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ESTIMATING LATENT DISTRIBUTIONS 
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Consider vectors of item responses obtained from a sample of subjects from a population in 
which ability 0 is distributed with density g(0 let), where the e¢ are unknown parameters. Assuming 
the responses depend on 0 through a fully specified item response model, this paper presents 
maximum likelihood equations for the estimation of the population parameters directly from the 
observed responses; i.e., without estimating an ability parameter for each subject. Also provided 
are asymptotic standard errors and tests of fit, computing approximations, and details of four 
special cases: a non-parametric approximation, a normal solution, a resolution of normal compo- 
nents, and a beta-binomial solution. 
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Introduction 

The familiar statistical procedures in the armamentarium of the applied educational 
or psychological researcher, including analysis of variance and regression, assume inde- 
pendent and identically distributed (iid) error terms over observations. Virtually every 
application of such procedures to mental test scores violates this assumption to some 
degree. The estimation errors of item response theoretic ability estimates, for example, 
vary with the numbers and the parameters of the items an individual has been presented, 
as well as with the resultant response pattern. And while classical true-score test theory 
posits iid errors for all scores on a given test, this assumption is usually untenable in 
practice because of "floor" and "ceiling" effects; as Lord and Novick (1968) point out, 
"... under any model with bounded observed score and unbiased errors (not all zero), the 
conditional distribution of the observed score cannot be independent of true score." 

The consequences of these violations are mitigated as the numbers of items adminis- 
tered to all subjects increase, and the magnitude of estimation errors decreases accord- 
ingly. Serious problems are encountered, however, when the number of responses per 
subject is limited, either by the nature of a test instrument (a checklist of depression 
symptoms may consist of only ten items) or the design of a study (for a given number of 
item responses, multiple-matrix sampling designs yield increasingly precise estimates of 
the population mean as the number of items administered to each subject decreases 
toward one). The distribution of estimates of individual subjects' parameters may then 
depart radically from the distribution of the parameters themselves, thereby invalidating 
any analyses that would treat the estimates as if they were the parameters they represent. 

An appropriate remedy is to base inferences about population-level parameters di- 
rectly upon the basic data rather than upon derived data. S6rbom (1974), for example, 
estimates differences in factor means between groups by maximizing a likelihood equation 
that contains the differences as parameters, rather than by performing ANOVA on 
subject-level factor score estimates. Bock and Aitkin (1981) estimate item parameters by 
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the method of marginal maximum likelihood, wherein integration over an ability distri- 
bution during item-trait regression analyses replaces summation over ability estimates for 
each subject. This paper adopts a similar approach to the problem of characterizing the 
distribution of a latent variable directly from observed response patterns. 

The problem of estimating a latent population distribution has been addressed by 
several workers in recent years. Lord (1969) notes that only the first n moments of the 
density function 9(0) can be estimated from scores on an n-item test, and suggests a math- 
ematical procedure for calculating said moments. Andersen and Madsen (1977) and Sana- 
thanan and Blumenthal (1978), working with the one parameter logistic (Rasch) item 
response model, assume that 9 belongs to a specified parametric family and provide mar- 
ginal maximum likelihood equations for estimating its parameters. All of these presenta- 
tions required all subjects to respond to the same set of items. 

Marginal maximum likelihood (MML) estimation is readily extended to other item 
response models, to general incidence sampling designs, and to multiple dimensions. The 
following sections develop likelihood equations for the general MML solution and for 
four special cases: a non-parametric approximation of 9, a normal solution, a resolution 
of mixed normal components, and the beta-binominal model. We begin by reviewing 
what Dempster, Laird, and Rubin (1977) refer to as the "complete data" problem, in 
which values of 0 are observed directly. 

The "Complete Data" Solution 

Suppose that g(0) is a member of a family of densities characterized by the popu- 
lation parameters a = (~1 . . . .  ~s). If # is normal, for example, its parameters are the mean 
It and the covariance matrix ~.. The probability of a sample of N observations of 0 is 
given as 

N 

L = I-I g(O,). (I) 
i 

To estimate = from a sample of observations by the method of maximum likelihood, we 
consider (1) a function of at for the given data, and find the maximizing values. In practice 
the log likelihood 

log L = ~ log 0(O,) (2) 
i 

is maximized. This is done by differentiating (2) with respect to each ~s in turn, and 
equating the results to zero: 

0 - ~ log L = ~, 9-1(0,) Og(e,) (3) 
8 =_ ~ D% 

Solutions of these likelihood equations yield saddle points or relative extrema of the like- 
lihood function. Examination of the likelihood surface in the neighborhood of a solution 
indicates whether a relative maximum has been found. 

For large N, the maximum likelihood estimator 6t follows a multivariate normal 
distribution with mean 0t and eovariances given by the inverse of the Fisher information 
matrix 

 F(O log Ll(0 log Lll 
L\ ] \  jj" 

Assuming sampled O's to be independent and identically distributed, we may approximate 
this quantity by 

,,- 'z (9 log 
l \  j"  
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The "Incomplete Data" Solution 
Suppose that observations consist not of values of 0 directly, but of vectors of item 

responses x that depend upon 0 stochastically. The response of subject i to item j, namely 
x~j, is assumed to be a function of 0~, his ability, and ~j, one or more parameters for item 
j, as follows: 

P ( x i j  = k t0 i, ~j) =f(k, 0i, ~.i)- 

The response categories and associated response functions may be dichotomous, poly- 
tomous, countably infinite, or continuous. 

As in Andersen and Madsen (1977) and Sanathan and Blumenthal (1978) we assume 
both the form of the item response model and the values of the item parameters to be 
known even though estimates must be used in practice, obtained either from a previous 
calibration sample or from the same data from which the population parameters will be 
estimated. When population parameters have been estimated independently from popu- 
lation parameters--either from a separate sample of responses or as conditional estimates 
under a Rasch item response model as in Andersen and Madsen (1977) and Sanathan and 
Blumenthal (1978)--adverse effects of this first stage of estimation upon the estimation of 
population parameters and the calculation of standard errors and tests of fit will diminish 
as the item parameters are estimated more precisely. Joint estimation of item parameters 
and population parameters from the same data will be considered in a forthcoming paper 
(see Rigdon and Tsutakawa, 1983, for results in the univariate normal case.) 

Let x i be the vector pattern of item responses from subject i on the ni items he has 
been administered. Under the usual assumption of conditional independence, the prob- 
ability of this pattern, given 0, is the product of the probabilities of the individual item 
responses: 

L(x, 10) = I-I P(x,ilO, ;i). (4) 
J 

The marginal probability of response pattern x from a randomly-selected subject from the 
population of interest is then given as the integral of the conditional probability (4) over 
the population density as follows: 

h(x) = fo L(xl 0)g(0)g(0) d0. (5) 

From (5), the log marginal likelihood for a sample of N subjects is then given by 

tog L = ~ log h(x,)= ~ log ~ L(xlO) , (6) 

It will be noted that the response vectors of different subjects need not be based on the 
same set of test items. The procedures described below are therefore applicable to data 
solicited through multiple-matrix sampling designs and tailored testing schemes as well as 
through conventional test administration. 

