I Mol Evol (1983) 19:153~170

Journal of
Molecular Evolution

© Springer -Veriag 1983

ACCUTaCy of Estimated Phylogenetic Trees from Molecular Data

1L Gene Frequency Data

M o
aatoshi Nei, Fumio Tajima, and Yoshio Tateno*

Cent
et for DemOgraphic and Population Genetics, The University of Texas at Houston, Houston, Texas 77023

Summ

fo ary. The accuracies and efficiencies of three dif-

r;ent methods of making phylogenetic trees from gene
aﬁ‘})‘lency data were examined by using computer simu-
(1 97';' The methods examined are UPGMA, Farris’
a _) method, and Tateno et al.’s (1982) modified
or s methpd. In the computer simulation eight species
giverI:Opula’uons) were assumed to evolve according to a
e mo_del tree, and the evolutionary changes of allele
madetlmcxes were followed by using the infinite-allele
ic dist' At the end of the simulated evolutior‘x ﬁve genet-
a“cesance measures (Nei’s standard and minimum dis-
mOd‘f’ Rogers’ distance, Cavalli-Sforza’s fg, and the
“dttied Cavalli-Sforza distance) were computed for all
eacrs Zf species, and the distance matrix obtained for
1 istance measure was used for reconstructing a
gnogenetic tree. The phylogenetic tree obtained was
in dic:t(’mparec'l with the model tree. The results obtained
accurae- that in all tree-making methods examined the
recc‘cws, of both the topology and branch lengths of
. Nstructed tree (rooted tree) are very low when the
Wity ‘;f of lo_ci used is less than 20 but gradually increase
fNCreasing number of loci. When the expected

is ber of gene substitutions (M) for the shortest branch
the ‘tOOI more per locus and 30 or more loci are used,
iney ic’iOIngal error as measured by the distortion
the 00( 1) is not great, but the probability of obtaining
logi ‘;}Tlect top‘ology (P) is less than 0.5 even with 60
0w;r IEn M‘ls. as small as 0004, P is substantially
P Ul;Grltd obtaining a good topology (small dy and high
" A and the modified Farris method generally
Pooy 2 better performance than the Farris method. The
Performance of the Farris method is observed
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even when Rogers’ distance which obeys the triangle
inequality is used. The main reason for this seems to
be that the Farris method often gives overestimates of
branch lengths. For estimating the expected branch
lengths of the true tree UPGMA shows the best per-
formance. For this purpose Nei’s standard distance
gives a better result than the others because of its linear
relationship with the number of gene substitutions.
Rogers® or Cavalli-Sforza’s distance gives a phylogenetic
tree in which the parts near the root are condensed
and the other parts are elongated. It is recommended
that more than 30 loci, including both polymorphic
and monomorphic loci, be used for making phylogenetic
trees. The conclusions from this study seem to apply
also to data on nucleotide differences obtained by the
sestriction enzyme techniques.

Key words: UPGMA — Farris’ method — Modified Farris
method — Genetic distance — Topological errors —
Errors in branch length — Triangle inequality.

Introduction

In the previous paper (Tateno et al. 1982) we studied
the accuracies of four different methods of constructing
phylogenetic trees for molecular data by using computer
simulation. The strategy used was to simulate the evolu-
tionary changes of nucleotide sequences for a given num-
ber of species and compare the phylogenetic tree recon-
structed from simulated sequence data with the hypo-
thetical model tree following which the species evolved.
In this study we were primarily concerned with long-
term evolution, so that the polymorphism within species
was ignored. When a phylogenetic tree for closely related
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species or populations is constructed, however, the ef-
fect of polymorphism cannot be neglected. In this case
we must consider all polymorphic alleles and their fre-
quency changes in populations and measure the genetic
distance between populations statistically. The purpose
of this paper is to conduct this type of study and com-
pare the accuracies and efficiencies of different tree-
making methods for allele frequency data.

A somewhat similar study was previously conducted
by Kidd and Cavalli-Sforza (1971). These authors as-
sumed that the evolutionary change of their “character”
follows the Brownian motion, so that each character
showed the normal distribution in all generations. How-
ever, it is known that the allele frequency change is
typically non-Brownian, though it can be approximated
by the Brownian motion under special circumstances
in terms of arcsine or normid transformation (Cavalli-
Sforza and Edwards 1967; Cavalli-Sforza and Piazza
1975). Furthermore, they did not consider new muta-
tion or extinction of alleles which inevitably occur in
the evolutionary process. Therefore, their theories are
not directly applicable to actual allele frequency data.
In the following we shall consider a more realistic model
of the genetic change of populations by using Kimura
and Crow’s (1964) infinite-allele model of mutation.

