problems with many
variables. However, as is well-known, one should not trust timings too much,
because the values depend on the implementation of the algorithms and data types,
memory management, clock resolution, etc.

More reliable parameters are statistics such as the number of explicit bisections.
The second part of Table 1 shows that the number of bisections is much smaller for
TKIB, which explains why TKIB is usually faster. The reduction in the number of
bisections is mainly due to the tightening operation.

334 H. Hong and V. Stahl

Table 1. Experimental comparison of TKIB and ttRIB

Total Time (sec)

�9 oo31 o% I I I 0 01
HRIB 0.05 0.82 16.76 1487.50 4699.85 537.34 457.96 64.64 672.09 2395.40

Bisections

TKIB 3 10 [0 0 0 I 0 2 7 108 I 257
HRIB 5 87 I 495 6407 28588] 9215 12862 880 9423] 29189

TKIB
Tightening

calls 16 200 20 60 60 11520 80 480 5632 12798
avg (ms) 1.88 2.85 4.50 8.50 10.17 6.20 8.25 5.38 5.48 5.97
percent 100.00 73.08 69.23 57.95 58.65 70.58 82.50 64.02 63.83 65.22

Krawczyk Operator

calls 6 47 2 3 3 1152 5 40 464 1034
avg(ms) 0.00 4.26 20.00 123 .33 143 .33 25.46 28.00 36.00 37.28 38.93
percent 0.00 25.64 30.77 42.05 41.35 28.99 17.50 35.73 35.76 34.37

HRIB
Range Test

calls 25 249 1086 1 6 2 7 1 59577 26623 25796 2241 23450 71297
avg (ms) 0.40 0.68 2.87 11.16 10.61 3.39 3.74 5.07 4.99 9.36
percent 20.00 20.73 18.62 12.20 13.45 16.82 21.07 17.59 17.39 27.85

Hansen-Sengupta Operator

calls 21 169 605 10078 31400 17407 12911 1 4 7 1 1 5 2 3 1 47305
avg(ms) 1.90 3.85 22.40 129.47 129 .35 25.56 27.85 36.13 36.35 36.44
percent 80.00 79.27 80.85 87.72 86.42 82.79 78.50 82 .21 82.37 71.96

For those readers who might be interested in more details we provide further
statistics such as the number of Krawczyk operator calls, Hansen-Sengupta opera-
tor calls, etc., without comments, though.

References

[1] Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press
1983.

[-2] Cleary, J. G.: Logical arithmetic. Future Comput. Syst. 125-149 (1987).
[-3] Hansen, E., Sengupta, S.: Bounding solutions of systems of equations using interval analysis. BIT

21,203-211 (1981).
[-4] Krawczyk, R.: Newton-Algorithmen zur Bestimmung yon Nullstellen mit Fehlerschranken. Com-

puting 4, 187-201 (1969).

Safe Starting Regions by Fixed Points and Tightening 335

[5] Mackworth, A. K.: Consistency in networks of relations. Art. Intell. 8, 99 118 (1977).
I6] Moore, R. E.: Interval analysis. Englewood Cliffs: Prentice-Hall 1966.
[7] Moore, R. E.: A test for existence of solution to nonlinear systems. SIAM J. Numer. Anal. 14,

611-615 (1977).
1'8] Moore, R. E.: A computational test for convergence of iterative methods for nonlinear systems.

SIAM J. Numer. Anal. 15, 1194-1196 (1978).
[9] Moore, R. E., Jones, S. T.: Safe starting regions for iterative methods. SIAM J. Numer. Anal. 14,

1051-1065 (1977).
[10] Moore, R. E., Qi, L.: A successive interval test for nonlinear systems. SIAM J. Numer. Anal. 19,

845-850 (1982).
[11] Morgan, A.: Solving polynomial systems using continuation for engineering and scientific prob-

lems. Englewood Cliffs: Prentice-Hall 1987.
[12] Neumaier, A.: Interval methods for systems of equations. Cambridge: Cambridge University Press

1990.
[13] Older, W., Vellino, A.: Extending Prolog with constraint arithmetic on real intervals. In: Proceed-

ings of the Eight Biennial Conference of the Canadian Society for Computational Studies of
Intelligence, 1990.

[14] Qi, L.: A note on the Moore test for nonlinear system. SIAM J. Numer. Anal. 19, 851-857 (1982).
[15] Rump, S. M.: Solving nonlinear systems with least significant bit accuracy. Computing 29, 183-200

(1982).
[16] Rump, S. M.: Solution of linear and nonlinear algebraic problems with sharp, guaranteed bounds.

Computing [Suppl.] 5, 147-168 (1984).
[17] Shearer, J. M., Wolfe, M. A.: Some computable existence, uniquness, and convergence tests for

nonlinear systems. SIAM J. Numer. Anal. 22, 1200-1207 (1985).
[18] Wolfe, M. A.: Interval methods for algebraic equations. In: Reliability in computing, pp. 229-248.

London: Academic Press 1988.

H. Hong
V. Stahl
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz
Austria