Maximum likelihood estimation of 0t again begins by differentiating the log likeli- 
hood function (6): 

d log L dh(x~) 
a~s - Z h-l(x~) i c%ts 

= ~ h-t(x~) F~L(xilO)ff(O)dO] s = l  . . . . .  S. (7) 
l L,/ _1 

The differentiation and integration in (7) may be interchanged if the resulting integral is 
convergent for all values of as and 0 (Kendall and Stuart, 1979, p. 10.) These regularity 
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conditions are widely satisfied by item response models and density functions in current 
use. We thus obtain 

cO log L 
cO~ 

= h- '(x,) f L(x, l O) cOg(O) • ~ dO 

f ~i cOg(O) dO = h- l(xi)L(x i 1O) 

fzF - l(Oi)cOg(O) 1 [g(O)L(xi I O) 1 dO 
= j  . L  # c3~s]l_ h(x,) 

= N f [ g - l ( O ) ~ ] [  N-l y'p(°Ix')] 

f[ .,o,1 
= N g- '(0) cO~ j p(0 I(x)) dO. (8) 

The second to last step above will be recognized as an application of Bayes theorem, 
yielding the derivative of the incomplete data log likelihood with respect to ~t s as the 
expected value of the corresponding complete data derivative, over the posterior density 
of 0 given the observed data. Such solutions are often referred to as "empirical Bayes," 
although they are not true Bayesian solutions unless a prior distribution for ot is specified 
(Deely and Lindley, 1981). Computation continues by equating these derivatives to zero 
to produce the likelihood equations, which may then be solved for at in a number of ways. 

Most straightforward is the solution by Newton-Raphson iterations, wherein pro- 
visional estimates 6( are updated by 

- • = , , , '  \ cO= cO=' I= = 4 

The dependence of p(01x~) upon h(x~) and g(0), and therefore upon ot, must be taken into 
account in the calculation of second derivatives. The resulting expressions often prove 
cumbersome. 

An alternative solution, based on the method of successive approximations, employs 
provisional estimates of ot to evaluate p(01(x)) and then finds zeros of (8) to produce an 
improved estimate of ot. This latter solution bears strong resemblance to the cycles of 
Dempster, Laird and Rubin (1977) EM algorithm for the exponential family. The differ- 
ence is that rather than computing the conditional expected values of sufficient statistics 
for g given the data and provisional estimates of ot, we compute the conditional expecta- 
tion of the entire density itself through p(01(x)). Ramsay (1975) has suggested methods to 
accelerate the rate of convergence of implicit equations of this type. 

Large sample standard errors may be obtained again by first approximating the 
information matrix by 

~(cOl°-gh(xi"/(  c o l ° g h ( x l ) ' / ,  cOot / ~-ot7 } ,9) 

where 

cO log h(x,) f cOg(0) 
cO= - g -  1(0) ~ p(01 x,) d0, 

d 

then taking the square roots of the diagonal elements of its inverse. 



ROBERT J. MISLEVY 3 6 3  

Except in special cases such as the convolution of independent normal densities con- 
sidered in Dempster, Rubin, and Tsutakawa (1981), the integration required to evaluate 
(6) and (8) cannot be carried out explicitly and must be approximated numerically. It is 
instructive to consider the results obtained when integration over 9 is approximated by 
quadrature over a finite number of points X~, q = 1 . . . . .  Q, with associated weights A(X~); 
that is 

h(xi) ,-~ ~ L(x, I Xq)A(X~), 
q 

p(Xq I x~) ~, ~ h- l(xi)L(x i I X~)A(Xq), 
q 

and then 

g-  _2 . . . .  

The computing approximations (10) of the likelihood equations are formally identical 
to the complete data likelihood equations (3) with respect to weighted pseudo-data points 
X~. Solution again proceeds iteratively, using provisional estimates of 0t to evaluate the 
posterior weights p(X~l(x)) then re-estimating ot by solving fascimilies of the complete 
data likelihood equations. This solution is equivalent to estimating the parameters of a 
discrete distribution of ability over the points X~, a problem treated in Section 4.3 of 
Dempster, Laird and Rubin (1977). Approximation of the information matrix given in (9) 
by the same quadrature formula yields 

• dot p(Xq Ix/) dot' p(Xqlxt) , (11) 

an expression identical to that given in Louis (1982) for EM solutions in which the miss- 
ing data consists of indicator variables for a multinomial distribution. 

The chi-square approximation to the likelihood ratio test may be used to compare 
the fit of nested models contemplated for the characterization of a given distribution (e.g., 
a resolution into two normal components as opposed to three). If Model 1 is nested 
within Model 2, then 

X 2 = --2 ~ log [hl(xi)/hz(xi)] 
i 

where hl(xi) and h2(xi) a re  the marginal likelihoods of the response vector of subject i 
under Models 1 and 2 evaluated at their respective maximum likelihood solutions. The 
corresponding degrees of freedom is the difference in the number of population parame- 
ters estimated by the two models. 

When the number of potential response patterns is small compared to the number of 
subjects, a given characterization of g may also be compared against the least restrictive 
alternative of a general distribution of response pattern counts (as in Bock and Lieber- 
man, 1970). Let the sample of subjects be partitioned into exhaustive and mutually exclu- 
sive subsamples in a manner that ensures that the universe of potential response patterns 
that could have been observed is the same for all subjects in a given subsample. In 
multiple-matrix test administration, for example, a subsample would be comprised of 
everyone who had taken the same test form. Let r(xe) be the count of observations of 
response pattern x e. Let N(xt) be the number of subjects in the subsample for which xt is 
a potential response pattern. Then a likelihood ratio chi-square against the general multi- 
nomial alternative is given by 

Z 2 = --2 ~ r(xe) log [N(xe)h(xg)/r(Xe)], 
t' 
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where h(x~) is computed via (2). The degrees of freedom is the number of different response 
patterns that have been observed, minus the number of parameters estimated in the 
characterization of 9, minus the number of subsamples since the expected proportions of 
potential response patterns must sum to one in each. 

A Non-Parametric Solution 

Suppose that O(0) is a smooth continuous m-variate distribution with finite moments. 
It is then possible to approximate 9 without assuming a distributional form. Following 
the outline of the previous section, we first express the marginal likelihood of a given 
response vector as the m-fold definite integral 

h(x/) = fa L(xi I 0)9(0) dO. 

Let X 1 . . . . .  XQ be a collection of points spanning the region where the bulk of the 
density of the distribution lies, sufficient in number and in proximity to insure non-trivial 
relative likelihoods of the typical response vector in the data at two or more points. The 
marginal likelihood of x~ may than be approximated as 

Q 
h(x,) ~ ~, L(xil Xq)pq 

q = l  

where pq is the density at point Xq. The pq are now to be estimated from the data. The 
continuous density 9 will be approximated by a discrete distribution on a finite number of 
points--in effect, an m-dimensional histogram. (In this presentation, the points X~ are 
assumed to be specified a priori. See Laird, 1978, on the simultaneous estimation of points 
and weights in the unidimensional case.) 

The log likelihood of the data from the entire sample is now approximated as 
N 

log L ~ ~ log [ ~  L(xi [ Xq)pJ. 
i q 

A Lagrangian multiplier is introduced to constrain the sum of the pq's to one: 

log L' = log L + 2(I - ~ pq). 
q 

Differentiating with respect to the pq's and 2 yields 

8 log L' 
dpq = ~t h -  I(xi)L(x~I Xq) - 2 

O log L' 
t32 -- 1 -- Y' pq. 

q 

Equating to zero yields the following likelihood equations: 

2 = Z h -  l(xi)/-,(x i ] X.), 
i 

~, p~ = 1. 
q 

Multiplying each (12) by its respective pq, we obtain 

2pq = ~ h-  X(xl)L(xil Xq)pq, 
i 

q----1 . . . . .  Q (12) 

(13) 

q = 1 . . . . .  Q. (14) 
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Summing these expressions over q yields 

~ Pq = E E h-I(xi)L(xl I Xq)pq 
q q i 

= E h-l(xi) ~, L(x, [ Xq)pq 
i q 

= g .  