In the previous paper we examined four different
tree-making methods, i.e., UPGMA (Sneath and Sokal
1973), Fitch and Margoliash’s (1967) method, Farris’
(1972) method, and Tateno et al.’s (1982) modified
Farris method. In the present paper we shall exclude
Fitch and Margoliash’s method, because it requires a
large amount of computer time and our previous study
has shown that it is not as efficient as the modified
Farris method.

Some of the preliminary results of this study have
been published by Tateno (1982). He used Nei’s genetic
distance and his own distortion index for comparing
the topological errors of the trees reconstructed by the
above three methods. His results showed that the distor-
tion indices of the three methods are more or less the
same. In this paper we present the results of our compre-
hensive study on the relative merits of the three tree-
making methods by using Robinson and Foulds’ (1981)
distortion index and five distance measures. We shall
show that UPGMA with Nei’s standard distance general-
ly gives a better tree than the other two methods.

Models and Methods of Computer Simulations

1) Genetic Distance. One of the most frequently used
measures of genetic distance for molecular data is Nei’s
(1972) standard genetic distance (D). This measure is in-
tended to estimate the average number of codon (gene)
substitutions per locus. In the study of genetic relation-
ship among closely related organisms allelic differences
are usually studied by electrophoresis. In this case the

genetic distance obtained is expected to be considerably
lower than the actual number of codon substitutions:
since electrophoresis does not detect all codon differ-
ences between alleles. However, D is expected to be
proportional to the number of codon substitutions, U8
less the distance is very large (Nei 1978a).

Consider two populations, X and Y, and let x;; and
y;; be the frequencies of the i-th allele at the j-th OCUS
in’ populations X and Y, respectively. D is then defined
as

D =-log, (JXY/\/JXJY) , )
where
I mj r My
JX=2 z xijzlr s Jy=2 Z yijz/r s
j i joi
and
r M
Jxv=f 213 X/t

in which m, is the number of alleles at the j-th locus and
r is the number of loci studied. Using the infinite-allél?
model of mutation (Kimura and Crow 1964), Nei (1 972)
has shown that the expectation of D when a large nuf®
ber of loci are used is given by

E(D)=2vt , @

where v is the mutation rate or the rate of gene subst”
tution per locus per generation and t is the time sinc®
divergence between populations X and Y. The sampling
variance (Nei and Roychoudhury 1974; Nei 1978b) and
drift variance (Li and Nei 1975) of D have also bee?
worked out.

Recently Farris (1981) claimed that D is not appr®
priate for making a phylogenetic tree, because it is 10
a metric and does not obey the triangle inequality. It ©*
therefore interesting to see whether this measure gives
a poor performance in tree-making compared with met”
ric distances such as Dp in (5). It should be noted the!
the nonmetricity of D oceurs because of the stochastic
nature of gene substitution. Theoretically, as the numbe
of loci used increases, D gradually attains metricity- In
other words, it is an asymptotic metric.

A measure related to D is Nei’s (1973) minimu®
genetic distance (D). It is defined as

m:

J 2 3)
iz-:'-l (xij - yij)

p =1 3
m_-2_r—j=l

The expectation of D is

E(D,)=J(1-¢2' | @



W:Iere J is the expected homozygosity and is assumed to
andc?\?s}am throughout the evolutionary process (Li

€1 1975). The sampling and drift variances of
153“741:““’? also been studied (Nei and Roychoudhury
felaﬁ’ Li ‘and Nei 1975). It is clear from (4) that the
t < Olns}np ?etyveen D_ and t is nonlinear but when
Vit 1(2v) it is approximately linear, ie., E(Dm) ~
are t Therefor.e, when closely related populations
makio be studied, this measure can also be used for

ng a phylogenetic tree.
aXAHOther measure that is often used for molecular
Onomy is Rogers’ distance. This is defined as

r mj

S O ©)
22?:hauﬂ1f)rs prefer this measure, because this satis-
. 1€ principle of triangle inequality. We note that
de»l:]s (1972) method of tree making was originally
Ciple OPEd‘ by using a metric that satisfies this prin-
or o It l.s therefore interesting to examine whether
me tllllOt t_hls measure gives a better tree when Farris’
abOuOd is used. No analytical study has been made
divet the expected relationship between D and
atiorgence time, but Nei’s (1976) computer simu-
Crean h.as shown that as t increases Dy rapidly in-
%8S in the early stage of evolution but the rate
Increase of D, gradually declines as in the case
smallé}l‘thDR has an upper bound, which is usually

an 1 when r is large.
Sfoé’n}e human geneticists have used Cavalli-
ha a-s_(1969) measure fy after he showed that it
Similaritiy with Wright’s Fgp when there are

