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SUmmary. The accuracies and efficiencies of three dif- 
ferent methods of making phylogenetic trees from geue ~ e.quency data were examined by using computer simu- 
ation. The methods examined are UPGMA, Farris' 

(1972) method, and Tateno et al.'s (1982) modified 
Farris method. In the computer simulation eight species 
(or populations) were assumed to evolve according to a 
givea model tree, and the evolutionary changes of allele 
frequencies were followed by using the infinite-allele 
model, At the end of the simulated evolution five genet- 
ic distance measures (Nei's standard and minimum dis- 
tances, Rogers' distance, Cavalh-Sforza" 's f0' and the 
modified Cavalli-Sforza distance) were computed for all 
Pairs of species, and the distance matrix obtained for 
each distance measure was used for reconstructing a 
Phylogenetic tree. The phylogenetic tree obtained was 
then COmpared with the model tree. The results obtained 
indicate that in all tree-making methods examined the 
aCCUracies of both the topology and branch lengths of 

reconstructed tree (rooted tree) are very low when the ~ ber of loci used is less than 20 but gradually increase 
a[a increasing number of loci. When the expected 

.~U~nber of gene substitutions (M) for the shortest branch 
Is 0.1 or more per locus and 30 or more loci are used, 
I~ e topological error as measured by the distortion 
t tuex (d T) is not great, but the probability of obtaining 
~e COrrect topology (P) is less than 0.5 even with 60 
'~ci Whe , �9 n M is as small as 0,004, P is substantlaUy 
~Wer. In obtaining a good topology (small d T and high 
r) UPGM A and the modified Farris method generally 
show a better performance than the Farris method. The 
POor Performance of the Farris method is observed 
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even when Rogers' distance which obeys the triangle 
inequality is used. The main reason for this seems to 
be that the Farris method often gives overestimates of  
branch lengths. For estimating the expected branch 
lengths of the true tree UPGMA shows the best per- 
formance. For this purpose Nei's standard distance 
gives a better result than the others because of  its linear 
relationship with the number of  gene substitutions. 
Rogers' or Cavalli-Sforza's distance gives a phylogenetic 
tree in which the parts near the root are condensed 
and the other parts are elongated. It is recommended 
that more than 30 loci, including both polymorphic 
and monomorphic loci, be used for making phylogenetic 
trees. The conclusions from this study seem to apply 
also to data on nucleotide differences obtained by the 
restriction enzyme techniques. 

Key words: UPGMA - Farris' method - Modified Farris 
method - Genetic distance - Topological errors - 
Errors in branch length - Triangle inequality. 

Introduction 

In the previous paper (Tateno et al. 1982) we studied 
the accuracies of four different methods of constructing 
phylogenetic trees for molecular data by using computer 
simulation. The strategy used was to simulate the evolu- 
tionary changes of nucleotide sequences for a given num- 
ber of species and compare the phylogenetic tree recon- 
structed from simulated sequence data with the hypo- 
thetical model tree following which the species evolved. 
In this study we were primarily concerned with long- 
term evolution, so that the polymorphism within species 
was ignored. When a phylogenetic tree for closely related 
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species or populations is constructed, however, the ef- 
fect of polymorphism cannot be neglected. In this case 
we must consider all polymorphic alleles and their fre- 
quency changes in populations and measure the genetic 
distance between populations statistically. The purpose 
of this paper is to conduct this type of study and com- 
pare the accuracies and efficiencies of different tree- 
making methods for allele frequency data. 

A somewhat similar study was previously conducted 
by Kidd and Cavalli-Sforza (1971). These authors as- 
sumed that the evolutionary change of their "character" 
follows the Brownian motion, so that each character 
showed the normal distribution in all generations. How- 
ever, it is known that the allele frequency change is 
typically non-Brownian, though it can be approximated 
by the Brownian motion under special circumstances 
in terms of arcsine or normid transformation (Cavalli- 
Sforza and Edwards 1967; Cavalli-Sforza and Piazza 
1975). Furthermore, they did not consider new muta- 
tion or extinction of alleles which inevitably occur in 
the evolutionary process. Therefore, their theories are 
not directly applicable to actual allele frequency data. 
In the following we shall consider a more realistic model 
of the genetic change of populations by using Kimura 
and Crow's (1964) infinite-allele model of mutation. 

In the previous paper we examined four different 
tree-making methods, i.e., UPGMA (Sneath and Sokal 
1973), Fitch and Margoliash's (1967) method, Farris' 
(1972) method, and Tateno et al.'s (1982) modified 
Farris method. In the present paper we shall exclude 
Fitch and Margoliash's method, because it requires a 
large amount of computer time and our previous study 
has shown that it is not as efficient as the modified 
Farris method. 

Some of the preliminary results of this study have 
been published by Tateno (1982). He used Nei's genetic 
distance and his own distortion index for comparing 
the topological errors of the trees reconstructed by the 
above three methods. His results showed that the distor- 
tion indices of the three methods are more or less the 
same. In this paper we present the results of our compre- 
hensive study on the relative merits of the three tree- 
making methods by using Robinson and Foulds' (1981) 
distortion index and five distance measures. We shall 
show that UPGMA with Nei's standard distance general- 
ly gives a better tree than the other two methods. 

Models and Methods of Computer Simulations 

genetic distance obtained is expected to be considerably 
lower than the actual number of codon substitutionS, 
since electrophoresis does not detect all codon differ" 
ences between alleles. However, D is expected to be 
proportional to the number of codon substitutions, urn" 
less the distance is very large (Nei 1978a). 

Consider two populations, X and Y, and let x i, and 
Yij be the frequencies of the i-th allele at the j-th toctJs 
m populations X and Y, respectively. D is then defined 
a s  

D = - l o g  e (Jxy/J~c~XJy) , (1) 

where 

1' m j  r m .  

JX=Y~ 2 x i j2 / r ,  J y = 2 ;  ~gl Yij2/r 
j i j i 

and 

=:~m- 
XJ xijYij/r , JXY j i 

in which mj is the number of alMes at tthh: jinthlnOt;~:d e 
r is the number of loci studied. Using t e " " - 
model of mutation (Kimura and Crow 1964), Nei (1972) 
has shown that the expectation of D when a large nuN" 
ber ofloci are used is given by 

E(D) = 2vt , (2) 

where v is the mutation rate or the rate of gene substi" 
tution per locus per generation and t is the time since 
divergence between populations X and Y. The sampliag 
variance (Nei and Roychoudhury 1974; Nei 1978b)a ~d 
drift variance (Li and Nei 1975) of D have also bee9 
worked out. 

Recently Farris (1981) claimed that D is not apprO" 
priate for making a phylogenetic tree, because it is not 
a metric and does not obey the triangle inequality. It is 
therefore interesting to see whether this measure gives 
a poor performance in tree-making compared with met" 
ric distances such as D R in (5). It should be noted t h~t 
the nonmetricity of  D occurs because of the stochastic 
nature of gene substitution. Theoretically, as the number 
of loci used increases, D gradually attains metricity. 19 
other words, it is an asymptotic metric. 

A measure related to D is Nei's (1973) minimtffa 
genetic distance (Dm). It is defined as 

1) Genetic Distance. One of the most frequently used 
measures of genetic distance for molecular data is Nei's 
(1972) standard genetic distance (D). This measure is in- 
tended to estimate the average number of codon (gene) 
substitutions per locus. In the study of genetic relation- 
ship among closely related organisms allelic differences 
are usually studied by electrophoresis. In this case the 

1 ~ mj (3) 
= ~ (xij -Yij) 2 Dm 2r- j=l i=1 

The expectation of D m is 

E(Dm) = J(1 - e -2vt) (4) 



Where j is the expected homozygosity and is assumed to 
be constant throughout the evolutionary process (Li 
and Nei 1975). The sampling and drift variances of 
13 have also been studied (Nei and Roychoudhury 
1974; Li and Nei 1975). It is clear from (4) that the 
relationship between D and t is nonlinear but when 
t ,~ 1/(2v) it is appro~dmately linear, i.e., E(Dm) -~ 
2vJt. Therefore, when closely related populations 
are to be studied, this measure can also be used for 
making a phylogenetic tree. 

