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Quantum Extensions of Semigroups Generated by Bessel Processes 
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ABSTRACT. We construct a quantum extension of the Markov semigroup of the classical Bessel process of order 
v _> 1 to the noncommutative yon Neumann algebra B(L2(O, +co)) of bounded operators on L2(0, +co) .  
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w I n t r o d u c t i o n  

The notion of a quantum stochastic process on a ,-algebra A ranging in another *-algebra B defined 
as a family (Jt)t>o of *-homomorphisms j t  : B ~ ,4, was introduced by Accardi, Frigerio and Lewis [1]. 
It generalizes the concept of classical stochastic p r oc e s s  (xt)t>_o o n  a probability space (fl, ~', P) ranging 
in a measurable space ( g ,  E). Indeed, such a process zt can be defined via the family of homomorphisms 

jr: L~176  s --' L~176 .T', P), j r ( f )  = f ( x t ) .  

Just as in classical probability theory, in quantum probability theory one can describe Markov processes via 
their semigroups, which are ultraweakly continuous completely positive semigroups on (noncommutative) 
yon Neumann algebras [2]. The quantum Markov process thus obtained is called a quantum ezten, ior, of a 
classical Markov process if the restriction of the completely positive semigroup to an Abelian subalgebra 
(an algebra of functions) coincides with the classical Markov semigroup. 

Quantum extensions of several classical Markov processes were described in [3-6] in terms of the quan- 
tnm stochastic calculus. In this case, the quantum stochastic process satisfies a quantum stochastic 
differential equation given in explicit form. However, a number of analytical difficulties are encountered 
in dealing with the simplest classical processes whose domain has a boundary [7] because it is not clear 
how the classical boundary conditions affect the domain of the infinitesimal generator of the completely 
positive semigroup. 

In this paper, following the general scheme developed in [3, 7] (see also [4]), we construct a quantum 
extension of semigroups corresponding to the classical Bessel processes 9f order v > 1 to the yon Neumann 
algebra B(L2(0, +co)) .  This scheme can be applied to a wide class of classical Markov processes, since it 
does not depend on special properties of a specific process. However, the scheme requires a deep analysis 
of operators related to the infinitesimal generator. In w we perform this analysis and obtain a quantum 
dynamical semigroup which is likely to be the desired extension for all real values u > 0 of the dimension 
parameters. Using the sufficient conservativity condition [8] for quantum dynamical semigroups, we show 
that this is indeed the case for v > 1. In the last section, we describe the relationship of the quantum 
dynamical semigroup that extends the classical semigroup of the Bessel process of the integer dimension n 
with the quantum dynamical semigroup extending the semigroup of the classical n-dimensional Brownian 
motion. This result is a generalization to operator algebras of a welt-known classical formula. 

A noncommutative analog of the Bessel semigroup for integer dimensions was constructed in [9] on the 
C*-algebra of the Heisenberg group on the basis of some special properties of quantum Brownian motion. 
Our approach is based on a general construction of quantum extensions; however, it also applies to a wider 
class of classical processes and allows one to explicitly construct quantum flows that extend classical Bessel 
processes. 
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w A quantum extension of  the  transition semigroup of  a classical Markov process 

Let E be a closed subspace of the Euclidean space R",  and let L~ be the Banach space of bounded 
complex-valued Borel functions on E endowed with the norm [[f[[oo = supz~E[f(x)[. 

Definit ion 2.1. A semigroup Tt on L~176 is called a tranaition aemigroup if for every t > 0 the 
operator Tt is a positive identity-preserving contraction. 

It is well known that every classical Markov process with state space E canonically defines a transition 
semigroup via its family of transition probabilities. 

Let Tt be a transition semigroup on L~176 and let C be a closed subspace of continuous functions 
in L~(E) .  

Definit ion 2.2. We say that Tt has the Feller property with respect to the subspace C C L~(E)  if 

1) the subspace {7 is Tt-invariant for every t > 0, 
2) the restriction of Tt to {7 is a strongly continuous contraction semigroup. 

If the transition semigroup Tt has the Feller property with respect to a suitable subspace {7 of continuous 
functions in L~176 one usually considers the restriction of Tt to {7 and defines the infinitesimal generator 
of T~ as the operator A : D (A) --, {7 given by 

D ( A ) =  { f  e { 7 1 ~ i m t - l ( T t - I ) f  e{7} A f  = l i m t - l ( T t - I ) f .  
t---~0 

Some authors (e.g., see [10]) define the Feller property using a specific subspace of L~176 namely the 
subspace Co(E) of all continuous functions vanishing at infinity. For our purposes, it is necessary that 
the subspace {7 contains the characteristic functions of Borel subsets E .  The proof of the following result 
can be easily adapted from [10, Chapter III, (2.4), p. 84] with slight modifications. 

