
Computing 53,277-287 (1994) Col~[~]~i[~

�9 Springer-Verlag 1994
Printed in Austria

PROFIL/BIAS--A Fast Interval Library

O. Kniippel, Hamburg
Received November 15, 1993; revised March 31, 1994

Abstract - - Zusammenfassung

PROFIL]BIAS--A Fast Interval Library. The interval data type is currently not supported in common
programming languages. Therefore the implementation of algorithms using interval arithmetic requires
special programming environments or at least special libraries. In this paper we present the C + + class
library PROFIL which provides a user friendly environment for implementing interval algorithms. The
main goals in the design of PROFIL were speed and portability. Therefore all interval operations in
PROFIL use BIAS (Basic Interval Arithmetic Subroutines) [16]. BIAS defines a concise and portable
interface for the basic scalar, vector, and matrix operations. The interface is independent of a specific
interval representation or computation but permits machine specific and fast implementations. Based
on this general specification we present an implementation in C using a lower/upper bound representa-
tion of intervals and directed roundings. By using few assembler instructions for switching the rounding
modes and avoiding sign tests and rounding mode switches wherever possible, the computational costs
of the interval operations were reduced significantly. This is especially important for RISC machines,
where floating point instructions can be executed in few machine cycles. Comparisons with other interval
arithmetic p/ackages show an improvement in speed of about one order of magnitude.

AMS Subject Classification: 65G10

Key words: Interval library, IEEE-754 arithmetic standard, C, C + +.

PROFIL/BIAS--Eine schnelle Intervallbibliothek. In den weit verbreiteten Programmiersprachen wird
der Intervalldatentyp nicht unterstfitzt. Daher ben6tigt man fiir die Implementierung yon Algorithmen,
die auf Intervallarithmetik basieren, spezielle Programmierumgebungen oder zumindest spezielle Pro-
grammbibliotheken. In diesem Artikel stellen wir die C + +-Klassenbibliothek PROFIL vor, die eine
anwenderfreundliche Umgebung fiir die Implementierung yon Intervallalgorithmen darstellt. Die Ent-
wicklung yon PROFIL wurde yon den beiden Hauptzielen Geschwindigkeit und Portabilitiit geleitet.
Daher basieren alle Intervalloperationen von PROFIL auf BIAS (Basic Interval Arithmetic Sub-
routines). BIAS definiert eine einheitliche und portable Schnittstelle fiir die grundlegenden Intervall-
operationen yon skalaren bis hin zu Matrixoperationen. Dabei ist die Schnittstelle unabhiingig von einer
speziellen Intervalldarstellung oder yon speziellen Berechnungsmodi, erlaubt aber dennoch maschinen-
spezifische und schnelle Implementierungen. Basierend auf dieser allgemeinen Spezifikation stellen wir
eine Implementierung in C vor, die eine Intervalldarstellung in der Form untere/obere Grenze sowie
gerichtete Rundungen verwendet. Durch Verwendung eigener Assemblerroutinen (insgesamt nur ca. 10
Assemblerinstruktionen) zur Umschaltung der Rundung sowie durch weitestgehende Vermeidung iiber-
fliissiger Vorzeichentests und Rundungsumschaltungen wird der Aufwand ffir die Intervalloperationen
drastisch reduziert. Dies ist insbesondere fiir RISC-Architekturen wichtig, auf denen Gleitkommaopera-
tionen in wenigen Maschinentaktzyklen ausgefiihrt werden k6nnen. Vergleiche mit anderen Inter-
vallpaketen zeigen eine Geschwindigkeitssteigerung um etwa eine Gr6Benordnung.

1. Introduct ion

In a n u m b e r of p r o b l e m areas in t e rva l a r i t h m e t i c is p r o v e d to be useful I-l, 7, 8, 21].

By us ing in t e rva l a r i thmet i c , g u a r a n t e e d b o u n d s for t he s o l u t i o n a re ca l cu l a t ed

278 O. Knfippel

despite rounding errors occurring during the computation. In some cases interval
methods are even faster than the traditional floating point approach [11, 12].