Another measure that is often used for molecular 
taXonomy is Rogers' distance. This is defined as 

1 r mj 
I)R=r- ~ [~1  (xiJ-Yij)2/2]l/2 (5) 

j=l 

SOnae authors prefer this measure, because this satis- 
fies the principle of triangle inequality. We note that 
l~arris, (1972) method of tree making was originally 
developed by using a metric that satisfies this prin- 
Ciple. It is therefore interesting to examine whether 
or not this measure gives a better tree when Farris' 
raethod is used. No analytical study has been made 
about the expected relationship between D R and 
divergence time, but Nei's (1976)computer  simu- 
lation has shown that as t increases D R "rapidly in- 
Creases in the early stage of evolution but the rate 
of increase of D R gradually declines as in the case 
of 13 D sra.,rn:. R has an upper bound, which is usually 

,tuer than 1 when r is large. 
Some human geneticists have used Cavalli- 

8forza,s (1969) 
has similaritiy measure f0 after he showed that it 

with Wright's FST when there are 
Only two alleles at a locus. It is defined as 

mj 
f0 =4F ~ ( 1 - Z  ~ ) / ( m j - 1 )  . (6) 

j=l i=l 

oCea ~V~lli'Sforza (1969)conjectured that the expectation 
" zO is given by 1- e "t/2N, where N is the effective 

~h~ size of populations X and Y. Nei (1976) 
OWed that the relationship between f0 and t is not as 

sinaple as Cavalli-Sforza's speculation but in the early 
stage of evolution f0 again increases almost linearly 
With time. Nei (unpublished) also noted that this meas- 
Ure has a smaller coefficient of variation than Nei's 
Standard distance (D) when D or f0 is small. It is there- 
~d re Possible that when a phylogenetic tree is construct- 
~ for closely related populations f0 gives a better tree 

~tan D does. eficlenc it Is L I'tOwever, Cavalli-Sforza's f0 has one d ' y;" " 
~avily dependent on the number of low-frequency 

eles in the sample, though these alleles do not contrib- 
rite Very much to the average gene differences between 
P~ It is known that the number of low-fie- 
qUeney alleles increases substantially with increasing 
Sample size, and thus f0 is expected to decrease with 
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increasing sample size even for the same pair of popu- 
lations (see formula (6)). This deficiency can be removed 
if we use the following measure. 

mj 
1 ~ (1 - 22 x/-xijYij ) (7) DA = F j=l i=1 

This has a close relationship with Bhattacharrya's 
(1946) angular transformation, and it can be shown 
that D A is proportional to Sanghvi's (1953) distance 
when the distance is small. It does not depend on the 
number of  low-frequency alleles very much, since 

in the denominator of (6) has been eliminated. 
rnj In the present paper we have used the above five 
distance measures to study the accuracies and effi- 
ciencies of the three tree-making methods mentioned 
earlier. One (DR) of the distance measures is a metric, 
but me others are not unless a very large number of 
loci are used. As will be seen later, the accuracies and 
efficiencies of the tree-making methods depend on 
the distance measure used to a considerable extent. 

2) Methods of  Simulation. As in the previous paper, 
we considered 8 populations or OTUs (operational 
taxonomic units), and these OTUs were assumed to 
evolve following the model tree in Fig. 3a of Tateno 
et al. (1982). (This model tree is known to give more 
errors in the reconstructed tree than the model tree 
in Tateno et al.'s Fig. 3b, but the relative accuracies 
of the three tree.making methods are nearly the same 
for both model trees.) When the expected number 
of gene substitutions (M) for the shortest branch in the 
model tree is 0.1, it becomes Fig. I a of this paper. Un- 
like our previous study, however, we followed the 
changes of allele frequencies in each population in the 
entire evolutionary process rather than the changes of 
nucleotide sequences by using computer simulation. 
In this simulation the allele frequency changes were 
assumed to occur by mutation and random genetic 
drift, ignoring the effect of selection. In each generation 
mutations were introduced at a specified rate, and the 
genes for the next generation were sampled at random. 
The mutations introduced were always new and differ- 
ent from the extant alleles. When a population split into 
two, we assumed that two identical populations were 
produced in a particular generation and immediately 
reproductive isolation was generated. In practice, there 
would generally be some migration at least for a while 
after two populations are separated, but the effect of 
this migration is known to be small unless the evolu- 
tionary time considered is extremely short (Li 1976). 
We also assumed that the population size (N) is the same 
for all populations. 

In the present case the expected number of gene substi- 
tutions (M in Fig. 3a of Tateno et al. 1982) for the unit 
evolutionary time (the shortest distance), t o , is given by 
vt 0. Note that Nei's standard genetic distance measures 



156 

the number of gene substitutions, so that the expected 
distance between OTUs 1 and 2, for example, is D = 2M = 
2vt 0 from (2). We used two different values of M, i.e., 
0.004 and 0.1. The case of M -- 0.004 roughly corresponds 
to the differentiation of populations within a species, 
whereas M = 0.1 corresponds to the differentiation of 
species within a genus (see Nei 1975, pp. 184-185). In 
both cases of M = 0.1 and M = 0.004 we used 4Nv = 0.2, 
which corresponds to an average heterozygosity of H = 
4Nv/(1 + 4Nv) = 0.167. We note thatin many Drosophila 
species the average heterozygosity is of this order of mag- 
nitude. 

In the case of M = 0.004 we simulated the evolutionary 
changes of gene frequencies using the Monte Carlo meth- 
od described by Nei and Tateno (1975). From the study 
of  Li and Nei (1975), it is known that the mean and var- 
iance of D for a given number of loci are determined by 
Nv rather than by N and v separately. We therefore used 
a high mutation rate (v = 0.002) and a small effective size 
(N = 25) to save computer time. Actually, we examined 
the mean and variance of D for the case of v = 0.002 and 
N = 50 in addition to the above case, but the results ob- 
tained were virtually the same as those for v = 0.002 and 
N = 25. The initial allele frequencies in the ancestral popu- 
lation were generated by using Griffiths and Li's (1983) 
computer algorithm. At the end of the evolutionary pro- 
cess, allele frequencies were recorded for all populations, 
and the five genetic distances mentioned above were com- 
puted for each pair of populations. 

In the case ofM = 0.1 the allele frequencies in the final 
populations were generated by using Griffiths and Li's 
(1983) computer algorithm. This algorithm is based on 
Griffiths' (1980) theoretical work on the transient distri- 
bution of allele frequencies and saves computer time to a 
great extent when t is large. Unfortunately, this algorithm 
does not give accurate results when vt is extremely small. 
Griffiths' theoretical distribution of allele frequencies is a 
function of Nv and t only. Therefore, the results obtained 
for given values of Nv and t are applicable to any popula- 
tion size or any mutation rate as long as Nv remains the 
same. In practice, however, we must know the number of 
alleles in the sample to compute genetic distances. To spe- 
cify this number we assumed that the alleles of which 
the population frequency is equal to or higher than 0.001 
are observable in the sample and mj is equal to the num- 
ber of alleles satisfying this condition in the two popula- 
tions concerned. This is equivalent to using a sample of 
500 diploid individuals from a large population. 

In both eases of M = 0.1 and M = 0.004, gene fre- 
quency data were generated for 100 loci in each repli- 
cation, and this was repeated 10 times. In each repli- 
cation the five distance measures mentioned earlier were 
computed by using gene frequency data for the first 10 
loci, first 20 loci, first 30 loci,..., and all 100 loci to see 
the effect of the number of loci on reconstructed trees. 
Therefore, 50 distance matrices for 8 0 T U s  were ob- 
tained in each replication. Both rooted and unrooted 

trees were reconstructed by the three tree-making meth" 
ods for each of  these distance matrices. Thus, the total 
number of trees reconstructed in this study was 6000. 
The most ancestral point (root) for the trees recon" 
structed by the Farris and modified Farris methods was 
determined by assuming that the evolutionary rates of 
the two most divergent OTUs are equal (cf. Tateno et al. 
1982). 

As discussed by Teteno et al. (1982), there are two 
criteria for measuring the deviation of  a reconstructed 
tree from the model tree. One is the degree of distortio~ 
of  the topology of  the reconstructed tree, and the other 
is the amount of deviation of patristic (estimated) 
branch lengths from true lengths. To measure the top0" 
logical errors, we used Robinson and Foulds' (1981) 
distortion index (dT), which is roughly twice the nur~" 
ber of interchanges of OTUs required for converting the 
topology of a reconstructed tree to that of the true tree 
(see Tateno et al. 1982). When the topology of a recon" 
structed tree is correct, d T takes a value of  zero. In addi" 
tion to d T we also examined the proportion of repli" 
cations in which the correct topology was obtained. To 
measure the errors in the estimates of branch lengthS, 
we used Tateno et al.'s (1982) measures, i.e., the average 
deviation of patristic distances from the expected ~s- 
tances (SE) and the average deviation of patristic dis. 
tances from the observed distances (So). Here the pa. 
tristic distance between OTUs i and j refers to the dis- 
tance that is obtained by summation of the lengths of 
all branches linking this particular pair of OTUs in the 
reconstructed tree, whereas the expected distance is the 
corresponding distance given by the model tree. The oh" 
served distance is simply the observed value between a 
pair of OTUs in the distance matrix. 
Mathematically, S E and S O are defined as 

S E = [2 ~ (Dij - Dij)2/(n(n - 1))]1/2 , (8) 
i>j 

S O = [2 ~ (Dij - Dij')2/(n(n - 1))11/2 , (9) 
i>j 

where Dij, Dij, and Di'.' are the patristic distance, eX~ 
petted distance, and ol~Jserved distance between OTUS 1 
and j, respectively, and n is the number of OTUs. 

When a small number of loci are used, the observed 
number of gene substitutions per locus for a given 
branch can be quite different from the expected number 
because of stochastic errors, even if the expected rate 
of gene substitution is constant. The tree that is subject 
to this type of errors or to truly varying rates of  substi" 
tution is called gene-tree (Nei 1977, Tateno et al. 1982)' 
Gene-tree will Vary with the gene or group of genes used, 
even though the true genealogical tree must be the sarOe 
for the entire set of genes in the genome. On the other 
hand, the tree that describes the actual evolutionary 
pathways of the OTUs in question is called species-tree' 



Most evolutionists are interested in knowing species-tree 
rather than gene-tree. Of course, as the number o f  Ioci 
Used increases, gene-tree is expected gradually to con- 
Verge to species-tree (or genome-tree), if the average rate 
of gene substitution per year is constant. In practice, the 
number of  loci used is rather limited at the present time, 
but it is still possible to estimate a species-tree. Nei 
(1975) noted that species-tree can be estimated by 
UPGMA even if the number o f  loci used is not very 
large. On the other hand, the Farris and modified Farris 
methods are intended to estimate a gene-tree. 