Theorem 2.1. The transition semigroup Tt has the Feller property with respect to a closed subspaee 
{7 C L~ if and only if 

1) {7 is T~-invariant/'or every t > 0 ; 
2) for any f E {7 and z E X one has limt-.0 Ttf(x) = f (x ) .  

In the sequel, the semigroup Tt is assumed to satisfy the Feller property with respect to a closed subspace 
{7 C L~(E)  that is a unital (i.e., containing the identity operator) algebra of continuous functions. 

Let h be the Hilbert space L2(E) of all square integrable complex-valued Borel functions on E endowed 
with the inner product ( f ,  g) = fE f (x)g(x)dx ,  where dx is the Lebesgue measure. The Bana~:h space 
L~(E)  is isomorphic to a maximal Abelian unital yon Neumann algebra in B(h) ; the isomorphism is given 
by the identification of each element of L~ with the corresponding multiplication operator acting on 
h. Therefore, it seems natural to extend classical Markov semigroups to semigroups acting on B(h). 

Definit ion 2.3. A quantum dynamical Jemigraup (q.d.s.) is an ultraweakly continuous completely 
positive semigroup Tt on B(h). A q.d.s. Tt is said to be conservative if Tt(I) = I for every t > 0, where 
I is the identity operator on h. 

Definit ion 2.4. A q.d.s. Tt on B(h) is said to be a quantum eztension of the transition semigroup Tt 
if the restriction of Tt to the unital .-subalgebra {7 C B(h) coincides with Tt. 

We recall some results from [8] in a form suitable for our applications. 

Theorem 2.2. Let G and (Lt)~l  be operators on h satisfying the following assumptions: 

1) G is the infinitesimal generator of a strongly continuous contraction semigroup Pc on h ; 
2) the common domain of the operators Lt contains the domain D(G) of G, and for all u, v E D(G) 

w e  h a v e  
oo 

(,,, a,,) + <O,,, u) + =o ,  
i=1 

where the series is absolutely convergent. 
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Then there exists a q.d.s. Tt satisfying the equation 

fO 
t 

( , ,  = ( , ,  + (,,,r.(7;(X))u)ds ( t )  

for a/l v, u �9 D(G) and X �9 B(h), where 

o o  

(v, s = (v, XGu) + (Gv, Xu) + ~_.(L,v, X Ltu). 
I=1 

(2) 

Note that the form s  coincides with the operator 

w'- lim t - '  (Tt(X) - X)  
t ~ O  

whenever X belongs to the domain of the infinitesimal generator of T,. 
The following result provides us with a powerful condition, which we shall apply to prove uniqueness 

and conservativity. We refer the reader to [8, Theorem 4.2] for the proof. 

Theorem 2.3. Under the assumptions of Theorem 2.2, suppose also that: 

1) there exists a core D of G and a positive self-adjoint operator C such that D C_ D(C~I 2) and for 
all v ,  u �9 D we have 

(C'n,,, C'nu) = - ( v ,  Gu) - (Gv, u) ;  

2) there exists a positive constant b such that any u �9 D belongs to D(C -1 ) and satisfies 

/=1  

-2(G=,  C- lu)  ___ bllull 2, 

exp(-At)(LtPtu, C LtPtu) dt < IICln,,tl + bll,,ll > 0, 

where C, = C (I  + eC) - l  is the bounded regularization of C for ~ > O. 

Then the q.d.s, satisfying (1) is unique and conservative. 

As shown in [7, Theorem 2.4], the representation of the infinitesimal generator of a transition semigroup 
in Lindblad form is the first step in constructing quantum extensions. 

Def in i t ion  2.5. We say that the infinitesimal generator A : D(A) ---, C of the transition semigroup Tt 
cart be represented in l, indblad form if there exist operators G and Ll satisfying assumptions 1 and 2 in 
Theorem 2.2 and the identity 

o o  

(v, A fu)  = (v, fGu) + (Gv, fu)  + Z I L i v ,  fLtu)  

for all u, v 6 D(G) and every f 6 D(A).  In this case, for each X 6 B(h), we by f.,A(X) denote the form 
on h defined by (2) with domain D x D. 

