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A homogeneous and isotropic cosmological model of the universe is studied in 
which the parameter gamma of the "'gamma-law" equation of state p = (3' - 
l)p varies continuously with cosmological time. A unified description of the 
early evolution of the universe is given in which an inflationary period is followed 
by a radiation dominated phase. Comparing the dynamics of the model with 
those models endowed with matter creation or vacuum energy decay, allows us 
to establish the time dependence of the creation rate and of the cosmological 
constant in terms of the varying 3' index. 

1. I N T R O D U C T I O N  

In cosmology,  the evolution o f  the universe is described by Einstein 's  
equations together with an equation o f  state for the matter content. In the 
standard model (Weinberg, 1972), the history o f  the universe begins with a 
radiation era and then evolves to the present matter-dominated era. These 
two phases can be described by an equation o f  state relating the pressure p 
and the density p for an ideal gas known as the "gamma- law"  equation o f  
state p = (3' - 1)p. In the radiation phase we have 3' = 4/3 (p  = p/3), 
whereas for the pressureless, matter-dominated phase 3" = 1. 

In order to overcome some of  the difficulties met by the standard model,  
such as the horizon problem and the flatness problem, an inflationary phase 
was proposed by Guth (1981). This would  happen prior to the radiation- 
dominated era. This period can be described by the same equation o f  state 
provided the parameter  3' < 2/3 in the case o f  a power-law inflation and, in 
particular, 3' = 0 for an exponential  inflation (p  = - p ) .  

Usually, the field equations are solved and analyzed separately for the 
different epochs,  al though some authors have given unified solutions. For 
instance, Israelit and Rosen ( t989,  1993) use a different equation o f  state in 

Departamento de Fisica, UFRN, 59072-970 Natal, RN, Brazil. 

2019 
0020.7748196t0900-2010509,5010 © 1996 Plenum Publishing Corporation 



2020 Carvalho 

which the pressure varies continuously from - p  to its value during the 
radiation era (p = p/3). 

In this paper we consider a model to study the evolution of the universe 
as it goes from an inflationary phase to a radiation-dominated era. In this 
model, we keep the gamma-law form of the equation of state, but let the 
parameter ~/ vary continuously as the universe expands. Our approach is 
similar in some aspects to that of Israelit and Rosen, although it has distinct 
features. We also show that models of the universe endowed with decaying 
vacuum energy density (varying cosmological constant) or matter creation 
have dynamical behavior similar to the one studied here. Since there is 
no complete theory that establishes uniquely the time dependence of the 
cosmological constant or the matter creation rate, we find appropriate to 
determine them in terms of the time-dependent -f-index proposed here. As a 
consequence, a new class of decaying vacuum model arises in which the 
cosmological constant has the form A cx R,~H 3. 

In Section 2 we present the basic model, while in Section 3 we give 
the solutions to the field equation. In Section 4 we study briefly the dynamical 
behavior of models with varying cosmological constant and matter creation, 
and by comparing them with our model we calculate both the creation rate 
and the time dependence of  the cosmological constant. The main conclusions 
are given in Section 5. 

2. THE M O D E L  

Let us consider the homogeneous and isotropic Friedmann-Robertson- 
Walker (FRW) line element 

[ ~r~ ] 
ds2 = c2dt2 - R2(t) 1 - kr  2 + r2(de2 + sin 02.d~ 2) (1) 

where k = 0, -+ 1 is the curvature parameter and R the scale factor (hereafter 
we take c = 1). If we take that the universe is filled with a perfect fluid 
whose energy density is P(0 and the pressure is p(t),  the time and space 
components of Einstein's field equations G ~v = 8~rGT ~ give, respectively, 

3/~ = -4"rrG(p + 3p)R (2) 

RR + 2R 2 + 2k = 4"rrG(p - p)R 2 (3) 

where a dot denotes time derivative. Eliminating R from (2) and (3), we get 

R 2 k 8"rrG 
R - - ~ + R  2 -  3 P (4) 
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Equations (4) and (2) can be rewritten in terms of  the Hubble parameter 

R 
n = -  

R 

to give, respectively, 

k 8"rrG 
H2 + R 2 - 3 P (5) 

4"riG 
H + H  2 -  - - ( p  + 3 p )  (6) 

3 

We shall suppose that the pressure p and the density p are related through 
the "gamma-law" equation of state 

p = ('v - l)p (7) 

Substituting this into (6) and using (5), we finally obtain 

H + ~ ' Y H  2+ " t - I  ~ - - 0  (8) 