A real interval a is defined by

a:=[a ,~] :={a~Rla_<a<~ }, a__,~E~ (1)

with _a ___ ~. The values _a and ~ are called lower and upper bound, resp. We denote
the set of real intervals by 0R. The interval operations on l~ with a, b ~ DR are
defined by:

a*b:={a*bla~a, beb}, * ~ { + , - , ' , / } (2)

with a * b e l ~. It is assumed that 0 r b in the case of division. The interval opera-
tions can easily be realized. For example, the subtraction of two intervals can be
calculated by using the identity

a - ~ : = [a - $, ~ - ~] . (3)

The interval operations can be extended to interval vectors and interval matrices
by replacing the real operations by the appropriate interval operations. For exam-
ple, the components of the product of a real matrix R ~ R" • p and an interval matrix
A ~ D~ p ~ " are defined by

P

(R" A)ij := ~, Rik'Ak~. (4)
k = l

This matrix product can actually be computed in different ways as we will see later.

The key property of interval arithmetic is the isotonicity

a ~ a , b ~ b ~ a . b ~ a . b , a, beOR, . ~ { + , - , . , / } (5)

which extends to interval vector, interval matrix operations and to interval standard
functions as well. With preserved isotonicity, all interval calculations deliver guar-
anteed bounds. For a thorough discussion of interval arithmetic and its properties
see for example [1].

When implementing the interval operations on a computer, the interval bounds __a
and ~ are floating point numbers, whereas a = [a, ~] represents the set of all real
numbers between a and ~.

In order to preserve the isotonicity we have to use floating point arithmetic with
directed rounding. For this purpose the IEEE 754 arithmetic standard [9] may be
used, which is implemented in a number of computers, e.g. in PCs and most
workstations by means of a coprocessor. The IEEE 754 standard provides directed
rounding modes denoted by V for the downward and A for the upward rounding
mode. In the V-mode resp. A-mode, a floating point operation �9 e { + , - , . , / } is
denoted by ~' resp. ~,. Therefore, if U z denotes the set of floating point numbers and
a, b ~ Qz, then

a ~ b <_ a ,b <_ a~,b.

PROFIL/BIAS--A Fast Interval Library 279

Thus the interval subtraction (3) for floating point bounds computed by

a - b := [a V b , ~ A b] (6)

preserves the isotonicity. As another example we take the multiplication of a floating
point value r with an interval a. A sign test for r is needed in this case and the
resulting interval is computed by

{[rV_a, rAx~] for r > 0
r ' a := [r V ~, r V _a] otherwise (7)

Unfortunately, on most computers the evaluation of the transcendental functions
is not affected by the setting of the rounding mode. To preserve the isotonicity for
these operations, too, we use a faithful rounding I-3, 23] which is based on the
estimation of the rounding error. Let 90: ~ ~ R be a transcendental function and
5e~: Y --, D z the floating point equivalent as implemented on the computer. Then
bounds for 5a(x), x e F can be calculated by

I~ (x) - ~ (x) l _< ~ l ~ (x) l + rt (8)

where e denotes the maximal relative error of the floating point function 5~F, and r/
denotes a small absolute error which is only needed in case of arithmetic underflow.

A more detailed description of the tools of Interval Arithmetic can be found e.g. in
[1].

2. BIAS--Basic Interval Arithmetic Subroutines

In numerical linear algebra the set of commonly used FORTRAN callable functions
for Basic Linear Algebra Subroutines (BLAS) is very popular [4, 5, 20"1. The idea
of BLAS is to provide an interface for basic vector and matrix operations with
specific and fast implementations on various machines, the latter frequently pro-
vided by the manufacturers. Along these lines we have presented a specification for
Basic Interval Arithmetic Subroutines (BIAS) in [16]. The specification defines a
concise interface for basic interval operations from scalar up to matrix operations
as well as for all important auxiliary functions (midpoint, diameter). For perfor-
mance reasons, special routines for specific operand combinations (e.g. floating
pointfinterval matrix multiplication) are also contained in the interface.

The interface is independent of the specific interval representation and computation.
This is because only the interval data type BIASINTERVAL is referenced by the
programs using BIAS. All access to the components of this data type is performed
only through BIAS (e.g. access to the lower bound of the interval). Especially all
programs based on BIAS need not to be modified and can be kept portable even if
used on different hardware architectures.

In the following we are going to discuss a special implementation of BIAS in C using
a lower/upper bound interval representation and directed roundings. The directed

280 O. Knfippel

rounding modes are available on the large class of machines conforming the IEEE
754-standard [9], especially PCs and most workstations.

