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A least-squares algorithm for fitting ultrametric and path length or additive trees to two-way, 
two-mode proximity data is presented. The algorithm utilizes a penalty function to enforce the 
ultrametric inequality generalized for asymmetric, and generally rectangular (rather than square) 
proximity matrices in estimating an ultrametric tree. This stage is used in an alternating least- 
squares fashion with closed-form formulas for estimating path length constants for deriving path 
length trees. The algorithm is evaluated via two Monte Carlo studies. Examples of fitting ultra- 
metric and path length trees are presented. 
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Introduction 

Two-way,  two-mode  n x m asymmet r i c  rec tangula r  mat r ices  (A = ]l 6u ]1) of  p rox imi ty  
da t a  are  qui te  frequently col lected in the behav io ra l  (and other)  sciences. They  indicate  
the re la t ionships  between two different classes of  enti t ies (e.g., objects  and  variables ,  sub- 
jects  and  stimuli,  s t imuli  and  responses).  The  analysis  of  such da t a  often seeks unde r s t and-  
ing of  the s t ructure  of  these sets of  objects  and  their  in ter-re la t ionships .  F o r  example ,  
profile d a t a  of  a s t imulus  by scale type are often formed when one evaluates  or  rates a 
number  of  different s t imulus objects  on var ious  a t t r ibu te  scales, e.g., a number  of  different 
soft d r inks  are  ra ted  on var ious  prespecif ied scales re la t ing to taste,  level of  ca rbona t ion ,  
etc. If  these rat ings are in te rpre ted  as j udgmen t s  of  closeness to an  ideal  exemplar  of  the 
a t t r ibu te  being rated,  the resul t ing mat r ix  can be viewed as a rec tangula r  p rox imi ty  
matr ix.  

Ano the r  typical  example  of  such rec tangula r  da t a  occurs  where  one collects subject  x 
s t imulus data .  F o r  instance,  var ious  subjects  render  preference j udgmen t s  over  a number  
of different stimuli (e.g., subject  preference ra t ings  for var ious  b r ands  of  telephones).  
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Still another typical type of nonsymmetric data encountered in the behavioral sciences 
are confusions data where the rows and columns correspond to the same objects (thus 
n = m), yet, 6ij is not necessarily equal to 6~i. For example, the row elements might be 
various messages sent and the column elements the various messages received. The main 
diagonal elements would record the accuracy of the communication process, while the 
off-diagonal elements would reflect the error of the process. The famous Miller-Nicely 
(1955) data on confusions of phonemes in a variety of noise conditions provide an excel- 
lent example of such proximities. Also, one could consider brand-switching matrices such 
as those presented in DeSarbo (1982) where probabilities of switching from brand/product 
i in period t to j in period t + 1 represent the 6i~ entries in A. Here the 6,  entries represent 
brand loyalty and the 6~ (i ~ j) entries reflect the degree of brand switching. Similar types 
of matrices are found in the sociological literature in the form of social interaction and 
mobility matrices. 

In summary, there are a number of different types of rectangular data found across 
many diverse disciplines. We propose here a new methodology for fitting ultrametric and 
additive tree structures to such data. We begin with a review of the related literature in 
two-way, two-mode clustering. The new proposed model and algorithm are then de- 
scribed in detail. The results of two detailed Monte Carlo studies are then presented. Two 
applications, one fitting an ultrametric tree to confusions data, and the other fitting an 
additive tree to word associations data, are discussed. Finally, future research op- 
portunities in this area are described. 

Previous Work in Two-Mode Clustering 

There exist a number of quite different approaches to clustering both row and column 
elements in a two-way, two mode rectangular data matrix. Tryon and Bailey (1970) de- 
scribe a heuristic for examining both variables and individuals in a clustering setting. 
Here, a "V-analysis", or "clustering" of the variables (columns), is performed initially via a 
factor analysis on the variable by variable correlation matrix or on a subset of the most 
collinear variables. Then, an "O-analysis" of the individuals is performed where subjects 
are initially scored on the several clusters/factors obtained in the "V-analysis" and a clus- 
tering of the subjects is then performed. One finally obtains a reduced "space" for vari- 
ables and one for subjects based on their scores from the "V-analysis". The user can then 
examine profile scores of the various clusters. Thus, the Tryon and Bailey (1970) pro- 
cedure does not really provide a joint clustering of subjects and variables, but rather a 
clustering of subjects whose resultant clusters vary continuously on a set of factor scores. 

Hartigan (1975, 1976) develops a block clustering method for categorical rectangular 
data. Each block is defined by a cluster of cases and a cluster of variables such that each 
variable in the block is constant over the cases in the block, except for cases that also 
belong to other blocks (blocks may overlap). The constant value taken by a variable in a 
block is called the "modal value" for that block. The goal of the analysis is to provide a 
succinct representation of the data by a few large blocks with corresponding block modal 
value, together with residual single blocks consisting of single values deviating from the 
appropriate block modal value. An iterative algorithm in Hartigan (1975, 1976) is utilized 
to cluster both objects and variables simultaneously. 

McCormick, Schweitzer, and White (t972) propose their "bond energy algorithm" to 
provide a joint clustering of row and column elements in rectangular data. This is accom- 
plished by permuting the rows and columns of an input data array in such a way as to 
push the numerically larger array elements together (or as the authors mention, to maxi- 
mize the summed bond energy over all row and column permutations in the input 
array--the "beta measure of effectiveness".) An iterative sequential-selection heuristic is 
utilized to provide an at least locally optimum solution. 
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DeSarbo (1982) has developed the GENNCLUS methodology for the simultaneous 
clustering of both row and column elements. He generalizes the ADCLUS (Shepard and 
Arabic (1979)) model, representing interstimulus proximities as combinations of discrete 
and possibly overlapping properties, to the case of asymmetric proximities. The 
GENNCLUS procedure allows for the estimation of either overlapping or nonoverlap- 
ping clusters. It utilizes a series of gradient-based procedures and combinatorial opti- 
mization methods in an alternating least-squares framework. Sarle (personal communi- 
cation, 1982) has recently developed a similar procedure for the GENNCLUS "dual- 
domain" case where separate clusters would be derived for both row and column objects, 
and be subsequently related to each other via an estimated weights matrix. 