Our aim is to study how the adiabatic parameter should vary so that in 
the course of  its evolution the universe goes through a transition from an 
inflationary to a radiation-dominated phase. The function ~(R) thus must be 
such that when the scale factor is less than a certain reference value R. ,  we 
have the inflationary phase ('y < 2/3). As the scale factor increases, ~ also 
increases to reach the value 4/3 for R > >  R . ,  when we have the radiation 
phase. Among the many possible functional forms, we choose one which, 
despite being quite simple, will give both an exponential and power-law 
inflation. These conditions are satisfied by a one-parameter function 

4 A ( R I R , )  2 + (a /2) (R/R, )  '~ 
"y(R) = -~ A ( R / R , )  2 + (R/R, )"  (9) 

where A is a constant and a is a free parameter. The above expression is an 
increasing function of R. In the limit R --~ 0 we have 

2a 
" ~ ( R )  = - -  

3 

so that 1 is the required maximum value of  a for an inflation epoch to exist 
(~ < 2/3). As we shall see below, the parameter a is related to the power of  
the cosmic time t during the inflationary era, when we have R ~ t ~/', and for 
a approaching zero we have an exponential inflation (~ = 0 at R = 0). 
Therefore, a must lie in the interval 

O ~ a < l  
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To solve equation (8) we rewrite it in the form 

H H ' + ~ 3 " - - ~ +  3 , -  1 ~ - ~ = 0  (10) 

where H'  = dH/dR. 
We shall investigate models in which the curvature of  the universe is 

zero, that is, k = 0. Equation (10) becomes 

3 H 
H'  = 3' (11) 

2 R 

and its integral is 

(12) 

3. S O L U T I O N  OF T H E  F I E L D  EQUATIONS 

Substituting (9) into (12) and integrating, we have that the Hubble 
parameter is given by 

B 
H = (13) 

A(R/R.) 2 + (R/R.) ~ 

where B is a constant. Since for R = R .  we have H = H, ,  a relation between 
A and B can be written in the form 

B = (l + A)H. (14) 

Using (13), we can integrate H = R/R to obtain an expression for t in terms 
of the scale factor R, which for a ~ 0 is given by 

a -~. + 2 \R , ]  

(The case a = 0 will be examined later.) For R < <  R.,  the first term in the 
right-hand side dominates and one has a phase of power-law inflation R 
t j/a. On the other hand, for R > >  R .  we have 

t) R.  

If we compare this with the solution of a pure radiation phase, that is, 

R = (2Hot)l/2Ro (16) 

where 14,, and R,, are the present values of H and R respectively, we obtain 
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a,,( o7 
8 = o \ ~ )  

The above expression together with (14) gives ]-. 
A = H--~- 1 (17) 

and 

8 =  1 -  ~ H, (t8) 

We now study the solution in the limit a --~ 0. In this case the integral 

()", A =  2 ,,, 

and comparing this with (16), we get 

/4, 
H = (19) A(R/R,) 2 + 1 

where HI is the initial value of  H at R = 0. Integrating H = R/R, we obtain 

Htt = ln( ff, ) + l A( \R, ] (20) 

Again, the radiation phase is described by the solution in the limit R > >  
R,,  that is, 

(2I-1i tli/ZR, 
R = \  A i#, 

(21) 

Once again, in the limit of  very small R (R < <  R,),  the logarithm term 
dominates and one has an exponential inflation phase with R = R ,  exp(Htt). 

For a > 0 the model is singular with the density varying for R < <  R ,  as 

0 = 7-4-6 \ R , )  

with B given by (18). The deceleration parameter varies from q~ = a - 1 
a t R  = 0 t o  1 f o r R > > R , .  

(12) becomes 
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For a = 0 the universe is infinitely old, since R ---> 0 for t = - ~ .  
However, there is no physical singularity, since the density assumes a finite 
value as R ---> 0. It can be inferred from equations (5) and (19) that for R = 0 

3H] 

P l -  8'rrG 

The deceleration parameter has the form 

A ( R / R , )  2 -  1 

q A ( R / R , )  2 + 1 

and varies from q = - 1  at R = 0 to q = +1 for R > >  R, ,  as expected. 

4. M A T T E R  C R E A T I O N  AND DECAYING VACUUM E N E R G Y  

Cosmological models with matter creation (Prigogine et  al.,  1989; Lima 
et  al. ,  1995) and decaying vacuum energy density (varying cosmological 
constant) (Lima and Trodden, 1995) have a dynamical behavior similar to 
the models with time-dependent "V index studied here. In the absence of  a 
model that gives some clue regarding the time dependence of  the cosmological 
constant A, various work so far has adopted a phenomenological approach 
(Chen and Wu, 1990; Carvalho et  al.,  1992; Lima and Trodden, 1995). The 
same is true for the matter creation rate, which is an unknown quantity in 
most models. 