As is clear from their definitions, S E is intended to 
rrteasure the deviation from the species-tree, whereas S O 
the deviation from the gene-tree. 

Results 

TOpological Errors 

I) Case o f  M = 0.1. Table 1 shows the expected num- 
bers of gene substitutions per locus (expected distances) 
and the observed values o f  D's for all pairs of  the eight 
13TUs for the case of  M = 0.1 in one replication (repli- 
cation 3) o f  computer simulation. These distances are 
based on gene frequency data for 50 loci. It is clear that 
despite the large number of  loci used the observed value 
of D is appreciably different from the expected value for 
SOme pairs o f  OTUs such as 1 and 6 and 3 and 4. This is 
of COurse due to the stochastic nature of  mutation and 

nee frequency change in the evolutionary process. 
n the number o f  loci used is small, the deviations o f  

the observed distances from the expected values are even 
larger, and the deviations gradually decline as the num- 
ber of  loci increases. However, our computer simulation 
has shown that even with 100 loci the deviations are not 
negligible. 

Because of  this stochastic error the evolutionary tree 
reconstructed is usually considerably different from the 
model tree given in Figure la. Figures ib, lc ,  and ld  
Show the trees reconstructed by UPGMA, the Farris ~ ethod, and the modified Farris method, respectively, 
Y using the observed values of  D. The trees recon- 
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13. Model tree b.  UPGMA D 
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62 7 63 7 

�9 .st 8 .~4 8 

Fig. 1. Model tree and reconstructed trees (b, c, d) by using D in 
replication 3 of computer simulation. The value given to each 
branch (or internode) in model tree is the expected number of 
gene substitutions, whereas the corresponding number in re- 
constructed tree is the estimate of branch length. 4Nv = 0.2, 
M = 0.I, and the number of loci used is 50. Co) d T = 0, S E = 
0.073, S O = 0.109. (c) d T = 8, S E = 0.250, S O = 0.145. (d) d T = 
2, S E = 0.138, S O = 0.106 

structed by UPGMA have the same topology as that 
o f  the true tree, though there are some errors in the 
estimates o f  branch lengths. Therefore, the distortion 
index for this tree is 0. The topologies o f  the trees 
reconstructed by the other two methods are both 
incorrect. The d T values for the Farris and modified 
Farris methods are 8 and 2, respectively. Table 2 
gives the patristic distances obtained by UPGMA and 
the modified Farris method. The patristic distances 
obtained by UPGMA tend to be close to the ex- 
pected distances in Table 1, whereas those obtained 
by the modified Farris method tend to be close to  
the observed distances. Nevertheless, the differences 
between the patristic and expected distances or be- 
tween the patristic and observed distances are sub- 
stantial in some pairs o f  OTUs. S E and S O are re- 
spectively 0.073 and 0.109 for UPGMA and 0.138 and 
0.106 for the modified Farris method. 

Table 1. Observed values of genetic distances based on gene frequency data for 50 loci in one 
replication (replication 3) of computer simulation (above the diagonal) and expected numbers of 
gerle SUbstitutions (below the diagonal). Nei's distance (D) is used. 4Nv = 0.2, and M = 0.1 

OTU 1 2 3 4 5 6 7 8 
1 
2 0.260 0.434 0.556 0.805 1.249 1.063 1.297 
3 0.2 0.423 0.618 0.803 1.139 1.083 1.259 
4 0.4 0.4 0.808 0.904 1.200 1.29i 1.556 
5 0.6 0.6 0.6 0.786 1.123 1.167 1.422 
6 0.8 0.8 0.8 0.8 0.978 1.340 1.567 
7 1.0 1.0 1.0 1.0 1.0 1.459 1.650 
8 1.2 1.2 1.2 1.2 1.2 1.2 1.487 

1.4 1.4 1.4 1.4 1.4 1.4 1.4 
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Table 2. Patristic distances obtained by UPGMA (below the diagonal) and the modified Farris 
method (above the diagonal) from observed distances in Table 1. D is used. 4Nv= 0.2 and M = 0.1 

OTU 1 2 3 4 5 6 7 8 

1 0.260 0.434 0.556 0.732 1.086 1.137 1.362 
2 0.260 0.423 0.626 0.803 1.156 1.207 1.432 
3 0.429 0.429 0.800 0.977 1.330 1.381 1.606 
4 0.661 0.661 0.661 0.786 1.139 1.190 1.415 
5 0.824 0.824 0.824 0.824 0.978 1.029 1.254 
6 1.138 1.138 1.138 1.138 1.138 1,459 1.684 
7 1.234 1.234 1.234 1.234 1.234 1.234 1.487 
8 1.463 1.463 1.463 1.463 1.463 1.463 1.463 

Table 3. Observed distances (below the diagonal) and patristic distances (above the diagonal) 
obtained by UPGMA when D R is used. The same gene frequency data as those for Tables 1 and 2 
are used. 4Nv = 0.2 and M = 0.1 

OTU 1 2 3 4 5 6 7 8 

1 0.313 0.399 0.499 0.565 0.654 0.679 0.732 
2 0.313 0.399 0.499 0.565 0.654 0.679 0.732 
3 0.398 0.400 0.499 0.565 0.654 0.679 0.732 
4 0.453 0.487 0.559 0.565 0.654 0.679 0.732 
5 0.556 0.559 0.597 0.550 0.654 0.679 0.732 
6 0.678 0.648 0.676 0.650 0.620 0.679 0.732 
7 0.637 0.636 0.693 0.665 0.713 0.733 0.732 
8 0.692 0.682 0.757 0.722 0.761 0.768 0.742 

Table 4. Observed distances (below the diagonal) and patristic distances (above the diagonal) ob- 
tained by UPGMA when f0 is used. The same gene frequency data as those for Tables 1 and 2 are 
used. 4Nv -- 0.2 and M = 0.1 

OTU 1 2 3 4 5 6 7 8 

1 0.381 0.535 0.650 0.755 0.846 0.885 0.978 
2 0.381 0.535 0.650 0.755 0.846 0.885 0.978 
3 0.556 0.515 0.650 0.755 0.846 0.885 0.978 
4 0.596 0.615 0.740 0.755 0.846 0.885 0.978 
5 0.754 0.724 0.815 0.725 0.846 0.885 0.978 
6 0.869 0.822 0.898 0.822 0.818 0.885 0.978 
7 0.831 0.817 0.945 0.845 0.933 0.938 0.978 
8 0.937 0.903 1.036 0.940 1.021 1.012 0.999 

Table 3 gives the D R values obtained from the 
same gene frequency data as those used for computing 
the D values in Table 1 and the patristic distances 

obtained by UPGMA. It is clear that  D R is greater 
than the expected number  of  gene substitutions when 
this number is small but  smaller than the expected 
number when this is large, Thus, when the expected 
number  or expected distance is 0.2 (between OTUs 1 
and 2), D R is 0.313, and when the expected distance 
is 1.4 (between OTU 8 and the other OTUs), it is 0.68 
to 0.77. Clearly, D R is not  proport ional  to the number 
o f  gene substitutions as indicated by  Nei (1976) (see 
also Figure 5). Fur thermore ,  the patristic distances for 
the tree obtained by UPGMA are not  necessarily close 
to the observed distances. A similar pat tern  is also ob- 

served for Cavalli-Sforza's distance f0 '  though this 
quant i ty  can be greater than 1 (Table 4). 

Figure 2 shows the evolutionary trees constructed 
by  the three tree-making methods with D R and f0 for 
the same set of  gene frequency data (replication 3). 
UPGMA again gives the correct topology for botl~ 
D R and f0, but  the other  tree-making methods produce 
an incorrect topology.  To compare the efficiencies of 
different  tree-making methods,  however,  we must 
examine the average performances of  the methods over 
all replications. 