None of the above mentioned methods for jointly clustering row and column elements 
in rectangular data have dealt with fitting tree structures (ultrametric and/or additive 
trees) to such data. While such methods (Carroll, 1976; Carroll and Chang, 1973; Carroll 
and Pruzansky, 1975; Carroll and Pruzansky, 1980; Cunningham, 1974; De Soete, 1983; 
Hartigan, 1967; Sattath and Tversky, 1977) have been developed for fitting such struc- 
tures to the one-mode symmetric proximities (see Carroll, Clark, and DeSarbo, 1984, for 
the three-way case), only Furnas (1980) has investigated the "tree-unfolding" problem of 
fitting a tree to general rectangular proximities, providing a joint representation of both 
row and column objects. (Cunningham's (1978) bidirectional trees can only accomodate 
asymmetric single mode data (row and column elements are the same) allowing for differ- 
ent path lengths for row and column objects.) He develops an "ultrametric inequality" 
condition for such rectangular data (he also considers additive trees) and proposes an 
agglomerative clustering method to fit an ultrametric tree. 

We shall extend the work of Furnas (1980) to accommodate both ultrametric and 
additive trees by utilization of a mathematical programming approach based on a penalty 
function algorithm. The approach to be described here is aimed at explicitly optimizing a 
least-squares loss function, whereas Furnas' (1980) earlier approach was heuristic in 
nature and only approximately least-squares. 

The Penalty Function Approach 

Theory Underlying the "Tree Unfolding" Model 

The underlying model and theory for unfolding via ultrametric and path length or 
additive trees was worked out by Furnas (1980). He derived necessary and sufficient con- 
ditions, and uniqueness properties for such representations and devised some data ana- 
lytic methods. Those methods were only heuristics (agglomerative algorithms for Ultra- 
metric trees; ad hoc methods for error-free Additive tree data). The purpose of the current 
work is to devise and evaluate explicit least squares methods for fitting these models, and 
give examples of their usefulness. 

In its simplest form, the usual proximity analysis begins with a single set of objects and 
a square symmetric matrix of all the pairwise measurements between them. The goal is to 
find a single global structure (e.g., a spatial configuration or tree structure) representing all 
the objects and, as faithfully as possible, the proximities between them. 

Unfolding analysis is a slight variant. It begins with two separate classes of objects 
(e.g., people and cars) and with the rectangular matrix of measurements only between 
pairs of opposite classes (e.g., how much each person likes each car). Its goal is still the 
same--to find a single global representation, placing in it both sorts of objects such that 
the distances between them represent, as faithfully as possible the original between-class 
data. As in the usual one-class analysis, the resulting structure represents the data with 
fewer, hopefully interpretable parameters, An useful byproduct of an unfolding analysis is 
that the global structure provides a representation for the implicit within-class prox- 
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imities, in addition to the between-class relationships it explicitly tried to fit. Thus for 
example it becomes evident which cars are similar, by virtue of being liked by the same 
people, and which people are similar by virtue of liking the same cars. 

Unfolding theory has been well elaborated for multidimensional models, but there is 
good evidence that the similarity structure of many familiar domains is better fit by tree 
structures (Sattah & Tversky, 1977; Pruzansky, Tversky, & Carroll, 1982). One would 
expect unfolding analyses in such domains to require tree representation as well (see for 
example Furnas, 1980). 

As background to the work presented here, we review the necessary and suffÉcient 
conditions for, and the resulting uniqueness of, the two-mode tree representations. A brief 
summary is presented here (for the errorless case); further details may be found in Furnas 
(1980). 

Ultrametric distances (i.e., distances associated with ultrametric trees) must obey the 
Ultrametric Inequality: 

dq < max (dik, djk). (1) 

In the case of rectangular distance matrices, however, it is not possible to test the ultra- 
metric inequality since one of the three distances will be missing for every triple. Furnas 
showed that, for rectangular matrices with a distance measure defined only between items 
of different classes (A, with elements represented by letters early in the alphabet and Z 
represented by letters late in the alphabet) the following Two-Class Ultrametric condition 
is necessary and sufficient for representation as an ultrametric tree: 

t,~ _< max (t°x, tbx, tbz). (2) 

When this inequality is satisfied, the representation is unique up to the internal structure 
of purely one-class subtrees. For example the three trees in Figure 1 are equivalent in 
their two-class structure. For example, the (vd) and (ze) subtrees are well determined, but 
the (abc) and (xy) subtrees are not. By default, such two-class trees will be shown in their 
least structured form--that is with no structure for the pure subtrees and the fewest possi- 
ble number of extra nodes, as in the middle example above. Note that this indeterminacy 
is usually small, in that most subtrees have mixed membership, particularly once they get 
to be of reasonable size. In the example above, only four of the 45 distances in the final 
tree were not completely determined, and even those four were strictly bounded. 

Necessary and sufficient conditions for unfolding path length or additive trees are 
much more complicated (Furnas (1980) presented a bounded deterministic algorithm for 
this) and will not be given here. It suffices instead to note that overall distances in a path 
length or additive tree can be decomposed into the sum of an ultrametric part and an 
additively decomposable part (see Carroll and Pruzansky, 1980) which can be represented 
by a "star" or "bush" tree (an additive tree having only one interior node). The same is 
true for rectangular submatrices of distances from a path length or additive tree, and the 
analytic techniques proposed here make use of this decomposition. 