0
By two alieles at a locus. It is defined as
f,=4 & o
0~ j{l (1 _iz=:1 Xijyij) /(m] -1) . (6)

gav&lﬁ-_Sforza (1969) con/iectured that the expectation
o 8 Is given by 1- et/2N_where N is the effective
:Ulatmn size of populations X and Y. Nei (1976)
simwled that the relationship between fg and t is not as
Stagie as Cavalli-Sforza’s speculation but in thf‘, early
with of evolution fy again increases almost linearly
ute time. Nei (unpublished) also noted that this meas-
Stang Za' smaller coefficient of vgriation tha.n Nei’s
ore ar _dlstance (D) when D or fp is sma.ll: It is there-
ed f130881b1e that when a phylogenetic tree is construct-
or glosely related populations fy gives a better tree
oes.

ealji?WeVer, Cavalli-Sforza’s fg has one deficiency; it is
allelesy' dependent on the number of low-frequency
) In the sample, though these alleles do not contrib-
p°pl‘1,1er¥ much to the average gene differences between
o ations. It is known that the number of low-f:re-
samy ‘1:3’ {illeles increases substantially with increasing
Ple size, and thus fp is expected to decrease with
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increasing sample size even for the same pair of popu-
lations (see formula (6)). This deficiency can be removed
if we use the following measure.

1 I o
D,== j2=1 (l-i.z1 \/xijyij) . Q)
This has a close relationship with Bhattacharrya’s
(1946) angular transformation, and it can be shown
that D, is proportional to Sanghvi’s (1953) distance
when the distance is small. It does not depend on the
number of low-frequency alleles very much, since
m. in the denominator of (6) has been eliminated.

In the present paper we have used the above five
distance measures to study the accuracies and effi-
ciencies of the three tree-making methods mentioned
earlier. One (Dg) of the distance measures is a metric,
but the others are not unless a very large number of
loci are used. As will be seen later, the accuracies and
efficiencies of the tree-making methods depend on
the distance measure used to a considerable extent.

2) Methods of Simulation. As in the previous paper,
we considered 8 populations or OTUs (operational
taxonomic units), and these OTUs were assumed to
evolve following the model tree in Fig. 3a of Tateno
et al. (1982). (This model tree is known to give more
errors in the reconstructed tree than the model tree
in Tateno et al.’s Fig. 3b, but the relative accuracies
of the three tree-making methods are nearly the same
for both model trees.) When the expected number
of gene substitutions (M) for the shortest branch in the
model tree is 0.1, it becomes Fig. Ia of this paper. Un-
like our previous study, however, we followed the
changes of allele frequencies in each population in the
entire evolutionary process rather than the changes of
nucleotide sequences by using computer simulation.
In this simulation the allele frequency changes were
assumed to occur by mutation and random genetic
drift, ignoring the effect of selection. In each generation
mutations were introduced at a specified rate, and the
genes for the next generation were sampled at random.
The mutations introduced were always new and differ-
ent from the extant alleles. When a population split into
two, we assumed that two identical populations were
produced in a particular generation and immediately
reproductive isolation was generated. In practice, there
would generally be some migration at least for a while
after two populations are separated, but the effect of
this migration is known to be small unless the evolu-
tionary time considered is extremely short (Li 1976).
We also assumed that the population size (N) is the same
for all populations. :

In the present case the expected number of gene substi-
tutions (M in Fig. 3a of Tateno et al. 1982) for the unit
evolutionary time (the shortest distance), t,, is given by
vty. Note that Nei’s standard genetic distance measures
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the number of gene substitutions, so that the expected
distance between OTUs 1 and 2, for example,is D=2M =
2vt0 from (2). We used two different values of M, ie.,
0.004 and 0.1. The case of M = 0.004 roughly corresponds
to the differentiation of populations within a species,
whereas M = 0.1 corresponds to the differentiation of
species within a genus (see Nei 1975, pp. 184—185). In
both cases of M = 0.1 and M = 0.004 we used 4Nv=10.2,
which corresponds to an average heterozygosity of H =
4Nv/(1 + 4Nv) = 0.167. We note that in many Drosophila
species the average heterozygosity is of this order of mag-
nitude.