The implementation of BIAS is written in ANSI C. No special machine depen-
dencies are used except the 3 small routines

BiasRoundUp ()

BiasRoundDown ()

BiasRoundNear ()

for switching the rounding mode which are written in assembler (about 10 assembler
statements totally). Together with very few informations (e.g. the byte order) these
routines contain the machine dependent part of the BIAS library. For a number of
common architectures the needed assembler routines are contained in the BIAS
package. We have decided to use our own assembler routines instead of the ones
provided by the vendor, because the latter differ from machine to machine and, in
general, are slower by orders of magnitude than our routines.

C has been chosen as implementation language, because it is widely available
and the most common target language for source converters (e.g. from Fortran,
Modula-2, Pascal). In general, C compilers also produce good optimized code.

As an example of the BIAS implementation let us consider the subtraction of two
intervals. The subroutine taken from BIAS is

VOID BiasSubII (const PBIASINTERVAL pR,

const PBIASINTERVAL pA,

const PBIASINTERVAL pB)
{
BiasRoundDown () ;

pR->inf = pA->inf - pB->sup;

BiasRoundUp ();

pR->sup = pA->sup - pB->inf;

SetRoundToNearest () ;
}

where PBIASINTERVAL denotes the type of a pointer to an interval, pR points
to the resulting interval and pA, pB denote pointers to the operands of the sub-
traction. Optionally, the rounding mode can be set to nearest after any opera-
tion. This is defined at compile time by changing the definition of the macro
S e tRoundToNeares t , which is either equal to B iasRoundNear or empty. In
the latter case, the setting of the rounding mode is undefined after executing any
routine from BIAS (in almost all cases, it is the upward rounding), but this option
saves up to 10~o computing time for the scalar operations.

For the scalar operations, there is not much room for improvements, therefore we
concentrate on the more interesting vector and matrix operations.

PROFIL/BIAS--A Fast Interval Library 281

2.1 Vector and Matrix Operations

In the last years the computing paradigms changed: In the past, the floating point
operations were the most expensive ones (in terms of computing time). But this is
no longer true for modern RISC architectures, where the computational costs of
floating point operations, rounding mode switches, sign tests, and integer operations
are nearly the same. For example on IBM RS/6000 architectures, a floating point
multiply-and-add instruction can be executed in one machine cycle, whereas an
already optimized sign test needs several machine cycles. Therefore sign tests and
rounding mode switches cannot be neglected and must be avoided whereever
possible in order to increase the performance.

As an example we consider the multiplication of an interval vector by a floating
point scalar, i.e. w - - a . v , a ~ •, v ~ 0~". The standard implementation for this
operation would reduce the vector operation to a multiplication of a with each
element of the vector v:

for i = 1 , n do wi = a. v i (9)

This implementation needs n sign tests and 2n rounding mode switches. In the BIAS
implementation, there is only 1 sign test and 2 rounding mode switches:

if a > 0 then
set rounding mode downwards
for i = 1 , . . . , n do w~ = a .v i (10)
set rounding modeupwards
f o r / = l , . . . , n d o ~ = a - ~ i

else. . .

On IBM RS/6000 architectures, the standard implementation (9) needs about 5
times as long as the BIAS implementation (10).

As a second example the multiplication of a floating point matrix by an interval
matrix is considered, i.e. C = R . A , R ~ N "• A ~ !~ n• For simplicity we take
square matrices.

The standard implementation looks like

Cij:= ~ Rik'Akj , i , j = 1 , 2 , . . . , n (11)
k=l

which needs n 3 sign tests and 2n 3 rounding mode switches. The BIAS implementa-
tion uses a row update which reduces the number of sign tests to n 2 and the number
of rounding mode switches to 2n2:

f o r / = 1,2 n d o

C,, = 0 (12)
f o r j = 1, 2 , . . . , n do

Ci, = Ci, .-k Rij" Aj,

where Ai. denotes the j-th row of A.

282 O. Kniippel

On an IBM Model 350 (RS/6000 architecture) with n = 300, the standard imple-
mentation (11) needs 33 seconds, where the BIAS implementation (12) needs only
6 seconds.

By using these techniques, a ratio of approx. 2 can be achieved in many cases
between interval and the appropriate floating point operations, where floating point
means standard C using a standard compiler with full optimization.

3. P R O F I L - - A C + + Class Library Based on BIAS

The routines discussed above are low-level routines and it is not very convenient
to use them directly to write larger programs. Especially, there is no memory
management of temporary values and no operator overloading. Because of this, we
developed the more user friendly C + + library PROFIL (Programmer's Runtime
Optimized Fast Interval Library) 1-17] which is based on BIAS. PROFIL is easily
extendable by defining new classes for new data types. An optional runtime index
check and an improved memory management avoiding unnecessary copies of large
data structures are provided. Libraries like IMSL, NAG, and LAPACK can be used
directly in PROFIL. Only very few simple lines of code describing the interface have
to be written.