We recall a fundamental result on quantum extensions (see [7, Theorem 2.4]). 

Theorem 2.4. Assume that the infinitesimal generator A of the transition semigroup Tt can be 
represented in Lindblad form by means of the operators G and Lt. I[ there exists a (unique) conservative 
q.d.s. Yt whose infinitesimal generator s defines the form s  for every X E B(h), then Tt is the 
quantum extension of the transition semigroup Tt. 
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w T h e  classical Bessel processes BES ~" 

The classical Bessel processes BES" of "dimension" u > 0 are among the most interesting Markov 
processes with the state space [0, +oo[. 

For integer dimensions (u = n), the Bessel process can be constructed as the Euclidean norm of the 
corresponding n-dimensional Brownish motion. If 0 < u < 2, then the point 0 is attained a.a. and 
instantaneous reflection occurs, whereas for u > 2 the point 0 is polar. For dimensions 0 < u < 2, the 
processes BES ~ are recurrent and for u > 2 they are transient (cf. [10, Chap. XI]). 

The transition semigroup Tt (") of BES" acts on L ~~ (0, +co) as follows: 

T[") f (x)  = ~o+~~ y)dy, 

where [ (')h ( P ' )  t>o is the family of densities defined by 

y)= { 
forz =0, 

forz > 0 ,  

P is the gamma-function, and I~,/2-1 (z) is the modified Bessel function of index u/2  - 1. 
Recall that the function I,, (z) and the Macdonald function K,, (z) form a pair of fundamental solutions 

of the modified Bessel equation 
z2u '' + zu' - (. 2 + z2)u = 0. (3) 

As we shall see, the main properties of these functions (see [11] for exhaustive information) play a crucial 
role in the proof of our results. For instance, in view of Theorem 2.1, a straightforward computation using 
the properties of the function I,, (z) (see [112 for details), gives the following theorem. 

Theorem 3.1. For each v > 0, the transition semigroup T (~) has the Feller property with respect 
to the closed subspace C [0, +co] C L ~176 (0, +co) of all continuous functions converging to finite limits as 
z--* O and as z -* +co. 

Moreover, following the scheme suggested in [I0, Chap. VII, (I.I0), p. 264] for Brownian motion and 
using the properties of the functions /rv (z) and Ku (z) [12], we can prove the following theorem. 

Theorem 3.2. For each u > 0 the hat~nJtesiraal generator Av : D( A~ ) ~ C [0, +co] of T~ ~) is given 
by 

D(A,,) = { f6C2(O,+co[ l f ' (O)=O},  ( A , , f ) ( z ) = l f " ( x ) + ~ x l f ' ( x ) ,  

where C 2 [0, +co] C C O [0, +co] is the subspace of all twice differentiable functions with the ~rst and the 
second derivatives in C o [13, +co]. 

w A quantum extension of BES" 

4.1. T h e  L i n d b l a d  fo rm o f  the infinitesimal g e n e r a t o r  o f  BES ~ . Our first step in constructing 
a quantum extension of BES ~ is the representation theorem for the infinitesimal generator A, of the 
transition semigroup T~ ~) in Lindblad form. To this end, following the discussion in [3, Sec. 5], we 
consider the following differential operators in the Hilbert space h = L 2 (0, +co): 

2z 6 h L . u  = u' v -  1 , - ~ u ,  (4) 

* 1L*,,L,,. (5) D ( G , ) = ( u E h l u E D ( L , , ) , L , , u E D ( L , , ) } ,  G , , = -  2 
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The operator L~ is densely defined and closed [13, Corollary of Theorem 2, p. 196]. It can be easily 
seen that the adjoint is the minimal differential operator 

, v--1 
U ----e --U -- U~ 

2z 

whose domain C ~  (0, +cr C h is the dense linear submanifold of all infinitely differentiable functions with 
compact support. The operator G~ is negative and self-adjoint by the yon Neumann theorem [13, Theorem 
2, p. 200]. Hence, it is the infinitesimal generator of a strongly continuous contraction semigroup P~") on 
h [13, Corollary of the Phillips-Lumer Theorem, p. 251]. 

We need some properties of the operators L~ and G~ for various values of the parameter v. Let 
AClor (0, +cr C h be the linear submanifold of locally absolutely continuous functions. 