In the case of M = 0.004 we simulated the evolutionary
changes of gene frequencies using the Monte Carlo meth-
od described by Nei and Tateno (1975). From the study
of Li and Nei (1975), it is known that the mean and var-
iance of D for a given number of loci are determined by
Nv rather than by N and v separately. We therefore used
a high mutation rate (v =0.002) and a small effective size
(N = 25) to save computer time. Actually, we examined
the mean and variance of D for the case of v = 0.002 and
N = 50 in addition to the above case, but the results ob-
tained were virtually the same as those for v = 0.002 and
N = 25. The initial allele frequencies in the ancestral popu-
lation were generated by using Griffiths and Li’s (1983)
computer algorithm. At the end of the evolutionary pro-
cess, allele frequencies were recorded for all populations,
and the five genetic distances mentioned above were com-
puted for each pair of populations.

In the case of M = 0.1 the allele frequencies in the final
populations were generated by using Griffiths and Li’s
(1983) computer algorithm. This algorithm is based on
Griffiths’ (1980) theoretical work on the transient distri-
bution of allele frequencies and saves computer time to a
great extent when t is large. Unfortunately, this algorithm
does not give accurate results when vt is extremely small.
Griffiths’ theoretical distribution of allele frequencies is a
function of Nv and t only. Therefore, the results obtained
for given values of Nv and t are applicable to any popula-
tion size or any mutation rate as long as Nv remains the
same. In practice, however, we must know the number of
alleles in the sample to compute genetic distances. To spe-
cify this number we assumed that the alleles of which
the population frequency is equal to or higher than 0.001
are observable in the sample and m., is equal to the num-
ber of alleles satisfying this condition in the two popula-
tions concerned. This is equivalent to using a sample of
500 diploid individuals from a large population.

In both cases of M = 0.1 and M = 0.004, gene fre-
quency data were generated for 100 loci in each repli-
cation, and this was repeated 10 times. In each repli-
cation the five distance measures mentioned earlier were
computed by using gene frequency data for the first 10
loci, first 20 loci, first 30 loci,..., and all 100 loci to see
the effect of the number of loci on reconstructed trees.
Therefore, 50 distance matrices for 8 OTUs were ob-
tained in each replication. Both rooted and unrooted

trees were reconstructed by the three tree-making meth:
ods for each of these distance matrices. Thus, the tot
number of trees reconstructed in this study was 6000-
The most ancestral point (root) for the trees recot”
structed by the Farris and modified Farris methods w2
determined by assuming that the evolutionary rates O
the two most divergent OTUs are equal (cf. Tateno et al.
1982).

As discussed by Teteno et al. (1982), there are tWO
criteria for measuring the deviation of a reconstructe
tree from the model tree. One is the degree of distortio?
of the topology of the reconstructed tree,and the othef
is the amount of deviation of patristic (estimated)
branch lengths from true lengths. To measure the top®”
logical errors, we used Robinson and Foulds® (1981)
distortion index (d), which is roughly twice the nu™
ber of interchanges of OTUs required for converting th?
topology of a reconstructed tree to that of the true tre¢
(see Tateno et al. 1982). When the topology of a recol”
structed tree is correct, dT takes a value of zero. In add‘f
tion to d we also examined the proportion of repli-
cations in which the correct topology was obtained. To
measure the errors in the estimates of branch lengths:
we used Tateno et al.’s (1982) measures, i.e., the averag
deviation of patristic distances from the expected di%°
tances (SE) and the average deviation of patristic di¥’
tances from the observed distances (S,). Here the p%
tristic distance between OTUs i and j refers to the dis’
tance that is obtained by summation of the lengths of
all branches linking this particular pair of OTUs in th¢
reconstructed tree, whereas the expected distance is the
corresponding distance given by the model tree. The 0b*
served distance is simply the observed value between 2
pair of OTUs in the distance matrix.

Mathematically, Sg and S are defined as

se-[2 £ ;- Dae-m°, @
i>)

So=[2 £ ©;-DPia@-)" , O
i>j

where D ,D;, and D, are the patristic distance, ex’
pected distance, and observed distance between OTUs!
and j, respectively, and n is the number of OTUs.