But from (13), ~ pq = 1, implying that 2 = N. After substitution into (14) and re- 
expression, the likelihood equations become 

pq = N -  1 ~, h-  l(xl)L(xi[ Xq)pq 
i 

= N-1  ~ P(Xq Ix/), q = 1, . . . ,  Q. (15) 
1 

Because h(xi) depends on the values of the p~, (15) constitutes a set of implicit equations 
that must be solved iteratively. Improved estimates ~t + 1 of p are obtained successively by 
evaluating the right sides of (15) at provisional values ~'. 

From the characterization of g in terms of the points Xq and densities pq, it is possi- 
ble to estimate attributes of g such as moments and percentile points. For  example, the 
mean and variance of the distribution are approximated as 

0 = X  xq:q 
q 

£ = Y. (xq - - 0)%. 
q 

Furthermore, it is possible to obtain approximate standard errors of estimation for these 
quantities, by first calculating and inverting the observed information matrix of the p's, 
then applying the delta method. We illustrate with the unidimensional case. 

Because the p's are constrained to sum to one, their information matrix would be 
singular and can not be inverted as required. We therefore to recast the problem with just 
the first Q - 1 p's as parameters to be estimated and pQ defined as follows: 

Q - 1  

p =l- 
q 

With this re-expression, the first derivative of log likelihoods takes the following form: 

0 log h(xi) 
8pq - h-  l(x~)[L(xil Xq) - L(xll Xo)] q = 1 . . . . .  Q - 1 

and the approximate information matrix has elements Hq, given by 

~321ogL q =  1 . . . . .  Q -  1 
t?pq t?pr ~ h-  2(xi)[L(x i I Xq) - L(xl I XQ)] [L(xi I Xr) - L(x~l XQ)] 

i r = l  . . . . .  Q - 1  

A large-sample covariance matrix for the estimation errors of the first Q - 1 p's is given 
by H -  1. An application of the delta method gives the large-sample covariance matrix for 
the estimation errors of / i  and 6 2 : 

Cov(/~,6) = - F ' [ I i  - 1 ] '  H -1 [I! - 1 ]  F , 
2 x 2  2 x Q  Q x Q - 1  Q ' - I  × Q - 1  Q - l x Q  Q × 2  

where 

I is the Q - 1 by Q - 1 identity matrix, 
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1 is the column vector consisting of Q - 1 unit elements, and 

• ". XQ 

Standard errors for fi and d2 are obtained as the square roots of the diagonal elements of 
the resulting error covariance matrix. 

In practice, t t  may be poorly conditioned for inversion if the number of points X is 
large, especially when points at the extremes have little weight. For this reason, practical 
application of standard errors for It and X in the non-parametric case will typically re- 
quire few quadrature points and/or many observations. 

A Normal Solution 

Suppose that g(0) is m-variate normal with mean It and covariance matrix X;. The 
marginal likelihood of xi is given by the m-fold definite integral 

h(xi) - l X l- 1/5 fo (?n)m/~ L(x, 10) exp [ -½(0 - It)'E- 1(0 - It)] dO. (16) 

For a sample of N subjects, the log likelihood is again given as 
N 

log L = ~ log h(x3. 

The derivative of log L with respect to It is then 

c~ log L= y h-'(xi) f L(xi[O)g(O)(O -- I t )Z- '  dO. 
do 

Equating to zero, 

# ~ h- ~(x~) L(x,I 0)g(0) dO = h-  1(xi) L(x~J 0)g(0)0 dO 
• i 

o r  
N 

= N -1 0 ~. h - l(xi)L(xi I 0)g(0) d0 
i 

- | O [ N  -1  ~ p (OIx , ) ]  dO. (17) 
jo i 

The similarity to the standard calculation of a mean vector will be recognized, with the 
density of O replaced by the average over subjects of the conditional densities of 0 given 
each subject's response vector. 

Similarly, 

fo Og(O) d log L d N log I ]~ ]- 1/2 "l- Z h-  1(x,) L(x I 0) ~ dO 
dE dE i 

t" 
= _ N (2E- '  - diag ~ - ' )  + ½ ~ h-l(xi) | L(x,]0)g(0) 

2 -i- Jo 

x { 2 1 ; - 1 ( 8  - -  It)(8 - It)'X; - 1  - -  d i a g  [ 2 2 - 1 ( 0  - 10(0 - I t ) ' E - 1 ] }  d 8  

_ N d i a g  [ E  - I (E - S ) 2 2 - 1 ]  _ N X ; -  1(X~ - S)X~- 1, 
2 
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where 

f0  N S = N - I  (0 - It)(0 - ~)' ~. h-  t(xl)L(x , ] 0)g(0) dO 
i 

t ~  

t (0 -- li)(0 -- li)'[X -1 ~, p(0l x,)] d0. (18) 
3o i 

It is clear that the partial derivative of log L with respect to Z takes the value zero when 
Z = S .  

Because h(xi) depends on la and Z, (17) and (18) again constitute an implicit system 
requiring iterative solution. In practical calculation, the integration must be approximated 
by numerical procedures. Three approaches are sketched below. 

Gauss-Hermite Quadrature 

The preferred method of numerical integration over the normal density function, as is 
required in (16), (l 7) and (18), is Gauss-Hermite quadrature. Integration over the normal 
density is replaced by summation over a finite number of points, each assigned an optimal 
weight so as to best approximate the integral in question. For the standard normal uni- 
variate density, Stroud and Sechrest (1966) provide tables of optimal points and weights, 
which shall be denoted here as Zq and W(Zq) respectively for q = 1 . . . . .  Q. A grid of 
quadrature points and weights for the m-variate standard normal density (i.e., with zero 
means and identity covariance matrix) is obtained as the Cartesian product of univariate 
sets of quadrature points. A typical point in the grid has the form 

with weight given by 
Zq = (Zql, Zq2 . . . . .  Zqm), 

m 

A(Zq) = I-I W(Zqt). 
t = l  

Because the integration in (16)-(18) is over a general multivariate normal distribution 
with mean p and covariance matrix Z, a change of variables of integration is required to 
apply the Gauss-Hermite formula. We illustrate with (17). Let z = ( 0 -  Ix)T, where 
TT' = £ is the Cholesky factorization of £ (implying that I TI = I ~21"2). Then 

li = N -1 fo IX:1-1/2 (2x)m/'''" ~ 0 ~i h-  l(xi)L(xil 0) exp [(0 - / 2 ) £ -  1(0 - p)'] dO 

= N - 1  £ [ X 1 - 1 / 2  
(2re)m/2 0(z) ~i h -  l(xi)L(xil0(z)) 

where 

x exp [(zT + p - It)Z- l(zT + p - Vt))'] I T I dz 

N - I  £ 
- (2~)=/2 O(z) ~i h-l(xi)L(xi I O(z)) exp (z z') dz 

0(z) = zT + p. 