P r o p o s i t i o n  4.1. Let u E D( L~ ) . Then 

1) for a11 v > 0 we have lim~--.+oo u(z)  = 0 ; 
2) it" 0 < v < 2, then there exists a limit lim~_0 u ( x ) / z  ( '-1)/2 ; 
3) if v > 1, then lim~--.0 u(x)  = 0; 
4) if u > 1, then the function z --. u ( z ) / , r  belongs to h. 

Proof .  Obviously, u' belongs to L 2 (1, +oo), since x -~u  belongs to L2(1, +oo) and u E D(L~) .  
Thus, the function flu' is integrable on (1, +oo) and 

j ~  lu(~)l 2 - N ( y ) l  2 = 2Re ~(s)u'(s)ds 

for all z, y E (1, +cr This implies the first statement. 
Since u E ACtor +00), by setting ~ = u' - u / (2x)  and by integrating the differential equation 

v - 1  
2z 

we find that 
u(~) u(y) [ ~  ~(t) 

z(~-x)/2 y(,-]---~/2 - - ,  t(~_-~l 2 dt (6) 

for all z, y El0, +oo[. The function ~( t ) / t  (~-~)/2 is integrable on (0, 1), since both t 0-~) /2  and ~ are 
square integrable on (0, 1) for 0 < v < 2. Therefore, the second statement follows as x, y tend to 0. 

Finally, under our assumptions we have 

jfz +r lim Re[fi(t)(L~u)(t)] dt = Re(u, L .u ) .  
z---*O 

On the other hand, for each x > 0 we can write 

R e ( g ( t ) ( L ~ u ) ( t ) ) d t =  Re(fi(t)u'(t))dt ~ - 1  +~lu(t)l~dt 
2 t 

l f ~  +~176 d v - l f + ~  = ~ ~ lu ( t ) l  2 dt T t 

(1 v-  l f f~176 lu(t)12 dt) ; 
= - lu(~)12 + ---V- t 

therefore, the limit 

limr (11u(x)] 2 
z o \ 2  

V--'I fz+~176 ]U(~)[2 dl~) 
+--~ t 
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exists and  is finite. Since for v > 1 the second term in the sum is positive nondecreas ing and the first 
term is positive, it follows from the existence of the limit of the sum as z ---* 0 tha t  the limits of both 
terms exist. Specifically, the limits 

lim lu(~)l, li-m0 f+oo luCt)l t dt 

necessarily exist. Thus ,  x ~ u / v ~  is square integrable and lim=_0 ]u(x)l = 0. D 

Note tha t  if v < 1, then  lim=_0 u(z) need not exist for a function u(z) satisfying the assumpt ion  of 
Propos i t ion  4.1. Indeed,  the funct ion u(z) = z(~-~)/2e -= satisfies the assumpt ion ,  but  l im=_0 u(z) = 
+ o o .  

Proposition 4.2 .  The adjoint operator L* is given by 

D(L*)= v E h  v ' + ~ v E h , =  v ( z ) u ( z ) = O V u E D ( L . )  , 

v - - 1  -- 

P r o o f .  Let v E h be such tha t  v' + (v - 1)v/(2z) is square integrable. We can show just  as in 
Proposi t ion  1.4 tha t  v tends to zero at infinity. 
u E D(L.) ,  we have 

//" )( )) y - - 1  

(., L u) = u'Ct) 2t u(t  at = 

Clearly, v belongs to ACloc(0, +00)  and,  for every 

lim ( [" ~(t)u'(t)dt- ~" r,- l (t)u(t)dt ) 
=---.0,y-,+oo \ j =  2t 

z--,O,y---.+oo \ 

Now, if l im=_0 v (z )u (z )  = 0 for u 6 D(L, , ) ,  then we obta in  the formula 

(v,L~u) = - fo+~176 (O'(t) + ~-~9( t ) )u ( t )d t .  

This  shows tha t  v belongs to the domain  of L* and  tha t  L*v ~-s the desirc ' form. Conversely, if v 
belongs to the domain  of L$,  then  there exists a w E h such that  for every u E D(L~) we have 

(v, L~u) = (w ,u ) .  (8) 

In tegrat ing by par ts ,  we find tha t  v, t reated as a dis t r ibut ion,  mus t  satisfy the differential equat ion  

t J - - 1  
V t Jr- - - - ~ X  0---- --W. 