In path length or additive trees, the unfolded representations have two sorts of non- 
uniqueness. One is exactly equivalent to the ultrametric case---purely one-class subtrees 

o b c v d w x y z e  o b c v d w x y z e  a b c v d w x y z e  
FIGURE 1 

Indeterminacies in Two-Class Trees: Internal Structure of One-Class Clusters. 
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Indeterminacy in Two-Class Additive Trees: Adding a Constant to Terminal Branches of one class and sub- 
tracting it from the other. 

have indeterminable internal structure. The second is a single continuous free parameter, 
shifting relative lengths of the terminal branches of the two classes. By adding a constant 
to all terminal branches of one class and subtracting it from the terminal branches of the 
other class, all between-class distances have a net change of zero. Thus, for example, the 
three trees displayed in Figure 2 are compatible with the same two-class matrix. A con- 
vention is used in this paper that attempts to balance the length of the terminal branches 
of the two classes in a manner to be described later. 

These indeterminacies require a degree of caution so as not to "over-interpret" the 
tree representations resulting from an unfolding analysis, just as the orientation of axes 
cannot be determined in a two-way multidimensional scaling analysis. 

One important point to note is that the approach discussed in this paper makes a 
very strong assumption about the data (A)--namely that of comparability of the data 
from row to row (and/or column to column) of the data matrix. In the terminology coined 
by Coombs (1964), the matrix is regarded as an uncondit ional  (rather than a row or 
column conditional) proximity matrix. 

T h e  A lgor i thm 

For  Es t imat ing  an Ul t rametr ic  Tree .  The algorithm consists of the following phases: 

a. Transform the data matrix A into a matrix T best approximating A in a least-squares 
sense where T satisfies the two class ultrametric inequality: 

t~c < max (tik, tjk , tiC), (3) 

for i , j  = 1 . . .  n (i ~ j )  and k, ~ = t ... m (k ~ ~). An alternative statement of the two-class 
ultrametric inequality which can be shown to be equivalent to expression (3) is that for 
every quadruple of points comprised of two from each class, the two largest of the four 
defined distances must be equal, i.e., given tie, tlk, tie, and tjk (the only four distances 
among i and j in class one and k and f in class two defined by the rectangular proximity 
data), the two largest of those four distances must be equal. The problem can be reformu- 
lated as that of solving the optimization problem: 

min {L(T) = ~ k~ --t/k) 2 } 
~= 1 = 1 (~ ik  

( 4 )  

subject to the condition that T satisfies the two-class ultrametric inequality. To do this, an 
exterior penalty function approach (Rao, 1979) is utilized to convert the constrained prob- 
lem into a series of unconstrained ones. The augmented function: 

q~(T, p) = L(T) + pP(T), (5) 
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with p > 0, is minimized for an increasing sequence of values of p, where the penalty part 
of expression (5) P(T), is defined as 

~ ,  i - I  m k - I  

P(T) = E E E (UOkg -- Vijkg) 2" ( 6 )  
/ = 2  j = l  k---~ g = l  

where: 

and 

uijke = max ( te,  tik, tik, tie), 

t max (t~:, tik, tie) 
max (tik, tjk, tje) 

Viike = max (tie , tik, tie) 

max (tie, t i k  , tjk ) 

(7) 

if U~jke = t l k  

if UUk t = tie 

if U~jk: = tjk 

if Uijk: =t je  

are summarized in Appendix I. 

(8) 

min [max (tia, qb)] 
i = 1  . . .n 

min [max (t(a-,.)k, fib-re)k)] 
k = l  _ . m  

If necessary, a positive constant is added to 
equality. 

i f m +  1 < _ a < m + n  
and 1 < b < m  

i f l < a < m  
and 1 < b < m  (9) 

if m +  1 < a < m + n a n d  
m + l < b < m + n .  

the dab so that they satisfy the triangle in- 

c. Using standard hierarchical clustering methods (see Johnson, 1967), the ultrametric tree 
representation of both row and column elements is obtained from D. 

For Estimating a Path Length or Additive Tree. As discussed in Carroll (t976), Car- 
roll and Pruzansky (1980), Carroll, Clark, and DeSarbo (1984), based on the work of 
Farris (1972) and Hartigan (1975), given an ultrametric tree, it is possible to convert it 
into an additive tree by adding a trivial "star" or "bush" tree (i.e., an additive tree having 
only one interior node) to it. The algorithm here is thus based on the fact that any set of 
path length tree distances can be decomposed into a set of ultrametric distances plus a set 
of additive constants for each of the row and column elements. The numerical problem 
can be stated as: 

subject to the condition that T satisfies the two-class ultrametric inequality. Once T is 

dab "~- 

t ( a  - m)b  

The specific steps of the penalty function algorithm 

b. Construct a square (n + m) by (n + m) matrix D which satisfies the ordinary one-class 
ultrametric inequality. D = ((d,b)), for a, b = 1 ... n + m is symmetric (dab = db,) and is 
defined for a # b. Because of symmetry, we need only define dab for a > b. D can be 
thought of as the matrix having T as the n x m submatrix consisting of the last n rows 
and the first rn columns. The problem is to fill in the (lower half of the symmetric) m x m 
and n x n submatrices comprising the first m rows and columns and the last n rows and 
columns respectively. This is accomplished by use of the following equations (Furnas, 
1980): 
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estimated via the algorithm in Appendix I, the additive constants are estimated in closed 