Define Xq as 0(Zq), where Zq is a point in the standard normal quadrature grid and define 
A(Xq) as A(Zq). Computing approximations of (17) and (18) may now be written as 

~ N-1  ~ Xq y '  h-  l(x,)L(x, I Xq)A(Xq) 
q i 

= N-1  Z Xq Z Piq (19) 
q i 
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and 

where 

~, ,~ N -  ~,~ (Xq - li)(Xq - ft)' ~ h-  X(x,)L(x, I Xq)A(Xq) 
q i 

= N - 1  X - O)(X  - O) ' (Z  (20) 

Qm 

h(x,) ,~ ~__L(x, J Xq)A(Xq) 
q 

is the marginal likelihood of response vector xi and 

Piq = h-  l(xi)L(Xl I Xq)A(Xq) 

is the posterior probability that subject i has ability X¢ 

Quadrature Over Fixed Points 

Define a grid of Q" quadrature points given by the Cartesian product 

(X1 . . . . .  XQ)x(X~ . . . . .  XQ)x ... x ( X ,  . . . ,  XQ) 

spanning the region where the bulk of the distribution lies. Let a weight be associated 
with each point Xq as follows" 

A(Xq) = K exp [-½(Xq -It) '2~- X(Xq - I t ) I ,  

where K is the normalizing constant that makes the weights sum to one. These same 
points will be maintained throughout the solution of the likelihood equations, although 
the weights are updated at each iteration. The computational advantage accrues that the 
likelihoods L(xil Xq) required in solution are the same in each cycle and need therefore be 
calculated only once. The computing approximations remain otherwise unchanged. 

Monte Carlo Inteoration 

The quadrature described above becomes unwieldy if the number of dimensions m is 
large and inefficient if the dimensions are highly correlated in the data. Under these cir- 
cumstances, Monte Carlo numerical integration is preferable (see Bock, 1983). First, a 
number of multivariate random variables are generated in each iterative step in accord- 
ance with provisional estimates of It and X. Next, the likelihood of each subject's response 
vector is evaluated at each of these points; the sum of these values is taken as the margin- 
al probability of his data. Then, the sum of normalized likelihoods over subjects at a given 
point is taken to be proportional to the density of the distribution at that point. The 
likelihood expressions are re-evaluated to produce improved estimates of It and 2;. 

Approximatin9 the Information Matrix 

The information matrix is approximated by the sum of gramian products over sub- 
ject of the terms 

8 log h(xi)/d(it, ~), 

a column vector of dimension m + m(m + 1)/2 consisting of the m elements of 

P,~(Xq -- li)' ~ -1  
q 

and the m(m + 1)/2 elements of the lower half of the symmetric matrix 

1/2 ,g -  2 [ ~  P,q(Xq - ~) ' (Xq --  l l )  - -  '~.]. 
q 
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For example, the elements of the information matrix for univariate normal case are ap- 
proximated as follows: 

=. j 

Resolution of Normal Components 

Suppose that g(0) is a mixture of K normal components, with mean vectors la 1 . . . . .  
~r ,  and common covariance matrix Z. Let Pl . . . . .  Pr be the unknown proportions of the 
mixture. Day's (1969) maximum likelihood equations could be applied to estimate these 
population parameters if values of 0i were observed directly rather than implied by x~ ; the 
following solution represents in this sense a generalization of Day's procedure. 

To begin, the marginal likelihood of a given esponse vector xg is given by the m-fold 
definite integral 

h(x,) -- ~k Pk fo L(x, lO)gk(O)dO 

where 

I~:1-1/z 
0k(0) ---- (21z)m/2 exp [-½(0 - Irk)'2;-1(0 -- Ilk) ]. 

The log likelihood of a sample of size N, augmented by a Lagrangian multiplier to ensure 
that the pk's sum to one, is then 

N 

log L' = Z log h(x,) + 2(1 - ~ Pk). (21) 
i k 

We obtain likelihood equations by differentiating with respect to the pk'S, the lak'S, Z, and 
2 in turn and equating these expressions to zero. 

Differentiating (21) with respect to Pk, we obtain 

0 log L' ~" 
= ~ h-t(x~) Jo L(x~l 0)Ok(0) dO -- 2. 

0Pk -T 

Equating to zero, 

2 = ~ h-l(xl) fo L(xi I O)ok(O)dO, 

Multiplying both sides by Pk, 

2pk = ~ Pk h-l(xl)  f L(xilO)gk(O ) dO, 
Jo 

k =  1 . . . . .  K. 

k = 1 . . . . .  K. (22) 
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Summing these equations over k yields 
t ~  

Pk = ~ ~ Pk h-l(xt) / L(xi I 0)#k(O) 2 dO 
k k i 3o 

= Z h - l ( x , ) 2  Pk f L(x,, 0)gk(0 ) dO 
i do 

= N. (23) 

But differentiating (21) with respect to 2 yields 

Z p k  = l, 
k 

which, together with (23), implies that 2 = N. Substituting this value back into (22) and 
dividing both sides of the result by N produces the following likelihood equations for the 
Pk: 

t ~  

N-1 ~ h-l(xi)/3k t L(xitO)g~(u) dO 
i 3o 

N-1  ~ Z h-  '(Xi)IO k L(x, l O)gk(O) dO 
3o i "  

N - I  ~ ~ p(0lx,, I, = k) dO, k = 1 . . . .  , K (24) 
3o i 

where It is an indicator variable that takes the value k if and only if subject i belongs to 
component k of the mixture. The summand for each subject in (24) may be interpreted as 
the portion of the conditional density of 0 given x~ that is associated with component k. 

Differentiating (21) with respect to Ilk yields 

0 log L' 
Opk = ~i h-  l(x')Pk 30 L(x,I 0)(0 - It,)Z- 1Ok(0) dO. 

Equating to zero, 

Pk h-~(x,) f L(XkIO)(I k gk(O) dO = ~ ffkh-l(Xi) ~ L(xi, O)Ogk(0 ) dO 
3o i 30 

or, after simplification, 

fo0 ~ = k) dO p(0l xi, li 
i k = 1 . . . . .  K. (25) 

p(0l x~, Ii = k) dO 

Differentiating (21) with respect to ~ yields 

0 log L' N (2~- 1 _ diag ~:- x) 
dE 2 

+ 1 ~ h-l(x,)k~ Pk fo L(xi lO)9~O)[2~-l(O-laX0- , )  '~2-1 

- diag ~ - l ( 0  - Ix)(0 - it)' ~ - 1 ]  dO. 

Equating to zero and proceeding as in the normal solution, we obtain 

= N - '  Z h-X(x,) E 10k ~ L(xil 0)(0 - li)'(0 - Ii)Ok(0) £ dO 
i 3o t • 

/ (0 -- li)'(0 - li) IN-1  ~ ~ p(0l x,, l ,  = k)] dO. 
3o i k 

(26) 
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Computin9 Approximations 

All three techniques of numerical integration described in the section on the normal 
solution can be applied to solve the likelihood equations (24), (25), and (26). 

For solution by quadrature over fixed points, define again the grid of Q" points by 
the Cartesian product 

(X1 . . . . .  X~) x (Xl . . . .  , X~) x . . .  x (X, . . . . .  X~). 

Associated with each individual point Xq are K weights, one for each component in the 
mixture: 

Ak(Xq) = Ck exp [-½(Xq -- lag)t2- l(Xq -- lXk) 3, 

where Ck is the normalizing constant that makes the weights sum to one over all points 
for component k. 