Thus,  v E AClor +cr  and this, together  with (7), implies tha t  

(v, L~u) = (w, u) - l im O(z)u(z). 
z-,O+ 

The  limit is zero for all u e D(L,,) by virtue of (8). [-1 

To represent  the  opera to r  A,, in Lindblad form, let us prove the following auxil iary Lemma.  
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and 

L e m m a  4.1. For all u, v e D (G,,) and every f E C 2 [0, +cr such that .f' (0) = O, we have 

lim O(z)f ' (z)uCz ) = 0 
z ~ 0  

P r o o f .  When 0 < u < 1, by applying de l'H6pital's rule, we obtain 

lim z ~ - '  f ' ( x )  = lim x~ f " ( x )  = O. 
x4*O 2:'-"*0 

This, together with Proposition 4.1, 2), yields 

lim f i ( z ) f ' ( z ) u ( z )  = lira z " - ' f ' ( x )  - -  
g---~0 x-'-*0 

(9) 

0(x) - 0  
z(~-1)/2 z(~-l)/2 

for every u with 0 < u ~ 1. When v > 1, the limit (0) readily follows from Proposit ion 4.1, 3). 
This proves the first assertion. To prove the second, it suffices to rewrite (10) as 

and apply Proposition 4.2 since both 

v - 1  - 1 and 
2x . ( 2 ) -  2x 

belong to the domain of L~,. [~ 

T h e o r e m  4.1. The  int~nitesimal generator A ,  of  B E S "  can be represented in Lindblad form 

(v, ( A , f ) u )  = (v, fG, ,u)  + (G~,v, f u )  + (L,,v, fL , ,u )  (11) 

for u,  v 6 D(G,,) and y E D(A,,).  

P r o o f .  A straightforward calculation shows that ( l l )  holds if and only if 

= - . 0 , r - + o o  L 2 = 2t  

for . , ,  O( G. ) and S O( A. ) 
By applying the same argument  as in Proposition 4.1 to the function u ~ , we can show that for every 

u E D (Gv) the derivative u~ vanishes at infinity. Thus each of the terms tends to 0 as y --~ +co .  
The sum vanishes also as x tends to 0. Indeed, the sum of the first three terms vanishes because 

of (10), and the last term vanishes because of (9). [] 

We refer the reader to [12] for a detailed study of the operators L~, L~, and Gv. 

4.2. C o n s e r v a t l v i t y  o f  t h e  q .d .s .  We use Theorem 2.3 to prove the conservativity of the q.d.s. T~ (~) 
constructed for the operators G~, and L~, introduced in the previous subsection. As the first step, we find 
a core of the operator  G~,. 

P r o p o s i t i o n  4.3. The  linear manifold C ~  (0, +co) is a core of  G~, i f  and only  i f  u >_ 4. I f  0 < u < 4, 
then the linear span of this manifoId and the Macdonald function x312 K2_g/2 (x) iS a core of G~,. 
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Proo f .  Since Gv is a negative self-adjoint operator, it follows that the point 1/2 is in the resolvent set 

of c .  and the operator (�89 - is everywhere defined and bounded on h Therefore, a dense linear 
submanifold D ,  C h contained in D (G~) is a core of G~ if and only if the linear manifold ( I / 2  - G,,) (D , )  
is dense in h [14, III, 3, Proposition 5.19, p. 166]. 

Let u �9 h be a vector orthogonal to (1/2 - G,,) ( C ~  (0, +c~)). An easy computation shows that u, 
treated as a distribution, must be a solution in h of the differential equation 

"( ( v - 1 ) ( u - 3 ) ) u = O .  (12) 
u - 1 + 4x 2 

On the other hand, it is well known that such a solution can be represented, neglecting a set of measure 
zero, by a function belonging to C ~176 (0, +cr  Therefore we can seek classical solutions of Eq. (12) 
belonging to D(G, , ) .  The change of variables u ---. z~/~u, v -.-. ( 1 -  v/2)  reduces Eq. (12) to the 
homogeneous modified Bessel equation (3). The fundamental solution of this equation is 

c~xl /2I i_ . /~(z )  + c~xI/2KI_.I2(Z)  

for arbitrary constants cl and c2. If v _> 4, then these functions are not square integrable unless 
cl = c2 = 0. It follows that the manifold C~ ~ (0, +c~) is a core of G. for v _> 4. 