= 

form via: 

rtt 

k = l  - -  -- = 

m 2 nm 

m 

i = 1  i = 1  = 

n 2 nm 

(11)  

as generalized from Carroll and Pruzansky (1980). Note that this computation of the ~ 
and dk gives them equal means. This is the exact convention used for fixing the indetermi- 
nate constant in the relative lengths of the terminal branches of the row and column 
objects. Once the ?~ and dk constants are estimated, the algorithm cycles back to the 
ultrametric tree estimation phase in estimating T given ~ and dk" This alternating least- 
squares procedure (Wold, 1966) continues cycling back and forth over these two major 
phases until convergence in the loss function and/or tlk values is reached. Once the final 
estimates of T and the ri and c k are obtained, D is reconstructed from T using the method 
in expression (9), and the appropriate additive constants are added. The additive tree is 
recovered from this tree (see Dobson, 1974). This can be done by simply converting the 
ultrametric tree into an additive tree, by defining the length of every branch to be the 
difference in height values of the two nodes connected by that branch (thus defining the 
heights of terminal nodes to be zero), and then adding the constants ~ and dk to the 
lengths of the "leaves" of the tree (the branches connecting the terminal nodes to the first 
nonterminal or internal node). Because of the indeterminacy mentioned earlier, however, 
an additive constant can be added to the leaves corresponding to the elements of one 
class and that same constant subtracted from those of the other set. Finally, if desired, the 
root node of the ultrametric tree can be removed since that node is redundant for a path 
length or additive tree, where the two branches issuing from that root node (assuming the 
tree starts at that node), being replaced by a single branch whose length is the sum of the 
lengths of the two. Recall that a path length or additive tree is, in a fundamental sense, 
unrooted; also that the ultrametric tree corresponding to it is not unique--so that the 
root is highly arbitrary, and could in fact be placed between any two nodes or even at any 
node of the additive tree. However, for most purposes, it is convenient to represent the 
path length tree as a hierarchical tree, implying a root. While the root is not unique, the 
present fitting procedure would tend to place it at the root of the "dominant" or best 
fitting ultrametric tree, which seems intuitively a reasonable choice. Therefore, in many 
cases, it may be desirable to retain the root node and the lengths of its two branches, 
despite the fact that it is not needed. 

M o n t e  Carlo Analys is  

In order to examine the performance of the algorithm in a systematic manner, a 
Monte Carlo analysis was designed for each type of tree fitting method: ultrametric and 
additive trees. 

Ultrametric Tree  Est imation 

Table 1 presents five factors and their various levels that were experimentally com- 
bined to examine the performance of the penalty function procedure. We wished to exam- 
ine what impact starting values, number of row elements, number of column elements, 
error levels introduced in the data, and shape of the underlying tree structure had in 
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TABLE l 

Factor Definition for Ultrametric Tree 
Monte Carlo 

Factor Levels 

A. Starting Values Random Start (0) 
A (1) 
A + error (2) 

B. No. Row Elements (n) n=10 (0) 
n=15 (1) 
n ffi20 (2) 

C. No. Column Elements (m) m=.6n (0) 
mffi.8n (1) 
m *=n (2) 

D. Error in A a2=.25 (0) 
- a2=0 (1) 

a2ffi.50 (2) 

E. Shape of Tree* p= . l  (0) 
p=.3 (1) 
p =.5 (2) 

see Appendix II 

estimating ultrametric tree structures. A fractional factorial experimental design (see Ad- 
delman, 1962) was utilized for main effects estimation which appears in Table 2. Four 
dependent measures were defined as indicators of the algorithm performance: (1) metric 
recovery--the variance accounted for by T in the true underlying distances; (2) variance 
accounted for by T in the actual (error perturbed) data; (3) the C.P.U. time measured in 
seconds on a CRAY-I computer; and (4) the number of total function and gradient evalu- 
ations. The actual measurements for the 25 trials for these four variables appear in Table 
3. Each experimental trial (row in the design) defined a specific combination of levels of 
factors to be combined to generate data for our methodology to fit. The first experimental 
factor defined how T ~°), the initial starting values for the parameters to be estimated via 
the penalty function, was specified. The second and third factors set n and m respectively. 
The fourth factor defined the amount of error added to the true distances which were 
initially normalized to unit variance, and the error levels define the variance (a 2) in the 
N(0, cr 2) error that was added. This affected the actual input data (A) being fit in the loss 
function (this may or may not affect the respective starting values). The last factor defined 
the shape of the true underlying ultrametric tree. As p approaches .5, the more symmetric 
in shape the resulting tree becomes. The splitting algorithm employed in generating the 
various shapes is described in Appendix II. Figure 3 depicts some shapes of random trees 
for the two most extreme levels specified. Note, these are the random shapes only. 

The results of the experiment were analyzed via multiple regression methods where 
the experimental design was converted to dummy independent variables (k levels coded 
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FACTOR 

TRIAL A B C D E 

1 0 0 0 0 0 
2 0 1 1 2 2 
3 0 2 2 0 1 
4 0 2 2 1 0 
5 0 0 0 2 2 
6 1 0 1 1 1 
7 1 1 2 2 0 
8 I 2 2 0 2 
9 1 2 0 2 0 
10 1 0 0 0 2 
11 2 0 2 2 2 
12 2 1 2 0 0 
13 2 2 0 1 2 
14 2 2 0 2 1 
15 2 0 1 0 0 
16 2 0 2 2 2 
17 2 1 0 0 1 
18 2 2 0 2 0 
19 2 2 1 0 2 
20 2 0 2 1 0 
21 0 0 0 0 0 
22 0 I 0 1 2 
23 0 2 1 2 0 
24 0 2 2 0 2 
25 0 0 2 2 1 

into k - 1 d u m m y  variables). Since the first two dependent  measures are basically propor-  
tions of  variance accounted for ranging from 0 to 1, logit and arc sine transformations (see 
Snedecor and Cochran,  1981; DeSarbo,  1982 for a similar example) were also performed 
and rendered similar results to ordinary  regression (and will thus not  be reported). Table 
4 presents the results for each of  the four dependent  measures. The coefficients displayed 
next to each of  the coded factor levels (coded 1) represents the regression coefficient for 
that respective level. The intercept term contains the aggregated effects of  all factors coded 
"0". All regressions were significant at ~ < 0.01. The error  condit ions were the only signifi- 
cant variables concerning metric recovery. Specifically, the expected result observed here 
was that  better recovery was obtained with no error  than with the highest error  level 
(or ~ = .5).  