Currently, the following data types are supported by PROFIL: boolean, integer,
real, interval, vectors and matrices of these types, and complex.

As a small example, consider the ~llowing complete subroutine ~ r an interval linear
system solver (cL [22]):

INTERVAL_VECTOR ILSS (INTERVAL_MATRIX & A,

INTERVAL_VECTOR & b, INT & info);

{
INT dim = Dimension (b);

INT k, done;

MATRIX R (dim, dim);

VECTOR xs (dim);

INTERVAL_VECTOR x (dim), y (dim), z

INTERVAL_MATRIX C(dim,dim);

INTERVAL eps (0.9,1.1);

Initialize(Inflat, SymHull

R = Invezse (Mid (A));

xs = R * Mid (b);

x = z = R * (b - A * xs);

C = Id (dim) - R * A;

k = 0;

(dim), Inflat (dim);

(Machine::MinPositive));

PROFIL/BIAS--A Fast Interval Library 283

do {

y = eps * x + Inflat;

x = z + C * y;

done = (x < y) ;

k++;

} while-(idone && (k <

info = done;

return (xs + x);

10));

4. Performance Results

To show the overall performance of PROFIL together with BIAS, we first consider
the interval linear system solver from above for some midrange dimensions n. In
table 1 the total time needed to solve the linear system is displayed. Additionally,
we give the average speed in MFlops. Apart from lower order terms, which are
neglectable except for small dimensions, there are in total 6n 3 floating point
operations needed for the above interval linear system solver (addition and multipli-
cation counting each as one operation). This value has been used to compute the
average speed in Table 1. All times are obtained using the IBM Model 350 which is
a 19 MFlops double precision LINPACK benchmark computer. For moderate
dimensions Table 1 shows that this performance is also nearly achieved for interval
computations when using PROFIL/BIAS.

The next example is the test suite taken from Codiss I-2]. This test suite has been
designed to compare interval arithmetic software packages. It consists of several
small programs which exercise different parts of the software packages. The pro-
grams are:

Test h Exercise + , - , x , and/ .
Test 2: Exercise elementary functions.
Test 3: Exercise vector and matrix operations.
Test 4: One-variable interval Newton method.
Test 5: One-variable global optimization.

Table 1. Time needed for solving an
interval linear system

dim I
50

100
150
200
250

total t ime MFlops

60 ms 12.5
400 ms 15.0

1190 ms 17.0
2730 ms 17.6
5350 ms 17.5

284 o. Kniippel

The th i rd test is avai lable in 2 versions: The first one n a m e d "Test 3" by Corl iss
uses an accurate scalar p roduc t and the second one named "Test 3a" by Corl iss
uses the o r d i n a r y f loat ing po in t opera t ions . In o rde r to es t imate the cost of in terval
a r i thmet ic and the overhead caused by the sof tware packages , the first 3 test
p rog rams have been modif ied such tha t all in terval opera t ions and values are
replaced by their f loat ing po in t equivalents . These modif ied p r o g r a m s are compi led
under F o r t r a n and can be used as machine dependen t references.

F o r most of his tests Corl iss used a 80486 50 M H z PC as reference. Some of his
tests have also been run on a S U N Sparc 1 + , the per formance of which is c o m p a r a -
ble to the PC for these tests [2]. We run all our tests on a S U N SparcServer 330,
which is also c o m p a r a b l e to the 50 M H z P C used by Corliss, as the run t ime of the
F o r t r a n reference p r o g r a m s in Table 2 show.

Table 3 conta ins the run t ime in seconds for the different packages r epor ted by
Corl iss as well as the run t ime of our P R O F I L programs. Addi t iona l ly , Table 3 also

Table 2. Execution times (sec) of raw Fortran reference programs

Raw Fortran (no intervals)
PC, MS Fort 7.0

Raw Fortran (no intervals)
SparcServer 330, t77

I
Testl Test2 I Test3a

0.86 0.33 0.97

0.9 0.4 0.8

Table 3. Run time (sec) for different interval arithmetic software packages

I +0st, I Test2 +~ I +est+a I +est4 I +est5
Clemmeson 19.99 - - - - 12.58 PC, MS Fort 7.0