Rooted Trees. Table 5 shows the propor t ion  (P) of  rep" 
lications in which the correct topology was obtained'  
Each value in this table is based on ten reconstructed 
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Fig. 2. Reconstructed trees by using D R and f0 
in replication 3 of computer simulation. The 
value given to each branch is the estimate of 
branch length. 4Nv = 0.2, M = 0.1, and the 
number of loci used is 50. (a) d T = 0, S E -- 
0.448, S 0 = 0.030. (b) d T = 6, S E = 0.388, 
S O = 0.086. (e) d T = 4, S E = 0.449, S O = 0.032. 
(d) d T = 0, S E = 0.270, S O = 0.045. (e) d T = 
6, S E = 0.243, S O = 0.068. (f) d T = 4, S E = 
0.278, S O = 0.038 

Table 5. The proportion of replications in which the correct topology was obtained. 4Nv = 0.2 and M = 0.1 

No. of 
loci 

UPGMA F~ris Modified Farris 

D D m D R ~ D A D D m D R ~ D A D Dm DR f0 DA 

Rooted tree 

10 0 0 0 0 0 0 0 
20 

0 0.1 0 0 0.1 0 0 
30 

0.1 0.1 0.1 0.1 0.2 0 0 
40 

0.1 0.1 0.1 0.3 0.1 0.1 0.1 
50 

0.2 0.2 0.2 0.3 0.2 0.2 0.1 
60 

0.2 0.3 0.2 0.3 0.3 0.1 0.1 70 
80 0.4 0.4 0.4 0.4 0.5 0.2 0 
90 0.4 0.5 0.4 0.3 0.6 0.2 0.1 

100 0.5 0.5 0.4 0.4 0.6 0.3 0.1 
0.6 0.7 0.6 0.3 0,7 0.5 0.3 

Unrooted tree 
10 
20 0 0 0 0 0 0 0.2 
30 0.1 0.1 0 0 0.2 0.2 0.2 
40 0.1 0.1 0.1 0.2 0.2 0.2 0.2 
50 0.1 0.1 0.1 0.3 0.1 0.2 0.3 
60 0.2 0.2 0.2 0.3 0.2 0.3 0.5 
70 0.2 0.3 0.2 0.3 0.3 0.3 0.5 
80 0.4 0.4 0.4 0.4 0.5 0.3 0.4 
90 0.4 0.5 0.4 0.5 0.6 0.5 0.5 

1O0 0.5 0.5 0.4 0.4 0.6 0.6 0.7 
0.6 0.7 0.6 0.3 0.7 0.9 0.9 

0 0 0 0 0 0 0 0 
0 0 0 0.I 0 0.2 0.I 0.1 
0 0 0 0.2 0.2 0 0.2 0.1 
0 0.1 0.1 0.2 0.3 0.2 0.2 0.3 
0.1 0.2 0 0.3 0.3 0.3 0.2 0.3 
0 0.1 0.1 0.3 0.4 0.3 0.4 0.3 
0 0.1 0 0.4 0.4 0,3 0.4 0.3 
0.1 0.1 0.2 0.6 0.7 0.5 0.5 0.9 
0.1 0.2 0.2 0.7 0.7 0.7 0.6 0.9 
0.3 0.3 0.5 0.8 0.8 0.8 0.6 0.9 

0.2 0.1 0.2 0 0.2 0.2 0.2 0.2 
0.3 0.4 0.3 0.3 0.3 0.4 0.5 0.5 
0.3 0.4 0.3 0.3 0.6 0.4 0.4 0.4 
0.2 0.3 0.4 0.3 0.4 0.3 0.3 0.5 
0.4 0.5 0.4 0.5 0.4 0.4 0.5 0.5 
0.4 0.5 0.5 0.5 0.4 0.5 0.6 0.5 
0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 
0.5 0.8 0.7 0.7 0.9 0.8 1.0 1.0 
0.6 0.8 0.7 0.8 0.9 0.9 1.0 1.0 
0.9 1.0 1.0 0.9 1.0 1.0 1.0 1.0 

trees, When roo ted  trees are cons t ruc ted  by  using 10 

loci, p is 0 for  all t ree-making me thods  irrespective o f  

the distance measures  used. I t  increases as the n u m b e r  

of  loci (r) increases,  bu t  even wi th  100 loci  i t  is no t  100 
Percent. In general,  U P G M A  and the modi f i ed  Farris 

naethod show a be t t e r  pe r fo rmance  than  the  Farris 

~e thod  wi th  this cr i ter ion.  The  p o o r  pe r fo rmance  o f  

the Farris m e t h o d  seems to  be due t o  overes t imat ion  o f  

branch lengths that  occasional ly  occur  in this m e t h o d  

(Ta teno  et  al. 1982).  This  overes t imat ion  is caused by 

chance effects ,  and  it  is larger in long branches  than  in 

short  branches.  Fur the rmore ,  a large part  o f  topolog-  

ical errors in this m e t h o d  occurs  when  the root  is given 

to a r econs t ruc ted  tree,  as will be seen later. 

The differences in P among  dif ferent  distance meas- 

ures are rather  small, but  D and D A t end  to give a 

higher  p ropo r t i on  o f  co r rec t  topologies  t han  the  o ther  

dis tance measures.  As m e n t i o n e d  earlier,  Farris (1981)  
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Fig. 3. Relationships between d- T and 
the number of loci used for the ease of 
M = 0.1. Solid line: UPGMA. Chain lithe: 
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criticized the use of  D for the reason that  it is not a 
metric, and Swofford (1981) suggested that D R be 
used in conjunction with the Farris method.  Table 5 
indicates that for obtaining the correct topology D R 
shows a poor performance compared with the other 
distance measures in any tree-making method.  Indeed, 
it is the poorest  distance measure when the Farris 
method is used. Clearly Farris' or Swofford's conten- 
t ion is not  supported. 

The average distortion indices (d-T) over ten repli- 
cations for  the case of  M = 0.I are given in Fig. 3 in 
relation to the number  of  loci used. It is seen that  the 
d-T for rooted trees is very large when r = 10 but rap- 
idly declines as r increases. However, the decrease of  
d- T with increasing r is nonlinear, and the rate of  de- 
crease in d- T is not  very large when r is equal to or 
larger than 30. When 30 loci are used, d- T is already 
about  2 in UPGMA, which means that  the amount  of  
error o f  the reconstructed tree is about  one interchange 
o f  branches from the true tree. As the number of  loci 
increases further, d T decreases very slowly, and even 

with r = 100, d T is not 0. It  is also seen that  uPGMh 
and the modified Farris method generally give a smaller 
value of dT than the Farris method for all values of r. 
This is so even when D R is used as a distance meaSUre" 
This again refutes Swofford's contention. The differ" 
ence in d- T between UPGMA and the modified FarriS 
method is small, but the latter tends to show a little 
better performance than the former when the nunaber 
of  loci is large. The differences among different distance 
measures are also small, though D A tends to give a better 
topology than the other measures. There is a strOog 
negative correlation between P and clT, as expected, 

Unrooted Trees. Most evolutionists are interested i~ 
making a rooted tree, but under certain circumstances a~ 
unrooted tree is constructed. The topological errors for 
unrooted trees are equal to or smaller than those for 
rooted trees, because in rooted trees an additional errO~ 
may be generated in the process of  putting the root.  The 
difference in topological errors between rooted and uo" 
rooted trees depends on the tree-making method;  it is 



much larger in the Farris and modif ied Farris methods  
than in UPGMA. Thus, the propor t ion  (P) of  correct 
topologies obtained for unrooted trees is considerably 
higher in the former two methods than in UPGMA for 
any number o f  loci (Table 5). In this case even 10 loci 
give the correct topology with a frequency o f  20 per- 
cent. The d-T value is also smaller in unrooted  trees than 
in rooted trees and when the number  o f  loci is 80 - 
100, ~T is often 0 or close to 0 (Fig. 3). In terms o f ~  T 
the modified Farris method generally shows the best 
Performance in topology-making irrespective o f  the dis- 
tance measure used. These results are consistent with 
those obtained with nucleotide substi tut ion in long- 
term evolution (Tateno et al. 1982). The Farris method  
is generally bet ter  than UPGMA when Dra, D R,  f0 '  and ~ h are used, but  when D is used, it  is worse than the 
atter except when the number of  loci used is 80 or 

larger. 

2) Case o f M  = 0.004. When M is very small, genetic dis- 

taace has a large coefficient of  variation (Li and Nei 
1975), so that  the topology of  a reconstructed tree is 
expected to be subject to a large stochastic error. Table 
6 shows the propor t ion  (P) o f  correct topologies among 
the ten replications for the case of  M = 0.004. Compari- 
son of  this table with Table 5 indicates that  P is substan- 
tially lower for M = 0.004 than for M = 0.1 in bo th  
rooted and unrooted trees. Particularly when a rooted 
tree is constructed with r equal to 30 or less, the correct 
topology is rarely obtained.  In the case o f  rooted  trees, 

161 

the Farris method  again shows the poorest  performance,  
and when D R is used no correct topology has been ob- 
tained for any number  o f  loci used. The modif ied Farris 
me thod  showed a slightly bet ter  performance than the 
Farris method  part icularly when f0 and D A are used. 
UPGMA again shows the best  result when P is used as a 
cri terion.  Among the five distance measures examined,  
f0 and D A, part icularly the  lat ter  measure,  show a good 
performance in a l l t he  tree-making methods.  

The values of  ~T for M = 0.004 are presented in Fig- 
ure 4. This quant i ty  is always smaller in the trees recon- 
s tructed by  U t ~ M A  than in those reconstructed by  the 
other  two methods,  and the ~T value for the modif ied 

Farris method  is generally smaller than that  for the 
Farris method.  Therefore,  the results obtained f rom this 
criterion are virtually the same as those obtained from P. 