This same result was demonst ra ted  with the second dependent  variable (as to be 
expected again), but  here the middle level (n = 15) of  row elements is significant, indica- 
ting that  larger numbers  of  row elements appear  to distract f rom this var iance-accounted-  
for measure. While not  significant, the n = 20 and higher co lumn elements also have 
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TABLE 3 

Dependent Variable Measurements for Ultrametrie 
Tree Monte Carlo 

No. of 
Metric C.P.U. Function 

Trial Recovery V.A.F. Time Evaluation 

.905 

.816 

.976 
1.000 
.816 

1.000 
.842 
.975 
.876 
.935 
.892 
.972 

1.000 
.893 
.961 
.890 
.937 
.851 
.961 

1.0oo 
.893 

1.000 
.914 
.959 
.788 

138 
412 
400 
127 
141 
46 

581 
374 
5O3 
130 
225 
233 

1 
373 
162 
298 
248 
436 
400 

] 
128 
76 

730 
495 
224 

negative regression coefficients suggesting that larger rectangular arrays tend to decrease 
variance accounted for between T and the data. 

Concerning C.P.U. time, the A +e r ro r  start appeared to give starting estimates lead- 
ing to quicker convergence. As expected, larger rectangular arrays (large n and m) lead to 
larger computat ion time as indicated by the significant coefficient for the medium and 
high levels of n and m. In addition, convergence was quicker when no error was added to 
the true distances (tr 2 = 0), i.e., when the data perfectly satisfied the two class ultrametric 
inequality. 

A similar pattern of results was found for the number  of function and gradient evalu- 
ations. While no starting method was significantly superior to others, larger n and m levels 
did significantly increase such evaluations. Similarly, specifying a 2 = 0 significantly de- 
creased function and gradient evaluations, while tr 2 = .5 increased them. 
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FIGURE 3 

Examples of Trees Generated with Different Shape Parameters. 

We noticed that in all four regression analyses, there was no effect due to the shape of 
the true underlying tree generating A! 

Additive Tree Estimation 

Based on the experience obtained with the previous Monte Carlo analysis, an ab- 
breviated Monte Carlo analysis was designed for additive tree estimation. Table 5 pre- 
sents six factors and their corresponding levels that were experimentally combined in this 
testing phase. The first five factors (A-E) are basically the same as those described in the 
previous Monte Carlo analysis for ultrametric trees, although some factors possess fewer 
levels. The sixth factor examined was designed to measure the impact of estimating the 
ultrametric tree portion first and the constants last or vice versa. 

Table 6 presents the fractional factorial design specifying sixteen trials of various 
different factor level combinations in order to estimate main effects. 

Table 7 presents the measurements for five dependent variables for each of the six- 
teen trials. Note that the first four are defined the same as the four utilized in the ultra- 
metric tree Monte Carlo analysis. The fifth dependent measure records the total number 
of giant iterations or alternating least-square cycles required for convergence. 

As before, multiple regression techniques were used to analyze the results of the 



300 PSYCHOMETRIKA 

TABLE 4 

Multiple Regression Results for 
Ultrametric Tree Monte Carlo Analysis 

Factor/Level 
Metric C.P.U. No. of 

Recovery V.A.F. Time Evaluations 

A. Data 
A. Data+error 
B. n=15 
B. n=20 
C. m = . 8 n  
C. l, r l~n  
D. a2=0 
D. ~2=.5 
E. p = . 3  
E. p= .5  
intercept 

S.E. 
R 2 

adj R 2 
F 

.019 

.029 

.005 

.033 

.020 

.019 

.053* 
-.090* 
-.003 
.003 
.906 
.028 
.892 
.815 

11.553" 

significant at a < .01 

-.004 
-.019 
-.042" 
-.023 
-.024 
-.024 
.155" 

-.100" 
.001 

-.OOl 
.886 
.022 
.971 
.951 

47.340* 

-4.994 
-34.360* 
26.284 
97.026* 
40.981" 
44.415" 

-52.016" 
-15.404 

-1.529 
2.170 
7.199 

28.563 
.869 
.776 

9.304* 

39.700 
-49.400 
160.700 
234.600* 
132.600" 
78.400 

-220.600* 
121.500" 
-45.700 
-48.700 
127.380 
75.344 

.908 

.842 
13.763' 

Monte Carlo analysis where the experimental design in Table 6 was converted to dummy 
variables and each of the five dependent measures were regressed on this resulting design 
matrix. Again, since the first two dependent measures are basically proportions of vari- 
ance accounted for, logit and arc sine transformations of these variables were also enacted 
and regressed on the design matrix. As before, the results were basically the same as 
obtained with ordinary multiple regression. 

Table 8 presents the multiple regression results for each of the five dependent mea- 
sures. Concerning the first dependent variable, metric recovery, we see that the two error 
levels significantly detract from the ability to recover the true underlying tree---similar to 
what was observed in the previous Monte Carlo analysis and to be expected here. The 
same pattern is observed for the second dependent variable where the two error levels 
also significantly detract from the fit between the solution and the data. 

None of the other regressions are significant. For  the C.P.U. dependent measure, 
large n and m tend to increase computing time required for convergence, a resulted noted 
before in the previous Monte Carlo analysis and one to be expected. However, for the 
number of function and gradient evaluations and number of giant iterations, no variable 
was significant at ct < .05. Note again, that the shape of the tree did not significantly affect 
any dependent measure as found before in the previous analysis. 