If 0 <. v ..: 4, then the only solutions in h of Eq. (12) is the function 

u(z)  = cz l l2Kl_ , l~ (X)  

with an arbitrary constant c. Thus, the core of G~ is given by the linear span of C ~  (0, +c~) and possibly 
of solutions in D (G,,) of the differential equation 

( v  - 1 ) ( v  - 3) )  
u ' -  1 q- ~X 2 U = z l / 2 K l _ ~ / 2 ( x ) .  (13) 

The only solution of this differential equation is the function 

( 1 ) 
u(x) = z '/2 cKl - . /2Cx)  - -4x(K2_~/~Cx) + K . /2 (x ) )  , 

where c is an arbitrary constant. Now the definition of D (G~,) forces us to choose c = ( v / 2  - 1) /2 ,  thus 
obtaining 

1 a/2K 

(see [12] for details). This completes the proof. [3 

In the sequel we need the f".lowing property of the core D~,. 

Proposition 4.4. Let u(x) = x3/2K2_v/2(x) and v = L . u .  For 0 < v < 4, the functions x - i v  and 
v' belong to h, and 

L~,(D,,) C D(L,,) n D(L; ) .  

P r o o f .  Indeed, v(z)  = - x a / 2 K  I_,,/2(x), whence we have the following asymptotic behavior as x --* 0. 

z - i v  ..~ z 1/2 lnz  for v = 2, 

2-~/~F(1 - ; ) x  ('-1)/2 for v < 2. 

We see that x - l v  is in h,  since the Macdonald functions exponentially decay at infinity. Moreover, we 
have v ' + ( v - 1 ) v / ( 2 x )  e h  since u 6 0 ( G , ) , a n d s o  v' is in h. I-1 

Now we establish now three technical lemmas. 
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Since 

L e m m a  4.2. For every u 6 D~ we have 

(L,,L,,u, L,,L,,u) = 4(a~u, G,,u) - (r, - 1)(  
\ 

1L"u'  l L"u> 

Proof .  For v = L.,u, Proposition 4.4 implies L,,v = L',,v + 2v' ; therefore, 

(L u, L~,u) = L,, + 2 L,,u, L~, + 2 L,,u 

= (L*L,,u,L*,,L,,u) + 4Re< d L,,u, L*,,L,,u + d L,,u> 

= 4(G~,u, G~,u) - 2(t.'- l)Re< d L,,u, l L,,u>. 

lim t-tlv(t)[21' = 0 
z--.O,y~+oo 

for v 6 C~(0 ,  +oo) or v(z) = L,,u = -za/~K,_~/2 if 0 < ~, < 4, we have 

2Re<v,  1 > +oo +oo ' zV = / o  12Re(v(x)v ' (x ) )dr .=/o  z ld l v ( z ) '  2 dx 

z" \z z / 

and the desired assertion follows. [] 

Let us introduce the positive self-adjoint operator Ov = I - 2Gv with the domain D(Cv) = D(G,,), 
and let G'~ (v) = 6 ' . ( I  + ~C~)  -1  �9 

L e m m a  4.3. For every u 6 Dv we have 

(Lvu, C(")Lvu) <_ -2(u,  G~u) + (L,,L,,u,L,,L,,u). 

Proo f .  First, note that the operator ( I  + eC,,) -1 commutes with the positive operator L*,,L,, and 
with (AI - L:,L,,) -1 if A = - (1 + ~)/r  [14, Chap.III, Theorem 6.5, p. 173]. Consequently, ( I  + eC,,) -1 

also commutes with the self-adjoint positive operator IL,,I = (L*,,L,,) '/2 that has the domain D (IL,,I) = 
D(L,,) [14, Theorem 3.35, p. 2811. Consider the polar decomposition L~ = U,,IL,,I of L~ where U~ is a 
partial isometry [14, Chap.VI, p. 334]. Taking into account Proposition 4.4, for every u 6 D~ we have 

( L . , , , C ? ) L . u ) =  (L.u, C.(I + ~C~)-'L.u> = (L.u, (I + L:L.)(I + ~C~)-'L~u> 
< (L.u, L~u) + (IL.IL.u, (I + ~C~)-' IL~lL~u> 5 (L~u, L~u) + (IL~lL~u, IL~lL~u> 

= -2(u, G,,u) + (U~,lL,,ILvu , U,;IL,,IL,,u) = -2(u, G,,u) + (n,,L,,u, n,,L,,u). 