Replacing integration with summation, the marginal likelihood of the response 
vector xi is approximated as 

h(x,) ~ ~ ~ Pk L(x, I Xq)Ak(Xq). (27) 
k q 

Denote the conditional probability that subject i has ability Xq and belongs to component 
k as 

Pikq -- h-  l(xi)pk L(xiIXq)Ak(Xq) 

= P(Xq, I, = k Jxl). (28) 

The likelihood equations are now approximated as 

PR ~ N - I  ~ ~ P,kq k = 1 . . . . .  K (29) 
q i 

fig ~" ( E Xq ~ Pikq)/( 2 2 Pikq) k = 1 , . . . ,  K (30) 
q i q 

and 

~" ~ N - t  ~ Z (Xq - I~)(X~ - Ok)' ~ Pikq. (31) 
q k i 

These equations are identical in form to Day's (Day, 1969, p. 473), with the quadrature 
points interpreted as weighted data points. Solution is again iterative, since the quantities 
on the right sides of the likelihood equations depend on the population parameters to be 
estimated. 

For solution by Gauss-Hermite quadrature, it is necessary to produce a grid of 
points for each component of the mixture in each iteration. As with the normal solution, 
first define a grid of points of quadrature points for the univariate normal; a typical point 
will be 

and its associated weight will be 

Zq = (Zql, Zq2 . . . . .  Zq,.) 

A(Zq) = f i  W(Z~t), 
t = l  

where Zqt and W(Zqt) are taken from the tables of Stroud and Sechrest (1966). Again let 
TT' = ~ be the Cholesky factorization of 12. Finally, define grids of quadrature points and 
associated weights by 

Xkq = Z~ T + Pk 
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and 

A(Xkq) = A(Zq). 

These terms replace Xk and Ak(Xq) respectively in equations (27) and (28). The com- 
puting formulas remained otherwise unchanged. 

For  solution by Monte  Carlo integration, random normal  deviates are generated in 
accordance with provisional values of the lag and E, in proport ions given by the provision- 
al values of the Pk. The equations have the same appearance as those (29)-(31), except that 
the Ak(Xq) are all identical due to the self-weighting nature of the points. 

Approximatin 9 the Information Mat r i x  

As in the normal solution, we may apply (9) to approximate  the information matrix. 
As in the non-parametric solution, however, it is first necessary to recast the linear- 
dependent set of Pk'S in terms of just the first K - 1 as parameters  to be estimated, in 
order to avoid a singular information matrix. We illustrate with the resolution of two 
univariate normal components.  

With two univariate normal components  to resolve, there are four parameters to 
estimate: Pl, /~2, az, and p, the proport ion of the population represented by the first 
component  (implying that the proport ion represented by the second component  is 1 - p). 
The elements of 0 log h(xi)/O(p, #1, ] ' /2, (7"2) are then given by 

1 
P: ~ 2  ~, [P i , q (Xq  --  I j l )2 /P --  Pizq(Xq - / ~ 2 ) 2 / (  1 - P ) ]  

q 

#l" i__, ~ Pilq(Xq _ fi,) 
O q 

1 Z P ,~ (x~  - ;~) #2: a--~ 
q 

1 
~ :  ~ E ~, {&~E(G - ;,~)~ - °*)]}" 

k 

The information matrix is obtained as the accumulated sum over subjects of these vectors 
squared. 

A Beta-Binomial Solution 

Lord and Novick (1968) describe a model for number-correct  scores on an n-item test 
under which correct scores have a binomial distribution conditional on expected percent- 
correct scores ("true scores") and true scores in a population of interest follow a beta 
distribution. That  is, the probability of test score r given true score 0 is 

n! 
L(rl O) - - -  0'(1 -- 0)"- '  r = 0 . . . . .  n (32) 

(n - r)Ir! 

while the density of the true score distribution is 

g(O) = B -  1(~, fl)O ~ -  ~(1 - -  0) a -  ~ (33)  

where 

B(~, #) = f o ~  ~ ~(1 - ~)P- ~d¢ 
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and ~ and fl are the parameters of the population distribution. It will be noted that the 
integration in the definition of the beta function B(~, fl) runs from zero to one, the range 
of potential true scores. This range will be assumed for all remaining integrals in this 
section. 

As in the cases considered above, the objective is to estimate the population parame- 
ters directly from a sample of observed response vectors--or, observed test scores in this 
case, as items are considered interchangeable. Excellent starting values for maximum like- 
lihood estimation are available from the analysis of Lord and Novick, who note that 
observed scores wilt have a negative hypergeometric distribution with parameters ~ and 
fl + n - 1. Replacing sample statistics for population parameters in the formulas for the 
mean and varaince of the negative hypergeometric distribution yields the following ap- 
proximations: 

= (-- t + 1/KR21)~ 

/~ = (-- I + 1/KRE1)n -- 8 

where 

KR21=  n -n 1 I 1 ~ ( n - ~ !  l n s  2 

is the Kuder-Richardson 21 reliability coefficient, and ~ and S 2 a r e  the sample mean and 
variance of the test scores. 

Solving the "'Complete Data" Problem 

It is instructive to consider at this point the maximum likelihood estimation of ~ and 
fl when the data consist of values of 0 rather than of test scores. Suppose that values 01, 
.... Ok have been observed with respective frequencies N 1 . . . . .  N k. Let N be the sum of the 
Nk'S, or the total sample size. The likelihood function for this data set is the product over 
subjects of terms like (33) 

L = B-'V(~, fl) 1-'I ['0~-1(1 -- 0k) g- 1]N~ 
k 

and the log likelihood function is 

log L = (ct - 1) ~, N k log Ok + (fl - l) ~ log (1 - Ok) -- N log  B(ct, fl). 
k k 

The first derivatives of log L with respect to ct and fl are given as 

D log L f~ t3--'-'~ = ~" Nk log Ok -- NB-l(ct, fl) ~ - 1 0  -- ~b) a-1 log ~bd~ 
k 

(34) 

Equating to zero yields the likelihood equations, which after re-expression are written as 

~: n- l (~ ,  fl) f~ ~b~-l(1 - ~b)/~-1 log q~ dq~ = N -1 ~k Nk log O k (36) 

fl: B-I(~, fl) f~ ~ -1 (1  _ q~)a-1 log (1 -- q~) d~p = N -1 ~k Nk log (1 -- Ok). (37) 

log L f~, 
Ob = ~ Nk log (1 - Ok) - -  Na-l(ct, fl) ~ba- I(1 _ q~)a- 1 log (1 -- ~b) d~b. (35) 

k 
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Solution of the likelihood equations may be accomplished by Newton-Raphson iter- 
ations. Improved estimates are obtained from provisional estimates at iteration t by 

= - H -  ~ .~ log~ L ~ log~_~ L 

where H is the matrix of second derivatives of log L with respect to c¢ and fl, and both the 
first and second derivatives are evaluated at the provisional estimates. The elements of H 
are given by 

Oc~c~-"--"-~ = -NB-2(e '  fl) B(e, fl) ¢~-1(1 -- ¢)P-~ log 4~ log (1 -- ¢)d4~ 

- I f  q~ ' - l (1-  ¢) '-~ log Cdck][f ~b~-~(1-~b) a - '  l o g ( l - ¢ ) d ¢ ] }  

02 l°g Lc3fl2 = -NB-~(=, a){[B(=, a) f ~'-~(1 - ~)"- '  log~ (1 - O)a~] 

- I f  ¢ ' - ' ( 1 - ~ b ,  a-x l o g ( 1 -  40d~b]2}. 