Caveats 

The two Monte Carlo analyses presented represent a preliminary examination of the 
performance of our methodology. A more thorough investigation might include ad- 
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TABLE 5 

Factor Definition for Monte Carlo 
Analysis for Additive Tree 
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Factor Levels 

A. Starting Values Random (0) 
Data (1) 

B. # Row Objects (n)  8 (0) 
16 (1) 

C. # Col. Objects (m)  .5n (0) 
.75n (1) 

D. Error in Data None (a2---0) (0) 
~2--.25 (1) 
0"2~.50 (2) 

E. Shape of Tree p ~ . l  (0) 
p - - .5  (1) 

F. Order of Estimation Ultrametric 1st (0) 
Constants Ist (1) 

TABLE 6 

2531 Fractional Factorial Design for 
Additive Tree Monte Carlo Analysis 

FACTOR 

T RIAL A B C D E F 

1 0 0 0 0 0 0 
2 1 0 1 0 1 1 
3 1 1 0 0 1 1 
4 0 1 1 0 0 0 
5 0 0 1 1 1 0 
6 1 0 0 l 0 1 
7 1 1 1 1 0 1 
8 0 1 0 1 1 0 
9 0 1 0 2 1 1 
10 1 1 1 2 0 0 
11 1 0 0 2 0 0 
12 0 0 1 2 1 1 
13 0 1 t 1 0 1 
14 1 1 0 1 1 0 
15 1 0 1 1 1 0 
16 0 0 0 I 0 1 
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TABLE 7 

Dependent Measures for Additive 
Tree Monte Carlo Analysis 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Metric 
Recovery 

.999 
1.000 
1.000 
1.000 
.905 
.844 
.947 
.930 
.797 
.876 
.717 
.758 
.911 
.862 
.824 
.827 

V.A.F. 

.999 
1.000 
1.000 
1.000 
.907 
.949 
.885 
.881 
.810 
.774 
.941 
,802 
.872 
.823 
,906 
.961 

No. of 
C.P.U. Function 
Time Evaluations 

3.11 
2.10 

13.02 
80.05 
8.32 
1.42 

213.65 
122.32 
69.43 

205.91 
1.66 
7.63 

190.06 
269.25 

7.33 
1.67 

1368 
275 
248 
840 

1695 
630 

2427 
3680 
1804 
2318 

751 
1545 
2141 
7287 
1488 
760 

No. of 
Giant 

Iterations 

45 
10 
6 
9 

17 
9 
9 

18 
7 
9 

12 
I1 
7 

35 
12 
8 

TABLE 8 

Multiple Regression Results for the 
Additive Tree Monte Carlo Analysis 

Factor/Level 

A. Data Start 
B. n = 1 6  
C. m = . 7 5 n  
D. a2=.25 
D. a2=.50 
E. p=.5 
F. constants 1st 
intercept 

S.E. 
R 2 

adj R 2 
F 

No. of No. of 
Metric C.P.U. Function Giant 

Recovery V.A.F. Time Evaluations Iterations 

-.007 
.056 
.030 

-.119" 
-.213" 
-.005 
-.003 
.965 
.040 
.893 
.799 

9.516" 

.006 
-.053 
-.027 
-.102" 
-.168" 
-.032 
.006 

1.049 
,039 
.865 
,747 

7.317" 

28.969 
14t.306" 
29.146 
77.183 
46.588 

-24.766 
-24.871 
-50.322 
57.203 

.804 

.633 
4.694 

198.875 
1529.125 
-474.875 
1830.750 
921.750 
848.375 

-1199.625 
231,813 

1401.747 
.643 
.330 

2.054 

2.500 
-3.000 
-7.000 
-3.125 
-7.750 
1.000 

-11.250 
28.875 
10.419 

.506 

.074 
1.171 

significant at a ~< .05 
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ditional factors (e.g., varying various penalty function parameters such as p), additional 
levels for various factors (especially concerning error levels), allowing for the estimation of 
various interaction effects (e.g., through use of a full factorial design), replicating the 
design, etc. While the results of the two Monte Carlo analyses appear to be quite favor- 
able, definitive conclusions concerning the robustness of the methodology cannot be 
drawn until more complete investigations are completed. 

Applications 

Ultrametric Tree--Miller and Nicely Data 

Miller and Nicely (1955) collected data on confusions among 16 English consonants 
under each of several conditions of noise (varying the signal-to-noise ratio), low-pass fil- 
tering (filtering out acoustical energy in the higher frequencies), and high-pass filtering 
(filtering out acoustical energy in the lower frequencies). The subjects listened to speakers 
read c-v syllables (each syllable consisted of one of the 16 constants followed by the vowel 
a as in father), and tried to identify the consonant they heard after each syllable was 
spoken. In each of the 17 experimental conditions the speech was acoustically degraded in 
a different manner. A matrix of frequencies of stimulus-response confusions was derived 
for the data in each experimental condition. All 17 nonsymmetric matrices are presented 
in the original Miller and Nicely paper. 

We chose to sum the confusions data for the six noise conditions and fit an ultra- 
metric tree to the resulting 16 x 16 aggregate asymmetric data (this matrix was converted 
to dissimilarities by subtracting it from a large constant). Figure 4 presents the ultrametric 
tree derived from the algorithm. It accounts for 99.19% of the variance in the aggregated 
data and took 35.9 seconds of C.P.U. time on the CRAY-I machine (it converged in 6 
major iterations taking 230 function and gradient evaluations). 

Starting from the top of the tree, the first split divides the consonants into voiceless 
vs. voiced ones. Within the voiceless consonants on the left side, the next split separates 
long fricatives, short fricatives, and stops. Within the voiced consonants, on the right side, 
the next split separates consonants pronounced in the back of the mouth, those pro- 
nounced in the front of the mouth, and nasals. Within those pronounced in the back of 
the mouth, the next split separates stops from fricatives as with the split within those 
pronounced in the front of the mouth. 