As ment ioned earlier, Tateno (1982) studied the 
topological  errors of  reconstructed trees by  using his 
own distort ion index DI but  did not  f ind much differ- 
ence between the tree-making methods.  He used only 
Nei's distance D for the case o f  M = 0.002. A close 
examinat ion of  his Fig. 4, however,  indicates that  DI 
tends to be smaller in UPGMA than in the  Farris meth- 
od.  The small difference between the two methods 
seems to be due to the inefficiency o f  his index. 
Although there is a high correlation between d T and 
DI when d T is relatively small (Tateno et al. 1982), 
DI is not  propor t ional  to the number o f  branch inter- 
changes between the two trees compared.  This non- 
propor t ional i ty  seems to have reduced the power to 

Table 6. The proportion of replications in which the correct topology was obtained. 4Nv = 0.2 and M = 0.004 

NO. Of 
loci UPGMA Farris Modified Farris 

---. D D m D R f# D A D Dm DR f0 DA D Dm DR f0 DA 

Rooted tree 
t0 

0 0 0 0 0 0 0 0 0 0 0 2O 
0 0 0 0 0 0 0 0 0 0 0 30 
0 0 0 0 0 0 0 0 0 0 0 40 

50 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.1 0 
60 0.1 0.1 0.2 0.1 0.2 0 0 0 0 0.1 0 
70 0.1 0.1 0 0.3 0.3 0 0 0 0 0.1 0.1 
80 0.1 0.1 0.1 0.4 0.3 0 0 0 0 0.1 0 
90 0.1 0.1 0.1 0.4 0.3 0 0 0 0.2 0.1 0 

100 0 0 0.2 0.5 0.4 0 0 0 0.2 0.1 0 
0.2 0.2 0.2 0.3 0.6 0.1 0.1 0 0.1 0 0 

Unrooted tree 
10 
20 0 0 0 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0.2 0.1 0.1 40 
50 0.1 0.1 0.2 0.2 0.1 0 0 0.1 0.2 0.3 0.1 
60 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 
"10 0.1 0.1 0 0.3 0.3 0.2 0.1 0 0.2 0.2 0.2 
80 0.3 0.3 0.1 0.5 0.3 0.1 0.1 0.1 0.5 0.5 0 
90 0.2 0.2 0.3 0.5 0.3 0.1 0.1 0.1 0.6 0.5 0.1 

1O0 0,1 0.1 0.3 0.6 0.4 0.1 0.1 0.1 0.6 0.4 0.1 
0.3 0.3 0.4 0.4 0.7 0.3 0.4 0 0.4 0.3 0.2 

0 0 0 0 
0 0 0 0 
0 0 0 0.1 
0 0 0.1 0 
0 0.1 0 0.1 
0 0.2 0.3 0.5 
0 0 0.1 0.2 
0 0 0.2 0.3 
0 0 0.1 0.2 
0 0 0.2 0.2 

0 0 0 0 
0 0 0.1 0 
0.1 0 0.1 0.1 
0.1 0.2 0.2 0.2 
0.1 0.2 0.1 0.3 
0.2 0.3 0.3 0.5 
0 0 0.2 0.4 
0.1 0.1 0.5 0.3 
0.1 0 0.5 0.3 
0.2 0 0.5 0.3 
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detect the difference in accuracy of topology con- 
struction between different methods. (Furthermore, 
there were some errors in his construction of topoi- 
ogies.) 

Figure 4 shows that, like the case of M = 0.1, D A 
and f8 give a smaller value of d T than the other distance 
measures. The better performance of f8 compared with 
D when genetic distance is small can be explained by 
the fact that the coefficient of variation of f# is smaller 
than that of  D. To see whether or not all the results in 
Table 6 can be explained by this factor alone, we com- 
puted the coefficients of variation for all distance meas- 
ures (observed values). Table 7 shows the results for 
the case of 60 loci; the results for other numbers of loci 
are not presented because they showed essentially the 
same pattern as that for 60 loci. This table indicates that 
fo and D A indeed have a smaller coefficient of variation 
than D and Dm, but DR, which has shown a rather poor 
performance in topology making, also has a small co- 
efficient. Therefore, the coefficient of variation alone 
is not sufficient for explaining our results. Actually the 

quantity which is more directly related to P or d-T is tla~ 
coefficient of variation of the estimates of the shortest 
branches (internodes) of the tree in Figure la. Indeed, a 
distance measure that has a relatively large value of P 
or a small value of d T in Table 6 tends to show sna~ll 
coefficients of variation of the estimates of the shortest 
branches (Dil - DI< 1 in Table 7). Therefore, a sr~all 
value of P o?a  large-value of d- T is apparently caused b.Y 
random errors of the differences between distance est'" 
mates that correspond to the shortest branches. 

The results for unrooted trees for the case of M ~ 
0.004 are somewhat different from those for the case of 
M = 0.1. Namely, unlike the case of M = 0.1, uPGIdP' 
generally shows a better performance in topology rn~" 
ing than the other two methods even for unrooted trees, 
This is clear from the values of P (Table 6) and d-T (Fig" 
4). On the other hand, the Farris and modified Farris 
methods show more or less the same values of P and 
in all distance measures. As in the case of rooted trees, 
D A and f0 generally show a larger value of P and a s~al" 



Table 7. Coefficients of variation of various distance measures. 
ij refers to the distance between OTUs i and j, whereas Dii- 
1~ is the differ• between distances D;; and Duo. 4Nv = 0.~, 

004, and the number of loci used is 6'~) ~ 

._... D D m D R ~ D A 

D12 0.118 0.097 0.084 0.078 0.121 
34 0.302 0.296 0.113 0.091 0.122 

D56 0.249 0.226 0.137 0.111 0.176 
D78 0.292 0.280 0.172 0.126 0.170 

34-D12 0.472 0.467 0.291 0.187 0.216 
45-D~ 0.406 0.383 0.411 0.253 0.327 

~_ ~3456-I3"" 0.657 0.608 0.682 0.373 0.535 
h67-~45 1.229 1.115 1.775 0.663 0.776 
~78-D56 1.499 1.478 1.538 0.724 0.895 

let value o f  d- T than the other distance measures in all 
tree-making methods. 

The effect o f  the number o f  loci used on the accuracy 
of topology for the case of  M = 0.004 is also slightly 
different from that for the case of  M = 0.1. In the case 
of M = 0.1 the accuracy increased rapidly as the number 
of loci increased from 10 to 30, but after r = 30 the in- 
Crease of  the accuracy was slow. In the case of  M = 
0.004 the accuracy for rooted trees increases almost lin- 
early until r reaches about 40, and then the rate of  in- 
Crease is generally slowed down. When trees are made by 
[JPGMA with DA, however, fiT decreases almost linearly 
even up to r = 100. Essentially the same pattern is ob- 
served for unrooted trees. 

Errors of the Estimates of Branch Lengths 

I) Case ofM = 0.1. Another important criterion o f  the 
accuracy of  a reconstructed tree is the deviation of  esti- 
mates of  branch lengths from true branch lengths. We 

163 

have seen that the topology of  the tree reconstructed 
by UPGMA in replication 3 for M = 0.1 is correct irre- 
spective of  the distance measure used (Figs. lb,  2a, and 
2d). However, the estimates o f  branch lengths are con- 
siderably different from each other. Comparison of  these 
trees with the true tree. (Fig. la) indicates that D gives 
a better result for estimating branch lengths than other 
distance measures. Indeed, the S E value for D is 0.073, 
whereas the SE'S for D R and f0 are 0.448 and 0.270, re- 
spectively. Therefeore, with this criterion the tree pro- 
duced by UPGMA with use of  D is the best among the 
three. One might think that the Farris method gives a 
good tree when D R is used. That this is not the case can 
be seen from comparison of  Fig. 2b and Fig. lb. Com- 
pared with D, D R generally gives a tree in which the 
part near the root  is condensed whereas the other part 
is elongated. This is because D R is not proportional to 
the expected number of  gene substitutions. A similar 
pattern is observed for D m, f0'  and D A, though the re- 
suits for D m and D A are not shown here. In other rep- 
lications D did not  necessarily give a correct topology, 
but the properties of  estimated branch lengths from the 
five distance measures were essentially the same. 

The average values (S-E) o f  SE'S over all replications 
for the cases of  20 loci, 60 loci, and 100 loci examined 
are presented in Table 8. Since the general trends o f  the 
effect o f  number o f  loci can be seen from these cases, 
S-E'S for other numbers of  loci are not  included. The 
value of  r E varies considerably with the tree-making 
method and the distance measure used. The smallest 
value is obtained when UPGMA with D is used. This 
supports our visual conclusion from Fig.1 and 2. When D 
is used, the modified Farris method also shows a rela- 
tively small value o f  7S E. In contrast, the SE for the 
Farris method is nearly twice as large as that of  UPGMA. 
This large value of  S~. is apparently caused by overesti- 
mation o f  branch lengths (Tateno et al. 1982, Table 9). 

Table 8. 
. ~ 1 .  Means of average deviations of patristic distances from expected distances (fiE). 4Nv = 0.2 and 

These results are based on 10 replications. All values should be divided by I0 J 

D Dm DR f0 DA 

20 loci 

UPGI~IA 252 • 26 539 • 12 457 • 11 305 • 17 
arris 

MOdified 461 • 66 497 • 13 417 • 13 272 • 16 
Farris 291 • 31 539 • 11 458 • 10 309 • 16 

60 loci 
UPGMA l~arris !36 • 10 540 • 5 456 • 4 295 • 11 
I~lodified Farri s 225 • 12 511 • 7 430 • 5 268 • 12 

161• 9 541• 5 457• 4 297• 10 

100 loci 
~PGNA i~ar~s..~ 122• 8 534• 5 452• 4 296• 8 

204• 13 510• 5 427• 5 271• 9 
edFarris 1405 6 535 • 5 452• 4 297• 8 

426 • 13 
386 • 14 
427 • 12 

426 • 5 
397 • 5 
427 • 5 

420 • 5 
395 • 6 
4212 5 
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In the case o f  D, SS E decreases as the number  o f  loci 
used increases, as expected.  