Solving the "Incomplete Data" Problem 
Suppose that rather than values of 0, test scores depending on 0 through (32) are 

observed. Let xl represent the score of subject i and let No, N1 . . . . .  N, be the counts of 
test scores of 0, 1 . . . . .  n, summing to the total sample size N. As before, the marginal 
probability of test score r is given by 

fo L(r[ O) 0 ~- 1(1 - -  0) B -  1 B- x(o~, fl) dO. h(r) 

and the log likelihood of the entire sample is given by 

log L = ~ h(r~) 
i 

= ~ N, h(0. (38) 
r 

The maximum likelihood estimates of a and fl are the values that maximize (38) for 
the observed test score distribution. Differentiating with respect to a, we obtain 

O log L ~_ Oa - ~, N, h- '(r) jo L(r[ O) ~Og(O) dO 

Nrh-~(r) f L(rl 0)[B- ~(~, fl)0~-~(l -- 0) p-x E 
r 3o 
- B-a(~,/~) ~ &-~(1  -- ¢ ) a - ,  log q~d¢] dO. 
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Equating to zero and simplifying yields the likelihood equation for a: 

B-1(a, fl) ~ ~b~-l(1 - ~b) a-1 log c~ddp = N -1 ~ Nrh-l(r) ~ log 0 L(rlO)g(O) dO 
r 

= N -  x ~ log 0 [ ~  N,p(OIr)] dO. (39) 
r 

By similar calculation, the likelihood equation corresponding to fl is found to be 

fl) [" q~'-1(1 -- ~b) a-1 log (1 - q~) dq~ B- 1(~ 
d 

= N-1  t log (1 - 0)[~, N, p(O[r)] dO. (40) 
d r 

The resemblance of (39) and (40) to (36) and (37), the likelihood equations for the 
complete data problem, is clear. The difference is that the sum of logarithms of observed 
true-score values has been replaced integration over the range of potential true-score 
values, each point weighted by its expectation given the observed score distribution. The 
required integrals may be evaluated by means of standard procedures such as Simpson's 
rule or Monte Carlo methods. One simple solution follows. 

Let X1 . . . . .  Xq be set of evenly-spaced points covering the unit interval. Define 
weights A(Xq) as follows: 

X~- !(1 - X~)P- 1 
A(X~) = y, X~-1(i - Xs? -1" 

S 

These points and weights define a discrete distribution that may be used to approximate 
the continuous beta distribution, with the approximation as good as desired by suf- 
ficiently large Q. For example, h(r) may be approximated as follows: 

h(r) ,,~ ~ L(rI Xq)A(Xq). 
q 

The likelihood equations (39) and (40) may also be approximated, as 

Z x ~ - l (  1 - x~) p-1 log x~ 
= N - I  E X~-l(  1 - X~) a-1 ~ log Xq ~ N,P(X~Ir) 

q r 
q 

and 

X~-1(1 - Xq) a- 1 log (1 - Xq) 
= N -1 ~ log (1 - X~) ~ N,P(Xqlr) 

E x ~ - 1 0  x . )  p-1 q r 

where 

L(r l X~)A(Xq) 
P(Xq I r) = ~ L(r I Xs)A(Xs)" 

S 

Approximating the Information Matrix 

Again (9) is the basis for approximating the information matrix, employing ex- 
pressions for the complete data derivatives given in (34) and (35). Terms are identical for 
all subjects with the same score, so the required summation may be run over scores rather 
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than over subjects. The elements of the resulting approximation are as follows: 

~, ~: Z N,[Z P(Xqlr) log Xq - C] 2 
r q 

~, fl: E N,[~, P(X~Ir)log X~ - C][ E P(X~I~)log (1 - - o ]  
r q q 

fl, fl: Z N,[E P(Xqlr) log(1 - Xq) -  D] 2 
" 7 - -  q 

where 

C = [ E X ;  1(1-Xq) a - l l ° g X ~ ] / [ y ' X ;  l (1--Xq) a- l ]  
q q 

D = [ Z  X; 1( ] - Xq) ~- '  log (] - Xq)]/[Z X ; - ' ( I  - X , ) o - ' ]  
q 

Example 1: The Law School Admissions Test 

Table 1 presents observed counts of response patterns from samples of 1,000 subjects 
to two five-item subsets of the Law School Admissions Test. Several analyses of these 
data sets, referred to hereafter as LSAT-6 and LSAT-7, have appeared in the psycho- 

TABLE I 

FREQUENCY COUNTS OF RESPONSE PATTERNS FORLSAT EXAMPLE 

ITEM SCORE LSAT 6 LSAT 7 

INDEX 1 2 3 4 5 OBSERVED EXPECTED OBSERVED EXPECTED 

1 0 0 0 0 0 3 2 ,363  12 10.191 
2 0 0 0 0 1 6 5 .458  19 17.343 
3 0 0 0 1 0 2 2 .475  1 4 .331 
4 0 0 0 1 1 11 8 .241 7 8 .896  
5 0 0 1 0 O 1 0.851 3 5 .969  
6 0 0 1 0 1 1 2 .832  19 16 .259 
7 0 0 1 1 0 3 1.284 3 4.284 

8 0 0 1 1 1 4 6 .212  17 13 .948  
9 0 I 0 0 0 I 1.819 10 4.733 

10 0 1 0 0 I 8 6.057 5 9.822 

11 0 I 0 1 0 0 2.746 3 2.509 

12 0 I 0 I I 16 13.283 7 6.162 

13 0 1 I 0 0 0 0.944 7 7.647 

14 0 I I 0 I 3 4.565 23 25.642 

15 0 1 1 1 0 2 2 .070  8 6 .822  
16 0 1 1 1 1 15 14 .732  28 27°852 
17 1 0 0 0 0 10 10 .280  7 11 .225  
18 1 0 0 0 1 29 34 .232  39 34 .965  
19 1 0 0 1 0 14 15 .520  11 8 . 7 5 6  
20 1 0 0 1 1 81 75 .075  34 33 .729  
21 1 0 1 0 0 3 5 .334  14 10 .434 
22 1 0 1 0 1 28 25 .803  51 54 .230  
23 1 0 1 1 0 15 11 ,699 15 13 .750  
24 1 0 1 1 1 80 83 .262  90 92 .203  
25 1 1 0 0 0 16 11 .406 6 7 .354  
26 1 1 0 0 1 56 55 .174  25 28 .104  
27 1 1 0 1 0 21 25 .015  7 7 . 0 7 0  
28 1 1 0 1 1 173 178.037 35 3 3 . 4 5 0  
29 1 1 1 0 0 11 8 . 5 9 8  18 19 .062  
30 1 1 1 0 1 61 61 .190  136 130.759 
31 1 1 1 1 0 28 27 .743 32 32 .766  
32 1 1 1 1 1 298 295 .702  308 309,731 
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metric literature. This section presents estimates of underlying ability distributions 
through the methods described above, using previously-published item parameter esti- 
mates. 