INTLIB 89.86 89.86 - - 13.73 142.48 288.80 PC, MS Fort 7.0

INTLIB 35.58 74.96 - - 11.65 110.71 221.71 Spar 1 +, t77

C-XSC 52.34 56.85 78.64 25.65 27.95 50.15 PC, Borl C + + 3.1

Pascal-XSC 40.65 74.26 106.77 32.90 50.70 81.74 PC, Borl C++3.1 Win

Pascal-XSC 35.20 356.43 63.83 26.78 131.06 186.53 Sparc 1 +

Pascal-XSC 32.0 341.8 61.3 24.5 122.7 178.1 SparcServer 330, gcc

PROFIL/BIAS 8.5 12.2 27.8 1.4 5.5 5.4
SparcServer 330, gcc

PROFIL/BIAS--A Fast Interval Library 285

contains the run times we obtained for the Pascal-XSC programs on the Sparc-
Server 330. Entries marked with a dash denote that the appropriate test program
cannot be executed by the package because the required features (e.g. interval
standard functions) are not available in that package. Note that PROFIL uses a
general multiple precision arithmetic for the accurate scalar product which is slower
than a special long accumulator. On the other hand it is much more universal
(operands with different precision can be combined). The numbers show that the
PROFIL programs (except for "Test 3") run about one order of magnitude faster
than the programs of the other software packages. Especially the vector/matrix test
program ("Test 3a") displays the efficient implementation of the vector and matrix
operations in BIAS. The packages INTLIB and Pascal-XSC were designed for
maximum portability (although the Pascal-XSC versions used in the tests uses the
hardware directed roundings).

Table 4 contains the width of the achieved results, i.e. the tightness of the operations.
The width achieved by PROFIL/BIAS is comparable with most other packages
(except for "Test 2" and "Test 5", where the faithful rounding for elementary
functions leads to a small overestimation).

The compile times and the size of the executable programs depend very much on
the operating system and the compiler being used. The corresponding results for
PROFIL are comparable with the other packages.

Table 4. Width of results for different interval arithmetic software packages

Test1 [Test2 Test3 I Test3a Test4 Test5

Clemmeson
3.86E-14 - - - - 2.20E-7 - - - - PC, MS Fort 7.0

INTLIB
2.15E-5 2.38E-11 - - 1 . 5 4 E -3 1.13E-13 9.16E-11

PC, MS Fort 7.0

INTLIB
2.15E-5 2.38E-11 - - 1 . 5 4 E -3 1.13E-13 9.17E-11 Sparc 1 +, t77

C-XSC
6.84E-11 1.98E-12 1.40E-7 2.36E-4 1.05E-14 2.97E-11 PC, Borl C + + 3.1

Pascal-XSC
6.84E-11 1.83E-12 1.41E-7 3.90E-4 1.06E-14 3.53E-11

PC, Borl C + + 3.1 Win

Pascal-XSC
6.84E-11 1.83E-12 1.41E-7 3.90E-4 1.06E-14 3.53E-11 Sparc 1 +

Pascal-XSC
6.84E-11 1.83E-12 1.41E-7 3.90E-4 1.06E-14 3.53E-11 SparcServer 33p, gcc

PROFIL/BIAS 6.86E-11 1.61E-11 1.40E-7 4.92E-4 2.46E-14 4.02E-9
SparcServer 33p, gcc

286 O. Kniippel

5. Availability and Conclusion

The complete source code of P R O F I L and BIAS is available for non-commercia l
use via anonymous ftp. Assembler subroutines for PCs (80386/387 and 80486), S U N
Sparc, IBM RS/6000 series, and H P 9000/700 series are provided. For other archi-
tectures, the adapt ion ist mainly restricted to the 3 small asssembler subroutines
providing the directed roundings. The long real and long interval arithmetic is
currently a beta-test version and will be available soon.

An extension package [18] containing a set of test matrices, general linear lists, and
automat ic differentiation is available for non-commercia l use. This package is
constantly expanded by new data types and application routines. In the future we
plan to further increase the BIAS performance by adapt ion to specific architectures
(e.g. using blocked algori thms as for BLAS, see [6]).

P R O F I L / B I A S is already used in different research areas (e.g. for a nonlinear system
solver and for a global opt imizat ion package).