Note that the respective row and column elements corresponding to the same con- 
sonant are grouped together at the first interior nodes of the tree indicating a strong main 
diagonal component in the confusions data (indicating a strong tendency to identify cor- 
rectly those consonants given as stimuli in the identification task leading to large main 
diagonal entries as compared to the off-diagonal elements) in the data and not too much 
asymmetry. The relative height of the level at which each of the two corresponding row 
and column elements join gives an indication of the confusability of that consonant with 
itself over the 6 noise conditions, or an inverse indication of the discriminability of that 
consonant. (Note that while small main diagonal elements (for the case of dissimilarities) 
tend to suggest that the same row and column objects be joined together at relatively 
short height levels of the corresponding tree, the loss function is defined over the entire 
matrix weighing each entry equally.) It might be noted that if we identify the row and 
column elements corresponding to the same consonant completely (or, take the "penulti- 
mate" tree whose terminal nodes are the internal nodes to which the leaves or terminal 
branches attach), the tree is topologically equivalent to the one Shepard (1972) obtained 
by applying a hierarchical clustering procedure to the Miller-Nicely data averaged over 
all 17 conditions, and symmetrized by averaging the (i, j) with the (j, i) data values. It 
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FIGURE 4 
Ultrametric Tree Representation for the Miller-Nicely Data. 

might prove interesting also to analyze this symmetric data via our tree-unfolding meth- 
odology and compare the resulting solution. 

Additive Tree--Green and Tull Shampoo Benefit Data 

Green and Tull (1978) present a rectangular array of free-association responses from 
a marketing study completed on shampoo benefits. The purpose of the free-association 
task was to examine what semantic associations were conjured up by various words or 
phrases that were initially thought to be related to the central benefit of "body". Table 9 
presents the nonsymmetric subset of the data (frequencies) for the eight stimulus phrases 
utilized and the eleven associated words from N = 84 subjects. (Note that the original 
data contained these eleven associated words plus the eight stimulus phrases as column 
elements. Because main diagonal elements for the eight by eight (stimulus phrases) sub- 
matrix were not collected, we chose to simply analyze the eight by eleven matrix present- 
ed in Table 9.) 

Figure 5 presents the additive tree fit to this rectangular array which accounts for 
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TABLE 9 

Word Association Frequencies Involving Eight Stimulus Phrases 
Regarding Shampoos (sample size = 84)* 
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Grooming Combs 
Stimulus Phrase Clean Sheen Curly Long Aid Soft Nice Easily Healthy Alive Pretty 

1. Body 6 9 8 3 4 6 1 1 3 4 2 
2. Fullness 7 7 7 10 1 1 5 1 5 2 4 
3. Holds set 4 2 17 2 14 33 5 2 0 1 6 
4. Bouncy 12 14 22 9 4 3 4 2 1 9 5 
5. Not limp 15 5 12 3 5 2 4 1 8 1 1 
6. Manageable 15 7 3 0 8 8 5 18 0 0 1 
7. Zesty 16 26 I 1 8 6 1 2 2 7 10 1 
8. Natural  26 27 5 11 2 8 5 3 4 1 7 

*Taken from Green and Tull (1978) 

84.2% of the variance taking 50.6 seconds of C.P.U. time on the CRAY-I (13 giant iter- 
ations and 2979 function and gradient evaluations). 

Beginning at the top of the tree, the response phrases "nice" and "pretty" are grouped 
away from any stimulus. These are general descriptions of the cosmetic appearance of hair 
which are not tied to any specific row benefits/attribute (which are underlined in Figure 
5). The next group of "manageable", "combs easily", "holds set", "soft", "grooming aid", 
and "body" refers mostly to hair control. The following group of phrases: "bouncy", 
"curly", and "alive" are related to the liveliness or activity of the hair. "Fullness" and 
"long" are grouped together reflecting hair density. "Not limp" and "healthy" are clus- 
tered together describing general hair quality or condition. Finally, "natural", "sheen", 
"zesty", and "clean" group together to describe adjectives related to overall appearance. 

The tree also provides insight as to which specific adjectives are associated with the 
various stimulus phrases. For example, when "manageable" is stated, "combs easily" is 
evoked. "Natural" and "zesty" are most often associated with "sheen" and "clean". The 
analysis provides insight into appropriate advertising copy for the general marketing of 
shampoos in identifying various inter-related dimensions of hair shampoo attributes. 

Discussion 

We have presented a methodological description of the model and algorithm which 
provides an ultrametric or additive tree representation for row and column objects in a 
two-way, two mode rectangular proximities matrix. Monte Carlo testing for each type of 
tree provided positive evidence concerning the performance of the algorithms employed. 
Finally, two examples were provided where the procedure rendered insight into the struc- 
ture of associated rectangular data matrices. 

There are a number of possible extensions for this procedure. One obvious extension 
is to redesign the algorithm(s) in order to estimate multiple tree structures as done in 
Carroll and Pruzansky (1980) and Carroll, Clark, and DeSarbo (1984). This proposed 
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FIGUR~ 5 
Additive Tree Representation for the Shampoo Word Association Data. 

model can be formally expressed in the ultrametric case as: 

A ~ T  1 + T  2 + . . . + T R ,  (12) 

where T1 through T R arise from R different ultrametric tree structures. In the case of 
additive trees, expression (12) becomes: 

A ~ T I + T 2 + " ' "  + T R + A, (13) 

where A = ((au)) and a u = r i + c j  from expression (11). 
Similarly, a procedure can be generalized to accommodate "hybrid models" where 

both discrete tree structures and continuous spatial dimensions are estimated. Here, for 
the ultrametric case, one can express this as: 

A _- T 1 + T 2 q- "'" -I- TR + H, (14) 

where H is a proximity matrix generated from, say, an S-dimensional nonasymmetric 
multidimensional scaling procedure (e.g., Harshman, 1978). One merely has to add A from 
expression (13) to expression (14) to express the hybrid model for the additive tree case. 

Another logical extension, and one that is currently being pursued by the authors, is 
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to generalize this procedure to handle three-way rectangular proximities arrays where, as 
in INDTREES (Carroll, Clark, and DeSarbo (1984), a common tree topology is estimated 
across slices of the array, allowing for differential branch lengths or node heights. 