When the other  distance measures are used, UPGMA 
no longer gives the smallest value o f  S-E" On the con- 
trary,  this method and the modif ied Farris method give a 
larger value of  SE than the Farris method.  The smallest 

value of  SE for the Farris method  when Din, DR, f0' and 
D A a r e  used is apparent ly  due to the nonlinear relation- 
sh'i'p o f  these distance measures with the number  o f  gene 
substi tutions and overestimation o f  branch lengths in 
this method.  As ment ioned earlier, the values o f  these 
distance measures are usually smaller than the number  
o f  gene substitutions when the lat ter  is larger than about  
0.6 (Tables 1 ,3 ,  and 4), whereas the Farris method  tends 
to give overestimates for long branches. Therefore, when 
the Farris method is used, the differences between pa- 
tristic distances and expected distances are reduced to 

some extent.  When D m, D R, f0, and D A are used, SE 
does not  necessarily decrease with increasing r; rather it 
remains nearly the same irrespective of  the number  of  
loci used. This is due to the fact that  the expectat ions of  
these distance measures are not  eciual to the branch 
lengths o f  the true tree, i.e., the expected numbers o f  
gene substitutions,  and thus even if  the effect of  stochas- 
tic errors are reduced, SE does not necessarily decrease. 

The fact that  the Farris method indeed gives overes- 
t imates of  long branches in the present case can be seen 
from Table 9, where the observed values o f  D and the 
patrisitic distances for some pairs o f  OTUs are presented. 
It is clear that  the patristic distances obtained by  UPG- 
MA and the modif ied Farris method are close to the ob- 
served distances and none of  the differences is statisti- 
caUy significant. In the case o f  the Farris method,  how- 

ever, the patristic distances are generally greater than the 
observed values part icularly when the distance is large. 
This result corrorates Tateno et  al. 's (1982) similar find- 
ing with the evolut ionary trees reconstructed from ntt- 
cleotide sequence data. A similar tendency was also ob- 
served for the case o f  M = 0.004 in the present study. At 
this point  it should be ment ioned that  overestimation of 
branch lengths in the Farris method  occurs by  chance el" 
fects, so that  the variance of  the estimates is also ecpect" 
ed to be large. Comparison of  the standard errors of  the 
estimates in Table 9 among the tree-mzking methods ia" 
dicates that  this is indeed the case. 

In Table 8 f0 gives a smaller value o f  ~ than the otla. 
er distance measures except  D. This is caused by  larger 
patristic distances for f0 for long branches except  for D, 
as seen from Tables 1 - 4 .  

Although S E is a quite good measure o f  the deviation 
o f  patristic branch lengths from true branches (Tateno e~ 
al. 1982), it cannot  be computed  for a tree constructe 
from actual data because in this case we do not  knO* 
the true tree. For  this reason the average deviation of 
patristic distances from observed distances (So )  or a s~" 
ilar quant i ty  has been used by  many authors (e.g. Fitcla 
and Margoliash 1967; Farris 1972; Prager and Wilson 
1978). Tateno et al. (1982) have shown that  this qu~i  
t i ty  is a rather poor  measure o f  deviation o f  estimate 
branch lengths from true or actual branch lengths, but 
because there is no other  measure computable  they have 
suggested that  S O be used as a very crude measure. They 
have also noted that  there is li t t le correlat ion betWeea 

S O and S E or between S O and d T. 
At  any rate, when D is used, the S O values for the 

trees reconstructed by  UPGMA, the Farris method,  and 

Table 9. Observed and patristic distances for some pairs of OTUs for the case of M = 0.1. The 
distance measure used is D. The results obtained are based on ten replications 

OTUs Observed Patristic distance 

distance UPGMA Farris M-Farris 

20 loci 

1 and 4 0.54 • 0.04 0.54 -+ 0.05 0.56 • 0.05 0.54 +- 0.05 
1 and 6 1.09 • 0.10 1.12 • 0.07 t.29 • 0.17 1.08 • 0.10 
1 and 8 1.69 :t 0.17 1.56 • 0.11 2.02 • 0.17"** 1.65 • 0.11 

60 loci 

1 and 4 0.53 • 0.04 0.54 • 0.04 0.55 • 0.04* 0.54 • 0.04 
1 and 6 1.00 • 0.05 1.01 • 0.04 1.10 • 0.07* 1.00 • 0.05 
1 and 8 1.51 • 0.08 1.54 • 0.04 1.70 • 0.08** 1.55 • 0.06 

100 loci 

1 and 4 0.55 -+ 0.03 0.56 • 0.02 0.57 • 0.03 0.55 • 0.03 
1 and 6 1.05 • 0.05 1.05 • 0.04 1.11 • 0.06* 1.02 • 0.05 
1 and 8 1.56 • 0.05 1.55 • 0.03 1.77 • 0.04** 1.56 • 0.03 

*, **, and *** indicate that the difference between the observed and patristic difference is sig- 
nificant at the 5%, 1%, and 0.1% level, respectively. Statistical tests were done by using the t- 
test based on pairwise comparisons rather than on the standard errors given in the table 
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the modified Farris method  in replication 3 (in Figs. 1 
and 2) are 0.109, 0 . I45 ,  and 0.106, respectively. There- 
fore according to this criterion, the modif ied Farris 
method is the best and the Farris method  is the poorest .  
Table 10 shows the SO values over all replications for 

r~ 20, 60, and 100 in the case o f 4 N v  = 0.2 a n d M  = 0.1. 
Unlike SE, SO declines with increasing number o f  loci 
for all distance measures. This is understandable because 
Patristic distances are now compared with observed dis- 
taaces rather than with expected numbers o f  gene sub- 
stitutions. When D is used, UPGMA no longer shows the 
best performance according to the criterion o f  S O ; the 
best performance is attained by  the modif ied Farris 
method. In other words, for estimating the branch 
laagths of  a gene-tree the modif ied Farris method  seems 
to be better than ~ M A .  This result is the same as that  
for the case of  nucleotide subst i tut ion (Tateno et  al. 
1982). The So values for other  distance measures are 

smaller than for D because o f  their  smaller absolute val- 
ues for long branches. In  all distance measures the modi- 
fied Farris method gives the smallest value o f  SO'  and 
the Farris method  gives the largest value. The large value 
for the Farris method  is caused by  overestimation of  
branch lengths. 

2) Case of  M = 0.004. Table 11 shows the SE for the 
case o f  M = 0.004. When D is used, the relative values o f  
S E for the three tree-making methods and the effect o f  
number  o f  loci are more or  less the same as those for the 
case o f  M = 0.1, though the absolute values of  S E are 
much smaller in this case. In the other  distance mea- 
sures, however, the relative values o f  S-E are not  the same 
as those for the case of  M = 0.1. Unlike the previous 
case, the Farris method  gives a larger value o f  SE than 
other  two methods  in all cases but  one. This is, however, 
again caused by  overestimation o f  long branches in this 

' r . .  

~dale !0. Means of average deviations of patristic distances from observed distances (S0). 4Nv 0.2 and 
Q-"'-u.I. These results are based on 10 replications. All values should be divided by 103 

..~ D D m D R ~ D A 

20 loci 

UI~GMA 205• 43•  43• 4 5 9 •  47•  
l~arris 268 • 45 72 • 8 73 • 10 81 • 9 73 • 8 
ModifiedFarris 136• 19 38•  39• 5 45 • 37•  

60 loci 
UI~GMA l~arri s 97 • 9 25•  24• 2 40• 1 27 •  
Mt)dified Farris 118 • 10 44 • 5 41 -+ 4 49 • 6 45 • 6 

725 6 22-+2 21• 1 26•  24•  

100 loci 

UPGMA 78+ 6 1951 20 -  + 1 3052  2251  
arris . ~ f  118• 3654  365 3 4 1 5 4  3754  

iedFarris 60• 4 18• 1 18• 1 22 •  19• 1 

~abl~ 11. Means of averaue deviations of patristic distances from expected distances (SE). 4Nv = 0.2 and 
~ 0 0 4 .  These results are based on 10 replications. All values should be divided by 104 

D D m D R ~ D A 

20 loci 

UPGMA 152 • 13 136 + 14 768 • 41 1348 • 47 
~artis 
Modified Farris 242 -+ 18 179 • 10 917 • 41 1587 • 64 

170 • 10 148 • 11 783 • 41 1365 +- 48 

237 • 19 
351 • 32 
248 • 20 

60 loci 
U~GMA l~arri s 92 • 10 90 -+ 14 774 -+ 35 1294 • 19 
klOdified Farris 157 • 15 108 • 8 876 • 40 1455 • 24 

103• 9 98•  778• 1303 • 

188 • 15 
253 -+ 20 
193 • 15 

100 loci 

arris 65• 9 84• 9 762• 1292• 
~ e d  103• 77• 5 836-+32 1406• 

Farris 77 • 8 90• 8 765• 1297• 18 

179 • 14 
224 • 18 
183 • 14 
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Table 12. Means of average deviations of patristic distances from observed distances (S0). 4Nv = 0.2 and 
M = 0.004 were used. These results are based on 10 replications. All values should be divided by 104 

D D m D R ~ D A 

20 loci 

UPGMA 103• 5 83+ 4 134• 7 271• 91• 5 
Farris 128 • 14 102 • 11 196 • 14 312 • 37 141 • 22 
ModifiedFarris 67• 8 54• 6 103• 7 190• 68+ 6 

60 loci 

UPGMA 59• 3 47• 2 83• 6 143• 11 52• 4 
Farris 100• 85• 7 146• 223• 18 89• 8 
ModifiedFarris 54• 4 42• 3 76• 6 125• 11 48• 5 

100 loci 

UPGMA 47• 4 38• 3 63• 5 115• 7 40+ 3 
Farris 66• 6 53• 4 104• 158• 60• 8 
ModifiedFarris 37• 3 29• 3 58• 5 86• 8 32• 3 

method. In the present case the absolute values of  genet- 
ic distances are small, so that they are approximately 
linear with the expected number of  gene substitution in 
all distance measures. Therefore, overestimation of  
branch lengths is expected to increase the value o f S  E. It 
is a/so noted that UPGMA gives a somewhat smaller 
value of SE than the modified Farris method._Therefore, 
we can conclude that with the criterion of S E UPGMA 
shows the best performance. 