The data from LSAT-6 have been found to be in accord with assumptions of a 
one-parameter logistic (Rasch, 1980) item response model and an underlying normal dis- 
tribution of ability (see Bock and Lieberman, 1970; Andersen, i972; Andersen and 
Madsen, 1977; Bock and Aitkin, 1981; Andersen's 1972) conditional maximum likelihood 
estimates of the item parameters are -1.256, .476, 1.236, .168, and -.623. Taking these 
values as known, marginal maximum likelihood estimates of the mean and variance of an 
underlying normal distribution of ability have been computed from the data from all five 
items, and from items 1 through 4, 1 through 3, and 1 and 2, as well. In each solution, 20 
fixed quadrature points between -4.75 and +4.75 in steps of .50 were employed. The 
results are presented in Table 2. 

Table 2 contains the maximum likelihood estimates for the parameters in question 
and their associated standard errors. It may be seen that the solution for items t through 
5--a mean of 1.475 and a variance of .551--agrees with Andersen and Madsen (1977), in 
which the same likelihood equation was maximized. The expected response pattern 
counts in this solution are also shown in Table 1. The resulting chi-square test against the 
general multinomial alternative yields a chi-square of 21.799, which agrees with that ob- 
tained by Bock and Aitkin (1981). Had the item parameters been specified a priori rather 
than estimated from the same data, the degrees of freedom would be 27, or the number of 
non-zero response patterns (30) minus the number of population parameters estimated (2) 
minus one. 

The last three columns of Table 2 may be used to study the effects on the estimation 
of the mean and variance that result from the second stage sampling, i.e., basing estimates 
not on observed values of 0 but on samples of responses given values of 0. The column 
labeled "observed information" is the approximation based on (9). It will be seen that 
these values are not the squared reciprocals of the standard errors, because the estimates 
of the mean and variance in the "incomplete data" problem are not uncorrelated as they 
are in the "complete data" problem. The column labeled "complete data information" 
contains the values given by o'2/1000 and 2a4/1000 for means and variances respectively, 
indicating the precision of estimation that would be obtained if 1,000 values of 0 had been 
observed from a normal distribution with variance equal to that estimated from the corre- 
sponding item subset. The final column, "effective sample size," is 1,000 times the ratio of 
the preceeding two columns. This value is an estimate of the information about the pa- 
rameter in question contained in the item responses, in terms of the number of observed 

TABLE 2 

PARAMETER ESTIMATES FOR LSAT-6 DATA 

MEAN: 

VARIANCE: 

OBSERVED 
ITEMS MLE S.E. INFORMATION 

I-5 1.475 .047 516.323 
I-4 1.478 .050 458.887 
I-3 1.492 .058 350e512 

I-2 1.490 .098 213.949 

1-5 .551 .099 117.920 
1-4 .568 .117 84.516 
1-3 .668 .161 45.509 
I-2 .667 .306 21.737 

COMPLETE DATA EFFECTIVE 
INFORMATION SAMPLE SIZE 

1814.882 284 
1760.563 261 
1497.006 234 

1594.896 134 

1646.898 72 
1549.792 55 

1120.513 41 
1271.847 17 
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TABLE 3 

OBSERVED AND EXPECTED NUMBER-CORRECT DISTRIBUTION FOR LSAT-6 

SCORE 

0 I 2 3 4 5 CHI-SQUARE DF 

OBSERVED 3.0 20.0 85.0 237.0 357.0 298.0 

EXPECTATION UNDER 
BETA-BINOMIAL 2.4 20.9 88.5 228.1 364.2 296.0 .83 3 

EXPECTATION UNDER 
NORMAL-RASCH* 2.2 20.3 88.1 228.7 367.1 293.8 1.03 3 

*From Andersen and Madsen (1977) 

values of 0 that would be required to match the precision of estimation. It is clear from 
these values that the loss of precision in estimation is less serious for the mean than for 
the variance. 

The fit of the beta-binomial model to the total score distribution of LSAT-6 is shown 
in Table 3. The maximum likelihood estimates of ~ and fl are 15.55 and 4.81, with stan- 
dard errors of 4.05 and 1.25 respectively. Andersen and Madsen's-(1977) fit of the normal 
distribution with the Rasch item response model is also shown in Table 3. That  both 
models fit extremely well serves as a reminder that a meager data set provides little power 
to reject incorrect models or to distinguish among competing models. 

The data from LSAT-7 have been found to be in accord with a two-factor model of 
the following form: 

P(xlj = 1) = ¢(Zij) 

where 

Zij  = cj --~ ajlOil q- (xj2 0i2 

and (01, 02) has a bivariate normal distribution (see Christofferson, 1975; Muth6n, 1978: 
and Bock and Aitken, 1981). Bock and Aitkin's (1981) varimax-rotated two factor solu- 
tion, consisting of item intercepts and slopes (i.e., factor loadings), is shown in Table 4. 

TABLE 4 

ESTIMATED FACTOR MEANS AND COVARIANCE MATRIX FOR LSAT-7 DATA 

FACTOR LOADINGS 

ITEM INTERCEPT DIMENSION I DIMENSION 2 

1 1.6177 1.354 .265 

2 .4722 .231 .538 

3 1.4303 .388 1.551 

4 .2938 .345 .284 

5 1.0902 .330 .250 

ESTIMATED MEANS: 

ESTIMATED SIGMA: 

-0.006 

1.009 

-.009 

(.116) 

(.291) 

(.203) 

.013 

-.009 

1.036 

(.088) 

(.203)] 

(.222)J 
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Taking these values as known, it is possible to estimate the mean vector and covariance 
matrix of the assumed underlying bivariate normal distribution. 

This solution, also shown in Table 4, was obtained through the use of a t0 x 10 grid 
of Gauss-Hermite quadrature points. As expected, the solution consists of essentially zero 
means and an identity covariance matrix; that is, the distribution assumed in the esti- 
mation of the item parameters. The expected counts of response patterns are shown in 
Table 1. The chi-square text against the general multinomial alternative yields a value of 
21.245 (again matching Bock and Aitkin). Had the term parameters been specified a 
priori, degrees of freedom would be 26, or the number of response patterns with non-zero 
observations (32) minus the number of population parameters estimated (5) minus one. 

Example 2: The Vandenberg-Shepard Mental Rotations Test 

As early as 1943, Johnson O'Connor had noticed a sex effect in spatial ability tasks, 
such that only about one-fourth of the women in a given population would score above 
the median of the men on a spatial abilities test (O'Connor, 1943). He speculated that this 
effect might be due to a X-linked recessive major gene for spatial visualization, in which 
case the proportion of females exhibiting the trait would be the square of the proportion 
of males exhibiting it. Proportions of .25 and .50 for females and males, in particular, 
would be consistent with O'Connor's conjecture. Since O'Connor's work, some other 
studies have lent support to this hypothesis (e.g., Book and Kolakowski, 1973), but other 
have not (e.g., Balker et al., 1981). 

In this section, data gathered by Zimowski (in progress) in dissertation research on 
sex difference in spatial ability tasks are analyzed. Responses from 158 male and 175 
female seniors from York High School in Elmhurst, Illinois were obtained to the items of 
the Vandenberg-Shepard Mental Rotations Test. Each item in this 20-item test depicts a 
primary object, then asks the subject to identify which two of four other objects could be 
the same as the primary object, as seen from a different point of view. Table 5 presents the 
distribution of observed scores. 