This proves the Lemma. [] 

L e m m a  4.4. Suppose u >_ 1. Then for ~ > 0 and u 6 D(G~) we have 

(L,,u, C(")L,,u) <_ -2 (u ,  G,,u) + 4(G,,u, G,,u). (14) 

P r o o f .  Inequality (14) holds for u 6 Dr by Lemma 4.2 and Lemma 4.3. Since D~ is a core of G~, it 
follows that this inequality holds for every u 6 D(G~). [] 

397 



Theorem 4.2. Suppose ~ >_ 1. Then the q.d.s. Tt (~) is conservative. 

Proof .  Let us introduce the operators 

1 i  & = - f i  +G. ,  Z.,, = t, L,~=L., 

which, together with C,, = -2G~,  satisfy assumptions 1) and 2) of Theorem 2.2. The theorem will be 
proved once we show that these operators also satisfy the assumptions of Theorem 2.3 (see [8, Sect. 3]). 
Clearly, assumption 1) is satisfied. 

By the definition of C (~)~ , for u E D(G,,) we have 

(~?)., c?)~?).) s -2(~f . ,  ~.~?).). 

Furthermore, it follows from Lemma 4.4 that 

(L.W)., C?)L.~?).> _( -2<~:"'., C.~?).> + 4(c~W)., c.~,(").) 

hence 

n..~ l 
4]0 exp(-O(L,.~,(')., C?)L,..~?).) d, < e~(-O(O.~?)~, (L~,(')-> dt 

fo +~176 d = 2 e~p(-O g/(~,(%, 0,~,(')~) d~ 

2 ~ + ~  -- --2(u, 0~,u) + exp(- t ) ( f iO')u ,O~, f i[V)u)d~ 

< (u, C,u). 

This proves that assumption 2) is also satisfied. [] 

w The relationship with the quantum extension 
of classical n-dimenslonal Brownlan motion 

In this section we show that for a positive integer n the quantum extension of the semigroup BES" 
can be obtained from the quantum extension of the semigroup of n-dimensional Brownian motion [3]. Let 
BM '~ (resp., BES") denote all objects related to classical n-dimensional Brownian motion (resp., to the 
classical n-dimensional Bessel process). 

The transition semigroup Tt BM'* of classical n-dimensional Brownian motion acts on L ~ (R n) as follows: 

TffM" f (x)  = JR- f(y)pBM" (X ; y )dy ,  

where (pBM") is the family of densities defined by 

for t > 0, and the infinitesimal generator of T BM" is a linear operator ABM" : D (ABM',) ---+ C~ (•n) such 
that 

T$ 
1 

C~(R") C_ D(ABM.), ABM- f = ~ Z O~f, 
k = l  

398 



where Ok is the usual partial derivative operator (see [10, Chap. VIII). 
For each f �9 L ~176 (R"),  the function ](z) = f([l~[l) �9 L~~ (0, +oc) is essentially bounded and it is well 

known [10, Prop. 3.1, p. 232] that TtsSS".f(x) = T, SM"f(llzll ). 
Consider the Laplace operator ~ : D (A) --* L 2 (R", dx), where 

D(A)=  ( u � 9  L ~ ( R " , d x ) : A u � 9  L2(R", dx)} and , , , , ,  = Z0: . 
k = l  

The paper [3] shows how to construct BM" as a commutative quantum flow in the boson Fock space 
over L 2 (R", dx) with the associated q.d.s. T~ BM~ , that extends the corresponding classical semigroup. 
The semigroup Tt BM" satisfies the Eq. (1) with 

(v, s = ~(,', 
k----I 

for all u, v 6  D ( A )  and every X � 9  
Let us introduce spherical coordinates and write 

zl = psin01 sin02 --. sinO,_2 sinOa-1, 

x2 = psin01 sinO2--, sinO,,_2 cosO,,-1, 

~  . . . .  . . . . . . . . .  ~ 1 7 6  . . . .  . ~  . . . . . . . . . .  ~  

x, -1  = psin01 cos02, 

X n  - -  p C O S 0 1  ~ 

and S n-1 - [0, r] x [0, 21r[ x ..- x [0,2~r[. Consider the Hilbert spaces L2(R+,dx) and L2(S"-l,w), 
where # and r axe the Borel measures defined by 

, ( B )  = fB p " - ' d p  w (B) =/B sin"-2 01 sin "-a 02. .-sinO,_2dOld02 ... dO,-1. 