The values o f S  0 for M = 0.004 are presented in Table 
12. It is seen that the relative values of  S0 for the tree- 
making methods and the effect of  number of  loci are 
nearly the same as those for the case of  M = 0.1 in all 
distance measures. Furthermore, Tateno (1982) obtain- 
ed a similar result for the case of M = 0.002 by using D. 
Therefore, whether M is large or small, the modified 
Farris method seems to show the best performance in 
estimating the branch lengths of  a gene-tree, whereas the 
Farris method shows the poorest performance. 

Discussion 

We have shown that both the topology and branch 
length of a reconstructed tree are often quite wrong un- 
less a large number of  loci is used. In the study of phylo- 
genetic relationships of  related species in terms of elec- 
trophoresis many authors have used 20 to 40 genetic 
loci. Our study indicates that even if 30 loci are used and 
M is as large as 0.1 some parts of a reconstructed tree 
are incorrect with a high probability. In this study we 
used only 8 0 T U s  because of  limited computer time 
available, but the error in reconstructed trees is expected 
to increase disproportionately as the number of OTUs 
increases (Tateno et al. 1982). One important factor for 
determining the accuracy of a reconstructed tree is 
the branch lengths of  the true tree. I f  there are many 
branches of which the true distances are as small as 

0.004, the reconstructed tree is usually incorrect evea if 
100 loci are used. This result is discouraging, but vce 
must accept it since it is due to the stochastic nature of 
gene substitution. Clearly, we cannot be overconfideat 
about the tree reconstructed from electrophoretic data. 
Nevertheless, our study suggests that a large part of the 
topology of  a reconstructed tree is correct if 30 or more 
loci are used. In many cases even this approximate plaY" 
logenetic tree is useful for studying various evolution~'Y 
problems. Furthermore, in the future the number of 
loci used is expected to increase rapidly because of tlae 
recent introduction of the restriction enzyme tecluaiqt)e 
in evolutionary studies. 

In actual data we will almost never be sure about the 
reconstructed tree, unless there is some other supp ort. 
ing evidence. However, a rough idea about the accUraCY 
of the tree may be obtained by the product (A) of the 
smallest branch length (I~) of the species-tree recO~ 
structed in terms of Nei's distance and the number 0J ^ 
loci used (r). This product (A = rM) represents the tot 
number of  gene substitutions for the set of  loci used, 
and if this value is equal to or larger than 3, the recOn" 
structed tree seems to be quite reliable. Note that A cot" 
responds to rM in our simulation (see Figure 1). 

The accuracy of a reconstructed tree also depends 00 
the tree-making method as well as on the distance roeaS" 
ure used. We have seen that in estimating the br ancta 
lengths of  species-trees UPGMA is the best among the 
three tree-making methods examined. UPGMA als0 
seems to be the best in constructing a good topologY! 
though when M = 0.1 the modified Farris me tla~ 
showed a slightly higher value of  P than UPGMA. wlae~ 
the number of loci used was 70 or less, UPGMA gerle~ 
ally showed the smallest value of d T for both M #- 0. 
and M = 0.004. It is interesting to see that in constrOc" 
ting a species-tree the simple UPGMA, which was origl" 
nally proposed for phenetic taxonomy, shows the best 
performance. The reason for this seems to be that the 



167 

genetic distance based on a relatively small number  o f  
loci is subject to a large stochastic error and the proce- 
dure of  distance-averaging used in UPGMA reduces this 
error to a considerable extent  (see below). 

This conclusion is somewhat  different from that  o f  
OUr previous study (Tateno et al. 1982), where the trees 
based on nucleotide sequences were examined. In this 
Case the modified Farris method showed a slightly bet ter  
Performance than UPGMA in topology construction ex- 
Cept Under certain circumstances. This difference appar- 
ently oecured because the genetic distance based on I~ene 
frequency data is subject more often to "backward"  and tt  

parallel', changes than the estimate of  nucleotide sub- 
stitutions. 

Note that in the presence o f  stochastic errors the ge- 
netic distance between a pair o f  populations may  occa- 
Sionally decrease in the evolutionary process (see below), 
though the expected value always increases. Estimates of  
nUcleotide substitutions are also subject to backward 
and Parallel mutations,  but  the chance o f  occurrency of  
these events is much lower in this case than in the case 
of gene frequency data. In our previous paper we con- 
eluded that the performance of  UPGMA is better than 
the l~arris and modified Farris methods when the coeffi- 
cient of  variation of  branch lengths is small. However, 
We now realize that  in the previous study the smaller co- 
efficient o f  variation was associated with a larger number  
of nUcleotide substitutions, and in this case there were 
n~any backward and parallel mutations.  Therefore, we 
can COnclude that  in bo th  cases o f  nucleotide substi- 
tution and gene frequency data UPGMA shows a good 
Performance when there are many  backward and parallel 
changes. 

The fact that  genetic distance occasionally decreases 
in the evolutionary process can be seen from Table 13 
and l~ig. 5. Table 13 shows one example of  allele fre- 
qaeney changes at a locus in a simulated population for 
the ease of  M = 0.004. These frequency changes are 
~ S e d  by random genetic drift and mutat ion.  It  is clear 

at the allele frequencies for time T = 1000 x vt = 16 
i l  c~ different from those for T = 8 but  iden- 

..al With those for t ime T = 0. Therefore, if we compute  
s distance D from this locus alone, it becomes 0.100 

~ween T = 0 and T = 8 but  0 between T = 0 and T = 

0.20 - ] \  
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Fig. 5. Relationships between genetic distances and evolutionary 
time in one replication of computer simulation. Observed 
distance represents the distance between generation 0 and its 
descendant generation. 4Nv = 0.2, M = 0.004, and the number of 
loci used is 20. The straight line represents the expected value 
of D 

16. Thus, the genetic distance first increases with evolu- 
t ionary time and then declines to 0. Of  course, computa-  
tion of  D from one locus is meaningless; D has to be 
computed  from many loci. However, even if 20 to 30 
loci are used, D still may  decline occasionally. This c a n  
be seen f rom Figure 5, where the genetic distances based 
on 20 loci between generation 0 and other generations 
are presented. It is seen that D is subject to a considera- 
ble amount  of  random fluctuation and occasionally 
declines. Particularly from T = 40 to T = 48, D shows a 
drastic decrease. Random fluctuation of  D around E(D) 
= 2vt decreases as the number  of  loci increases, but  our 
simulation has shown that  even with 100 loci the fluc- 
tuation is not negligible. We note that in UPGMA the 
effect o f  this random fluctuation is reduced because the 

"rable 13 ~ An example of gene frequency changes in a simulated population. Time is expressed in terms of 
• vt, where v and t are the mutation rate and generation, respectively. 4Nv = 0.2 and M = 0.004 

Allele 
Time 

0 8 16 24 32 40 48 5fi 

`kl •2 0.52 0.76 0.52 0.40 0.30 0.24 0.22 0.14 
`k3 0.48 0.24 0.48 0.60 0.68 0.70 0.76 0.78 
`k4 . . . .  0.02 0.06 - - 
,k S . . . . . .  0.02 0.04 
`k6 . . . . . . .  0.02 

. . . . . . .  0.02 
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branch lengths of a tree are estimated by averaging 
several distance values. In the Farris and modified Farris 
methods random fluctuation of distances is assumed to 
represent the real genetic differences between OTUs. 
Figure 5 shows that D R, f0, and D A behave in essen- 
tially the same way as that of D, though they are non- 
linearly related to evolutionary time. (The behavior of 
D m is also essentially the same as that of D, though it is 
not shown here.) 

We have seen that in all the three tree-making meth- 
ods examined distance measure D A tends to give a better 
topology than the other measures, whereas D generally 
gives a better estimate of branch lengths (small values 
of SE) compared with the others. This suggests that D A 
be used for making topology and D be used for estimat- 
ing branch lengths. In this case the topology can be con- 
structed either by the modified Farris method or by 
UPGMA, and once the topology is obtained, the branch 
lengths can be estimated by the distance-averaging meth- 
od similar to that of UPGMA (Tateno et al. 1982). Of 
course, the advantage of D A over D in topology con- 
struction is not always great. Furthermore, actual gene 
frequencies are also affected by other factors such as 
experimental errors, fluctuation of population size, etc., 
so that genetic distances are expected to be subject to 
even larger random errors. Therefore, we are not sure 
that it is always worth spending more time for this com- 
bined method rather than using UPGMA with D. 