The complete P R O F I L / B I A S package as well as the extension package can be
obtained via anonymous ftp from the server

ti3sun, ti3.tu-harburg, de

The packages itself are contained in the d i r e c t o r y / p u b / p r o f i 1 and the documen-
tat ion is available as compressed PostScript files in the d i r e c t o r y / p u b / r e p o r t s
as r eport93.3 .ps. Z, repot t93.4 .ps. Z, and report. 93.5 .ps. z.

References

[1] A•efe•d•G.•Herzberger•J.:Intr•ducti•nt•interva•c•mputati•ns.NewY•rk:A•ademi•Press 1983.
[2] Corliss, G. F.: Comparing software packages for interval arithmetic. Preprint presented at SCAN

'93, Vienna, 1993.
[3] Daumas, M., Matula, D. W.: Rounding of floating point intervals (to appear).
[4] Dongarra, J., Du Croz, J., Duff, I., Hammarling, S.: A set of level 3 basic linear algebra subprograms.

ACM Trans. Math. Softw. 16, 1-17 (1990).
[5] Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.: An extended set of Fortran basic linear

algebra subroutines. ACM Trans. Math. Softw. 14, 1-17 (1988).
[6] Dongarra, J. J., Mayes, P., Radicati di Brozolo, G.: The IBM RISC System/6000 and linear algebra

operations. Science Tech Report CS-90-122, University of Tennessee, 1991.
[7] Hansen, G.: Global optimization interval analysis. New York Basel Hongkong: Marcel Dekker

1992.
[8] Herzberger, J.: Topics validated computations. Studies in Computational Mathematics (to appear).
[9] IEEE Standard for binary floating-point arithmetic, 1985. ANSI/IEEE Standard 754.

[10] Jansson, C.: A global optimization method using interval arithmetic. In: Computer arithmetic and
enclosure methods, pp. 259-268. Amsterdam: Elsevier 1992.

[11] Jansson, C., KniJppel, O.: A global minimization method: The multi-dimensional case. Bericht 92.1,
TU Hamburg-Harburg, Technische Informatik III, Jan. 1992.

[12] Jansson, C. Kn/ippel, O.: Eine intervallanalytische Methode fiir globale Optimierungsprobleme.
Z. Ang. Math. Mech. 73, T741-T743 (1993).

1"13] Kearfott, R. B., Dawande, M., Du, K., Hu, C.: INTLIB: A portable Fortran-77 interval standard
function library (to appear) in ACM Trans. Math. Software, 1994).

PROFIL/BIAS--A Fast Interval Library 287

[14] Kearfott, R. B., Novoa, M.: INTBIS, a portable interval newton/bisectio n package. ACM Trans.
Math. Software 16, 152-157 (1990).

1-15] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, C.: Pascal-XSC: Language reference with
examples. Berlin Heidelberg New York Tokyo: Springer 1992.

[16] Kniippel, O.: BIAS--Basic interval arithmetic subroutines. Bericht 93.3 des Forschungsschwer-
punktes Informations- und Kommunikationstechnik der TU Hamburg-Harburg, TU Hamburg-
Harburg, Technische Informatik III, July 1993.

1-17] Kniippel, O.: PROFIL--Programmer's runtime optimized fast interval library. Bericht 93.4
des Forschungsschwerpunktes Informations- und Kommunikationstechnik der TU Hamburg-
Harburg, TU Hamburg-Harburg, Technische Informatik III, July 1993.

[18] Kniippel, O., Simenec, T.: PROFIL/BIAS extensions. Bericht 93.5 des Forsehungsschwerpunktes
Informations- und Kommunikationstechnik der TU Hamburg-Harburg, TU Hamburg-Harburg,
Technische Informatik III, Nov. 1993.

1-19] Lawo, C.: C-XSC, a programming environment for verifield scientific computing and numerical
data processing. In: Adams, E., Kulisch, U. (eds.) Scientific computing with automatic result
verification, pp. 71-86. Orlando: Academic Press 1992.

[20] Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic linear algebra subprograms for Fortran
usage. ACM Trans. Math. Software 5, 308-323 (1979).

1-21] Moore, R. E.: Methods and applications of interval analysis. Philadelphia: SIAM 1979.
[22] Rump, S. M.: Solving algebraic problems with high accuracy. In: Kulisch, U., Miranker, W. (eds.):

A new approach to scientific computation, pp. 51-120. New York: Academic Press 1983.
1-23] Schulze, J.: Die schwache Rundung und ihr Rundungsfehlerverhalten (to appear).

O. Knfippel
Technische Informatik III
Technische Universit/it Hamburg-Harburg
D-21071 Hamburg
Federal Republic of Germany