Using marginal maximum likelihood methods, the underlying distributions of ability 
in the male and female populations may be resolved into one, two or three normal com- 
ponents, and the fit of the solutions may be examined via the likelihood ratio test against 
the general multinomial alternative. The items will be assumed homogeneous, so that a 
binomial item response model may be employed. The logit scale will be assumed for 0 in 
order to avoid the floor and ceiling effects of the bounded percent-correct variable. The 
probability of obtaining r correct responses, then, for a subject with latent ability 0 is 
given as 

20! 
P(r [0) -- r!(20 -- r)! p(O)'[1 -- p(O)] 2°-" 

where 

p(O) = exp (0)/[1 + exp ((9)]. 

The resultant model for the observed score distribution thus corresponds to a three- 
stage experiment. First, a component is selected in accordance with the proportion of the 
population that that component represents. Second, a value of 0 is drawn at random from 
the normal distribution comprising the selected component. Finally, random item re- 
sponses are obtained in accordance with the binomial model with a probability deter- 
mined by the selected 0. 

Table 5 presents, along with the observed score counts, their expectations under the 
assumptions of 1, 2, and 3 components--all estimated separately within sexes. The esti- 
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TABLE 5 

OBSERVED AND EXPECTED FREQUENCIES FOR VANDENBERG DATA 

MALES F]~MALES 

EXPECTATION EXPECTATION 

SCORE OBSERVED K=I K=2 K=3 OBSERVED K=I K=2 K=3 

I 0 1.156 0.83 0.350 I 2.105 0.879 0.854 

2 2 3.239 2.755 1.98] 6 7.166 4,819 4.750 
3 6 5.567 5,297 5.384 12 13.717 12.843 12.772 

4 11 7.637 7,777 9.368 24 19o458 22,141 22.117 

5 10 9.215 9,730 11.783 22 22.783 27.751 22.776 
6 10 10.276 10.996 11.661 29 23.285 27.051 27.111 

7 11 10.932 11.632 10.096 23 21.486 21.673 21.753 

8 11 11.289 11.786 9.050 16 18.301 15.335 15.392 
9 8 11.402 11.609 9.616 11 14.608 10.718 10.712 

10 12 11.335 11.221 11.330 8 11.034 8.288 8.233 

11 11 11.140 10,706 12.740 3 7.925 7.077 7.034 
12 13 10.780 10.119 12.587 11 5.409 5.999 6.006 
13 13 10.187 9.498 10.727 2 3.489 4.597 4.637 

14 7 9.391 8.868 8.189 5 2.103 3.030 3.064 
15 6 8.490 8.227 6.379 2 1.166 1.673 1.684 

16 6 7.521 7.529 6.016 0 0.582 0.757 0.752 

17 7 6.446 6.677 6.528 0 0.254 0.274 0.266 
18 6 5.207 5.545 6.457 0 0.093 0.076 0.072 

19 5 3.773 4.059 4.845 0 0.027 0.015 0.014 

20 3 2.212 2.338 2.358 0 0.005 0.002 0.002 
21 0 0.806 0.800 0.553 0 0.001 0.000 0.000 

mated parameters of these solutions are shown in Table 6. It may be seen that the data  
for the females are in good accord with the major gene hypotheses. A two-component 
model fits the data well--significantly better than a one-component model--while  a 
three-component model offers little additional improvement. Moreover, the estimated 
proportions in the two components are 79 percent for the lower and 21 percent for the 
higher, very close to the predicted proportions of 75 percent and 25 percent. The interpre- 
tation of results for males is less straightforward. To begin with, a one-component model 
offers a very good fit to the data, with a chi-square of 10.8 on 17 degrees of freedom. A 
two-component model offers no significant improvement in fit, but a three-component 
model decidely does. It is likely that the three-component model represents overfitting, 
but it is interesting to see that the lower two components in the three-component solution 

TABLE 6 

PARAMETER ESTIMATES FOR VANDENBERG DATA 

PI P2 P3 ~I ~2 ~3 ~ X2 DF 

MALES: 1.000 - - -0.136 - - 1.002 10.794 17 

• 670 .330 - -0.611 .850 - .713 10.030 15 
.357 .466 .177 -1.220 0.095 1.514 .105 4.626 13 

FEMALES: 1.000 - - -0.964 - - .578 20.251 13 
.794 .206 - -1.200 .030 - .157 13.624 11 

• 679 .128 .193 -1.244 -0.874 .064 .112 13.543 9 
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have means virtually identical to the means in the females' two-component solution and 
account in roughly equal proportions for most of the males' distribution. 

REFERENCES 

Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal of the Royal 
Statistical Society, Series B, 34, 42-54. 

Andersen, E. B. and Madsen, M. (1977). Estimating the parameters of a latent population distribution. Psycho- 
metrika, 42, 357-374. 

Balker) J. T ,  Krasnoff, A. G. and Peaco, D. (t981). Visuo-spatial perception in adolescents and their parents: 
the X-linked recessive hypothesis. Behavior Genetics, 11, 403-413. 

Bock, R. D. (1983). The Discrete Bayesian. In H. Wainer and S. Messick (Eds.), Principals of Modern Psychologi- 
cal Measurement. Hillsdale, New Jersey: Edbanm. 

Bock, R. D. and Aitkin, M. (1981). Marginal maximum like!ihood estimation of item parameters: an application 
of an EM algorithm. Psychometrika, 46, 443-459. 

Bock, R. D. and Kolakowski, D. F. (1973). Further evidence of sex-linked major gene influence on human 
spatial visualizing ability. American Journal of Human Genetics, 25, l-14. 

Bock, R. D. and Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psycho- 
metrika, 35, 179-197. 

Christofferson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5-32. 
Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56, 463-473. 
Deety, J. J. and Lindley, D. V. (1981). Bayes empirical Bayes. Journal of the American Statistical Association, 76, 

833-841. 
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM 

algorithm (with discussion). Journal of Royal Statistical Society, Series B, 39, 1-38. 
Dempster, A. M., Rubin, D. B., and Tsutakawa, R. K. (1981). Estimation in Covariance Components Models. 

Journal of the American Statistical Association, 76, 341-353. 
Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics, Volume I1. New York: Macmillan. 
Laird, N. M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the 

American Statistical Association, 73, 805-811. 
Lord, F. M. (1969). Estimating true-score distributions in psychological testing (An empirical Bayes prob!em). 

Psychometrika, 34, 259-299. 
Lord, F. M. and Novick, M. R. (1968). Statistical Theories of Mental Test Scores. Reading, Mass.: Addison- 

Wesley. 
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the 

Royal Statistical Society, Series B, 44, 226-233. 
Muth6n, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. 
O'Connor, J. (1948). Structural Visualization. Boston: Human Engineering Laboratory. 
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 361-372. 
Rasch, G. (1980). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute 

for Educational Research, 1960. Chicago: University of Chicago Press, (reprint). 
Rigdon, S. E. and Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 

567-574. 
Sanathanan, L. and Blumenthal, N. (1978). The logistic model and estimation of latent structure. Journal of the 

American Statistical Association, 73, 794-798. 
S6rbom, D. (1974). A general method for studying differences in factor means and factor structures between 

groups. British Journal of Mathematical and Statistical Psychology, 37, 222-239. 
Stroud, A. H. and Sechrest, D. (1966). Gaussian Quadrature Formulas. Englewood Cliffs, New Jersey: Prentice- 

Hall. 
Zimowski, M. (in progress). Implications of item difficulties for visuo-spatial information processing. Doctoral 

dissertation, Department of Behavioral Sciences, University of Chicago. 

Manuscript received 3/28/83 
Final version received 5/2/84 