Swofford (1981) compared the efficiencies of 
UPGMA, Farris' (1972) method (slightly modified), and 
Fitch and Margoliash's (1967) methods of tree-making 
by using immunological or eleetrophoretic distance data. 
He concluded that the Farris method is the best and 
UPGMA is the poorest. This conclusion is based on the 
comparison of patristic distances with observed distances 
similar to our S O. As shown by Tateno et al. (1982), 
however, S O is not a good measure of the accuracy of 
a reconstructed tree. Particularly when one is interested 
in making a species-tree, it is a poor measure. Further- 
more, even in obtaining a small value of S O the Farris 
method is not necessarily better than UPGMA, as shown 
in the present paper. 

Some numerical taxonomists claim that the genetic 
distance measures used in phylogeny construction 
should satisfy the triangle inequaltiy. They give two ar- 
guments for this. First, when one wants to represent the 
species of populations concerned in a multidimensional 
space and measure the geometric distances between 
them, it is necessary to use a metric that obeys this prin- 
ciple. Second, if every estimate of genetic distance be- 
tween OTUs represents the sum of actual number of 
gene substitutions for all relevant branches of the true 
tree, then the triangle inequality should hold. Represen- 
tation of populations in a multidimensional space is 
mathematically interesting, but it is not necessary for 
tree-making. Furthermore, the geometric distance be- 
tween populations measured in this way is not propor- 

tional to the number of gene substitutions, and thus it 
is inappropriate for measuring genetic distance (Nei 
1978a). (Genetic distance is the extent of genetic 
difference between two populations as measured by 
codon or nucleotide differences.) Namely, their first 
argument cannot be accepted. 

Their second argument looks reasonable at first sight, 
but actually it is not realistic. As mentioned earlier, D is 
an asymptotic metric, and thus if a very large number of 
loci are used, the genetic distance between any pair of 
OTUs will represent the sum of the number of gene sub" 
stitutions for all relevant branches at least theoreticallY" 
In practice, it is virtually impossible to examine hun" 
dreds or thousands of loci for phylogeny construction 
at the present time. Therefore, we must estimate the ge" 
netic distance from a smaller number of loci, and in the 
process of this estimation the metricity of D is disturbed 
by statistical errors. In other words, Nei's (1972) D is an 
estimate of E(D) in (2) and may deviate from this sub" 
stantially when the number of loci is small. NevertheleSS' 
it is possible to construct a reasonable phylogenetic tree 
by using D, as shown in this paper. Actually metricity is 
not really required for tree-making as long as a prop er 
distance measure and a proper tree-making method ate 
used. In this connenction it should be noted that usOal 
estimates of nucleotide or amino acid substitutions are 
also a nonmetric, because they are estimated statistically 
by taking into account back mutations, parallel muta" 
tions, and multiple mutations, and essentially the s a~e 
argument as the above applies to these estimates (see Ta" 
teno et al. 1982). 

Recently, Farris (1981) criticized Sarich and Wils oa's 
(1967) immunological distance and Nei's (1972) diS" 
tance for their nonmetricity, and claimed that any ao~" 
metric distance cannot show clocklike behavior. He aP" 
parently failed to see that molecular clock is stochaStiC 
rather than deterministic and subject to errors due t0 
backward and parallel mutations. Nonmetricity itsel~ 
does not deprive clocklike behavior. Furthermore, his 
criticism on D is based on gene frequency differences 
for one locus. In practice, D is designed to be used f0I 
many loci and should never be used for one locus t Nei 
1972). Note also that, unlike Farris' assumption, tlle 
amount of gene frequency difference between two pop" 
ulations is not proportional to evolutionary time whetl~" 
er there is selection or not. This is an elementary k ~~ 
ledge in population genetics. In Farris' view no negatiee 
estimates of branch lengths are allowed in tree construe" 
tion. However, we have shown that negative branCt~ 
length can occur legitimately when distance estiraateS 

Trhebya:: d ~ a d~iV:lmY ;l~lnagl nu~beot~ fb ~~ 5~i 

the distance measure used. If we forbid negative estV 
mates, the estimates will no longer be unbiased, and dais 
biasedness will introduce another source of errors i0 
tree-making. Considering gene frequency differences 
at a single locus, Farris (1981) stated that none of tlle 



distance measures currently available permits path 
length interpretations. As mentioned above, how- 
ever, genetic distance should not be computed from a 
Single locus. It is also very important to know the dy- 
rtamics of gene frequency changes in populations for 
making a proper interpretation of branch lengths. Only 
When this dynamics is taken into account properly, can 
one develop a distance measure that is proportional to 
evolutionary time. D has been developed exactly in this 
Way. 

As mentioned earlier, Rogers' (1972) distance (DR) 
has often been used in conjunction with the Farris meth- 
(~d, because it satisfies the triangle inequality. The fact 
that this distance does not give negative branches when 
the Farris method is used seems to have been attractive 
to SOme workers. However, metricity of distance itself 
does not give any advantage in tree-making, as we have 
Seen in our computer simulation. Just like D, this dis- 
tance may occasionally decrease in the evolutionary 
Process because of  stochastic errors, and thus D R does 
not necessarily show the true genetic.relationship among 
O]'Us. For example, in Table 3 the observed values of 
Ul( for OT 8 (3~-, Us 1 and 6, 1 and 7, and 6 and 7 are 0.67 , 
n'~._ ~ and 0.733, resnectivelv These values suggest that 

i and 7 are most closely related among the three 
OTUs. In the true tree (Fig. 1 a), however, 1 and 6 are 
~ r e  closely related than 1 and 7. In the Farris method 
OServed values of genetic distances are assumed to re- 

Present true distances, but as is clear from this example ~ Y are generally quite different from true distances. 
t~i is erroneous assumption is also one of the reasons for 
o e POor performance of this method. In UPGMA ob- 
Oe_fred distances are regarded as estimates o f  true dis- 
Unees, and with this understanding branch lengths of 

ac.!ec~ tree are estimated (cf Nei 1975). In- 
lclentally, UPGMA also does not produce negative esti- 

e~ates of branch lengths, and if the topology reconstruct- 
~_ is COrrect, UPGMA Rives least-squares estimates of 
~ lengths (Chakraborty 1977). 
�9 t this point it should be indicated that in addition tt~ i 
h~ ts nonlinear relationship with evolutionary time D R 
s~.an~ theoretical defect. Namely, it is not neces- 
~ruy 1 even when the two populations concerned have 

n~ Shared alleles. This occurs when the populations are 
P~ For example, when there are five nonshar- 
ed alleles in each population and all allele frequencies 
~rth eq.ual, i.e. 1/5, we have D R = 1/,f5 = 0.45.On the 
ali't er hand, if the two Donulations are fixed for different 

t ohlo i R becomes 1. From the genetic point of view, 
With Sa poor property. A similar property is observed 
Wk: t J  or the Manhattan distance (EZIxii -Yij[) 

,uctt is often advocated by numerical taxonomists. 
n.~n the present study we have assumed no selection. 
~ t l r  c " 
i~ t L Onclusion, however, would not change very much 
e,- ue Presence of advantageous mutation, as long as the 

"~ e T~P cted rate of gene substitution remains constant. 
p'r~Z. ~s because the distribution of D is not affected ap- 

elable by advantageous selection (Chakraborty et al. 
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1977). However, our assumption of constant rate of 
gene substitution may not hold under certain circum- 
stances. This is particularly so with gene frequency data, 
because the extent of genetic distance is affected by the 
bottleneck effect (Chakraborty and Nei 1977). When 
long-term evolution is considered, the effect of varying 
rate of  gene substitution is generally to increase the vari- 
ance of  genetic distance, and thus it increases the rela- 
tive merit of UPGMA over the other methods (Tateno 
et al. 1982). When short-term evolution is considered 
and the bottleneck effect on genetic distances remains 
or when the entire set of genes is subjected to the same 
directional change for a relatively short period of  time, 
the modified Farris method is expected to be better than 
UPGMA. However, a more detailed study should be con- 
ducted on this point. 

In our simulation we used 8 OTUs to save computer 
time. However, Tateno et al.'s (1982) study with nucleo- 
tide sequences for 32 OTUs suggests that as the number 
of  OTUs increases, the distortion index (dT) of  a recon- 
structed tree rapidly increases and when the number is 
large the chance of obtaining the correct topology is ex- 
tremely small unless the number of loci used is very 
large. Therefore, it is advisable not to include many 
OTUs in tree making. If OTUs to be studied can be di- 
vided into groups, it seems better to construct a tree 
first among groups and then within groups. 

In the present paper we have been concerned with 
construction of phylogenetic trees from gene frequency 
data. In recent years evolutionists (e.g. Brown et al. 
1979; Avise et al. 1979; Shah and Langley 1979) 
started to use the restriction endonuclease technique to 
study the genetic differences between species or popula- 
tions. In this case the number of  nucleotide differences 
per nucleotide site can be estimated by the statistical 
methods of Nei and Li (1979), Kaplan and Langley 
(1979), and Gotoh et al. (1979). The estimates obtained 
by these methods have a statistical property similar to 
that of  Nei's D. Therefore, the conclusions obtained in 
this paper seem to apply to these estimates as well. In 
this case, however, we must increase the number of en- 
donucleases used to raise the accuracy of a reconstructed 
tree. 
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