The Hilbert space h = L 2 (R+, dx) is unitarily isomorphic to L 2 (R+, #) ,  

Uu(z) = f ( - - 1 ) n u ( p ) ,  u v *  = u 'b"  = I ,  

and the tensor product L 2 (R+, ~) @ L 2 (S "-1 , w) of Hilbert spaces is isomorphic to the Hilbert space 
L 2 (R", dx) by means of the unique unitary extension of the operator V( f  | g) = f o g, where 

/ og(x) = / ( p ) g ( 0 1 , 0 2 , . . . ,  0,_2, 0,-1) 

for every f e L 2 ( R + , ~ )  and every g e L 2 ( S " - ' , w ) .  
Let ~0 be the pure state on B (L 2 (S "-1 , a))  corresponding to the density operator ko)(~o[ associated 

with the normalized constant function of the sphere S " - ' ,  such that for B �9 B (L 2 (S "-1 , 0)) one has 

9(B) = Tr(BI~)@I) = @, B~). 

Let 
E~,: B(L2(R+, I~) | L2( S "-1 , w)) ~ B(L2(R+, ~)) 

be the conditional expectation with respect to the state ~o, and let IL2(s.-t,w) be the identity operator 
on L ~ (S"-' ,  ~) .  
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A natural candidate for the q.d.s. TtBES"(x) is the q.d.s. Tt('9(X) defined by 

~ ( " ) ( X )  ---) U*E~[V'Tt sM" (V(UXU ~ | IL,(S.-,,,,})V')V]U 

for t > 0 and X �9 B(L~(R+, dz)).  Note that both semigroups are conservative. Hence, to show that 

T}'0(X) coincides with T, BES"(x),  it suffices to verify that both semigroups satisfy the Eq. (1) with the 
same form (2)of E(X).  

Indeed, we intend to show that the q.d.s. T,(")(X) satisfies Eq. (1) with the infinitesimal generator 
~BES'* o f  ('~tt BES" (.,Y)) . Namely, we must show that 

0 t (,, T:">(x),) = (~,x~> + (~ , :B~. (Zc") (X))u)d~ 

= (~,x~> + ,~,~")(X)C,,u)d~ 

/o' /o' + (C.v, T}")(X)u)ds + (L,,v, T}")(X)L,,u)ds 

for u, v 6 L2(R+, dx) and X �9 B(L2(R+, dx)). To this end, first we note that for every u �9 L 2 (R+, dx) 
one has 

A V ( U , |  = V ( V * A V ) ( U , ~ ) ,  

where V * A V  is the Laplace operator in the spherical coordinates with f.he radial component 

( V ' A V ) r  = p-('*-O'-~=O (p(n- l )  0"~='~ 
ap \ ap ) 

and the spherical component ( V * A V ) , ,  so that 

(v'av)(u~ | ~) = (v*av)~(uu) | ~ + p-c,,-,~u~, | (v*zx v),~ 

= 9-(,-1)0__ p(,,-l) Uu = 2UG,,u. 

Note that we also have 
cgk V(Uu @ qo) = V(Y*Ok Y)(Uu @ qo), 

where (V*OkV) is the kth partial derivative operator in the spherical coordinates, 

(v'okv)(u,~ | ~) = p o o,~ o (v~, | ~) 
cg---p + cgzk cgOj 

- o ~  ~ = ( V L , , u ) |  
j----1 

Now let 

x = v ( u x u ' |  u = v ( u , , e ~ ) ,  , , = v ( u , , e : )  

Straightforward computations (see [12] for details) show that 

(,,, Z~")(x)=) = (,,, U'E~,[v'z BM" (x)V] uu) = Tr(V'T2 M"(x)V(tU,,)(U,,I | I~>(~l)) 
= (V,, r ~,, v ' Z " ' " ( x ) v ( u ~  ~ ~)) = ( . ,  T2 M'(x)v). 
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Similarly, we can prove that (v, Xu) = (v, Xu) and 

1 

1 = 

n 

(n., , ,  = Z ( o k . ,  T, B '(x)oku) 
k = l  

for ~~=1 {~  1. It follows that both Tt(")(X) and TtBES"(x) satisfy (15). Thus, by the uniqueness \a=k/ = 

argument, they coincide and ~._,';,=l(cgp/Oxk ) 2 = 1. 

A c k n o w l e d g e m e n t .  We wish to thank B. V. R. Bhat and Ph. Biane for discussions on the connection 
between quantum extensions of the semigroups of Brownian motion and Bessel processes. 
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