On the other hand, in both cases, by introducing an effective index ~, 
which, as in the present case, turns out to be time dependent, we find that 
the Einstein field equations assume the general FRW-type form as in equations 
(5) and (8). It seems therefore opportune to compare these two approaches 
with the present models with the purpose of determining both the creation 
rate and time dependence of  the cosmological constant by requiring that the 
models have the same dynamical behavior. 

4.1. The  Matter  Creat ion  Rate  

Following Lima et  al. (1995), we introduce the matter creation rate 
so that instead of equation (10) we get 

H H '  + - ~  1 - 1 - ~ , , -  1 ~ 5 3 = 0  (22) 

where ~/,, is the constant asymptotic limit of the adiabatic index, which in 
our case is the limiting value of ",/ for R > >  R,  during the radiation era, 
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that is, 4/3, and n is the particle number density related to the energy density 
through (Lima et al., 1995) 

If we compare equations (I0) and (22), we conclude that 

from which we get 

By combining (9) and (13) we obtain 

~ = 3  1 -  n H2 

Note that (23) has the limit + = 0 as 3' approaches 3'0 for R > >  R,.  Thus, 
during the radiation era the creation of matter is negligible. The maximum 
rate occurs at R = 0, when we have 3'(0) = 2a/3, and therefore 

This shows how the value of a affects q~ at the beginning of the inflationary 
period, the maximum value being 3nil for exponential inflation (a = 0) and 
the minimum value 3nHI2 for a = 1. 

4.2. Time-Dependent  Cosmological  Constant  

We now study the time dependence of the cosmological constant. The 
field equations (5) and (8) with a A term are, respectively, 

k 8"rrG 
H 2 + R  2 -  3 P + A (24) 

and 

H +  ~3,,,H 2 + 3 ' o -  1 R2 3 (25) 
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In order to compare these equations with (5) and (8), we first rewrite A in 
a convenient way, namely 

A = 8"rrGph (26) 

Equation (24) becomes 

k 8"rrG 
H 2 + R2 - ---f-- p(1 + h) (27) 

Substituting A given by (26) into (25) and using (27) to eliminate p, we 
finally obtain 

2 1 +-----~ 1 + h ~-~ = 0 (28) 

Comparing the above equation with (8), we conclude that 

%, - ( 29 )  
l + h  

Combining this expression with (26) and (27) gives then 

(30) 

In case of the flat model discussed in Section 3, for a = 0, equations 
(9) and (19) give 

I " , / _ H  
~/o HI 

and (30) reduces to 

n 3 
A = 3 - -  (31) 

H, 

We note that this is a particular case, 13 = 0, of the law used by Lima and 
Maia (1994). 

For a > 0 we can combine (9) and (13) to get 

, - ( ,  _ " 
2)\R,] 8 

Now, substituting this into (30) provides a general expression for A in the 
case of a flat universe, namely 
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a = 3 -b- 

This represents an entirely new class of model for the decaying vacuum since 
the above form of  A, to our knowledge, has not been examined before. 
Previous work has used either a power of  R [R -2 as in Chen and Wu (1990)] 
or a power of  H [H" as in Lima and Maia (1994)] or a combination of  both 
[~H z + c~R-" as in Carvalho et al. (1992) and Lima and Maia (1993)]. 

5. C O N C L U S I O N  

We have investigated homogeneous and isotropic cosmological models 
with zero curvature in which the parameter 3' of  the equation of  state varies 
continuously as a function of the scale factor. In this way it is possible to 
have a unified description of the early evolution of the universe. A class of 
models is obtained according to the value of the parameter a in equation (9). 
For a = 0 the parameter 3' varies from 0 for R = 0 to +4/3 when R > >  
R,.  The universe is infinitely old and for R < R ,  we have an exponential 
inflation phase. For R > R,  it enters a radiation phase. There is no real 
singularity, the density being always finite. For a in the range 0 < a < 1, 
3' slowly increases from (2/3)a for R = 0 to 4/3, again when R > >  R,.  The 
first period of  evolution can be described as a power-law inflation with the 
scale factor varying according R oc T TM. This is then followed by a radiation 
era when R > >  R,.  

We have also pointed out the similarity between the dynamical behavior 
of this model and models that incorporate either matter creation or varying 
cosmological constant. Rewriting the field equations of  the latter in terms of 
an effective, time-dependent adiabatic index, we were able to calculate both 
the matter creation rate and the cosmological constant as a function of  the 
scale factor. 
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