Finally, the procedure must be tested more thoroughly on other types of real data 
sets. Currently, work is progressing on fitting tree structures to brand switching matrices 
to examine the nature of respective competitive market structures. Preliminary results 
indicate great success in fitting such tree structures and obtaining valuable insight into 
brand switching behavior within a particular (soft-drinks and automobiles) competitive 
market. It is also interesting to point out that our "tree-unfolding" methodology appears 
not to be susceptible to degeneracies often encountered with traditional multidimensional 
scaling unfolding. On the basis of analyses on several real data sets and the two Monte 
Carlo analyses reported, we have not encountered degenerate solutions (e.g., all row ele- 
ments in one cluster and all column elements in another). Further testing is required, 
however, before definitive conclusions can be drawn. 

A ppe nd i x  I 
Pena l t y  Func t ion  A lgor i thm to Es t ima te  T 

I. Normalize A such that 

i = 1  k = l  

where 5 is the grand mean of the •ik'S. 

2. Define T ~°~ using one of the following three methods: 
+(0) --~ik are uniformly distributed random numbers; (1) 

--~ik -~- (~ik -F eik , where eik "-~ N O, 

- - T  (°) = A. 

Initialize the iteration index q -- 1 and let: 

SL(T~°))/P(T{°)) if L(T ~°)) > 0 and if P(T ~°) > 0 p(1) (A-2) 
(.0001 otherwise. 

3. Minimize O(T ~q}, p{~)) starting from T t~- 1) to obtain T {~). This is done using Powell's 
(1977) conjugate gradient method with automatic restarts where the partial derivatives of 
{I>(T, p) are 

t30(T, p) t3L(T) ~gPCr ) 
3t~ -- 3tik + p Oti"" ~ '  (A-3) 

where: 

aL(T) 

OP(T) 2 ~ i k- 1 
E (Uijk~ ab ab - -- - - f i jke)  ~ a b  i= 1 j = I k = I l ~  I Vi~keXeijke 

ab ~ 1  if Uijke----tab and a = i o r  j ,  w h i l e  b - -  k o r  
eijk/ : ~ 0 otherwise 

~b J'l  if VUk e = tab and a = i or j, while b = k or 
f~jke = ~0 otherwise. 
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4. Test for convergence: 

I~ =~ 1 -]1]2 is less than some small constant, stop; if (tl~) ,(+- t)',.21 
- -  +'it( J J +: 1 k otherwise, go to step 5. 

5. Update p: p(q+ t) = 10 x p(+). Let q = q + 1 and go to step 3. 

Note, because of the indeterminacy of such trees with respect to an overall additive con- 
stant, a variance-accounted-for statistic is utilized as the appropriate overall goodness of 
fit measure between A and T (or T plus the path length constants). Note that since the 
variance-accounted-for measure has an upper bound of 1.0, and since each stage of esti- 
mation can be shown conditionally to improve this measure, one can use a "limiting 
sums" argument (Courant, 1965) to prove that the entire algorithm converges to at least a 
locally optimum solution. 

Appendix II 
Generation of Random Trees 

Trees were created in two steps: the generation of random topological shapes and the 
assignment of branch lengths. We wanted to generate tree forms with a specifiable param- 
eter of shape, so we used a method derived from successive hierarchical partitioning with 
a symmetry-of-partition parameter. Below is the algorithm used to generate a tree on n 
terminal nodes: 

Let N(s) be the number of objects in any set s. Let S be the set of all n objects. Let p be 
some probability 0 < p < I, which serves as the shape parameter. 

The random tree is generated by performing SPLIT(S, p). Internal nodes are associated 
with sets and terminal nodes with the objects, as in hierarchical clusterings. 

P R O C E D U R E  SPLIT(set s, probability p). 

1. Partition s into two subsets, So and sl; use probability p to assign each of the N(s) 
objects independently and randomly to the two subsets. If one set is of size zero, redo 
this step. 

2. Make a link from the internal node s to So and to sl. 
3. If N(So) > 1, perform SPLIT(so). 

If N(sl) > 1, perform SPLIT(s1). 
4. Return 

Such a method is equivalent to sampling subtrees from an infinite binary tree. (See Furnas 
(1984) for the case of p = .5. A simple extension encorporates other values of p.) 

The effect of the shape parameter is easily understood. If p is near .5 then the dece- 
dents of any given node will tend to be of nearly equal size, as dictated by the binomial 
distribution. If p is far from .5 (the situation is symmetric, so p = .9 is the same as p = .1), 
the descendants tend to be of different size. Several examples, two generated with p = .5 
and two with p = .1, are presented in Figure 3. 

These random tree shapes were turned into random Ultrametric and Additive trees 
by the assignment of appropriate lengths to the trees' branches. Additive trees were sim- 
plest, obtained by assigning uniform (0, 1) random branch lengths independently to all 
branches, with the exception that one of the two branches from the root node was set to 
zero length. This is because the root has no real significance in an additive tree and 
assigning a zero branch effectively removes it, by preventing it from influencing distances 
in the tree. 



G. DE SOETE, W. S. DESARBO, G. W. FURNAS, AND J, D. CARROLL 309 

Ultrametric branch lengths must be assigned so that all terminal nodes are equidis- 
tant from the root. This constraint allows one to assign random heights to internal nodes 
of the tree and get branch lengths later by subtraction. Certain simple methods for as- 
signing such node heights suffer from the problem that the average height of nodes in the 
left and right descendent subtrees of any given node will depend on the number of nodes 
in the subtree. In order to prevent this, node heights were assigned as follows. The set of 
node heights to be used was sampled ahead of time from the uniform distribution. At each 
branching, the set of heights available to descendents of a node was randomly but pro- 
portionately partitioned between the two descendants. The highest value in each of the 
subsets was assigned to the highest node in the respective subtrees. The assigned value 
was removed from the pool of heights available to its descendents, and the procedure was 
repeated recursively on each of the two subtrees. 
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