When a small number of loci are used, the observed
number of gene substitutions per locus for a giveh
branch can be quite different from the expected numbe’
because of stochastic errors, even if the expected 2%
of gene substitution is constant. The tree that is subjec
to this type of errors or to truly varying rates of subst
tution is called gene-tree (Nei 1977, Tateno et al. 1982)-
Gene-tree will vary with the gene or group of genes used:
even though the true genealogical tree must be the sam?
for the entire set of genes in the genome. On the othef
hand, the tree that describes the actual evolutionay
pathways of the OTUs in question is called species-tre®



?::;t evolutionists are interested in knowing species-tree
useder' than gene-tree. Of course, as the number of loci
vor mcrease‘s, gene-tree is expected gradually to con-
of g to speCI.eS-t.ree (or genome-tree), if the average rate
. ffbne substitution per year is constant. In practice, the
o¢r of loci used is rather limited at the present time,
Ut it is still possible to estimate a species-tree. Nei
(1975) noted that species-tree can be estimated by
s GMA even if the number of loci used is not very
megtil' On the other hand, the Farris and modified Farris
0ds are intended to estimate a gene-tree.
As is clear from their definitions, Sg is intended to
Measure the deviation from the species-tree, whereas Sy
¢ deviation from the gene-tree.

ReSlllts

Topological Errors

1) Case of M = 0.]. Table 1 shows the expected num-
asfis of gene substitutions per locus (expected distances)
OTUthe observed values of D’s for all pairs of the eight
at S for the case of M = 0.1 in one replication (repli-
01 3) of computer simulation. These distances are
d::e‘.i on gene frequency data for 50 loci. It is clear that
of ll;l‘fe the large number of loci used the observed value
som Is appreciably different from the expected value for
€ pairs of OTUs such as 1 and 6 and 3 and 4. This is
genZOurse due to the stochastic nature of mutation and
frequency change in the evolutionary process.
0 the number of loci used is small, the deviations of
are Observed distances from the expected values are even
erger ) anq the deviations gradually decline as the num-
as of loci increases. However, our computer simulation
neglﬁl{OWn that even with 100 loci the deviations are not
1gible.
ec};ecause of this stochastic error the evolutionary tree
modnlStructeq is usually considerably different from the
‘ owe tree given in Figure la. Figures 1b, lc, and 1d
et the trees reconstructed by UPGMA, the Farris
ho.d, and the modified Farris method, respectively,
Using the observed values of D. The trees recon-

m

Table ¢
plicatiy
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a. Model tree
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Fig. 1. Model tree and reconstructed trees (b, ¢, d) by using D in
replication 3 of computer simulation. The value given to each
branch (or internode) in model tree is the expected number of
gene substitutions, whereas the corresponding number in re-
constructed tree is the estimate of branch length. 4Nv = 0.2,
M = 0.1, and the number of loci used is 50. (b) dp =0, Sg =
0.073, Sg = 0.109. (c) dy = 8, Sg = 0.250, S5 = 0.145. () dp =
2,Sg = 0.138, 84 = 0.106

structed by UPGMA have the same topology as that
of the true tree, though there are some errors in the
estimates of branch lengths. Therefore, the distortion
index for this tree is 0. The topologies of the trees
reconstructed by the other two methods are both
incorrect. The d. values for the Farris and modified
Farris methods are 8 and 2, respectively. Table 2
gives the patristic distances obtained by UPGMA and
the modified Farris method. The patristic distances
obtained by UPGMA tend to be close to the ex-
pected distances in Table 1, whereas those obtained
by the modified Farris method tend to be close to
the observed distances. Nevertheless, the differences
between the patristic and expected distances or be-
tween the patristic and observed distances are sub-
stantial in some pairs of OTUs. S; and Sj are re-
spectively 0.073 and 0.109 for UPGMA and 0.138 and
0.106 for the modified Farris method.

Observed values of genetic distances based on gene frequency data for 50 loci in one
n (replication 3) of computer simulation (above the diagonal) and expected numbers of

ge .
e Substitutions (below the diagonal). Nei's distance (D) is used. 4Nv=0.2,and M= 0.1

Ty 1 2 3 4 5 6 7 8

1

5 0260  0.434 0556  0.805 1249  1.063  1.297
3 0.2 0423  0.618 0803 1139  1.083 11259
X 04 04 0.808 0904 1200  1.291 1.556
S 06 0.6 0.6 0.786 1123  1.167 1422
. 0.8 0.8 0.8 0.8 0978 1340  1.567
7 10 1.0 1.0 1.0 1.0 1.459  1.650
3 12 12 1.2 1.2 1.2 12 1.487

14 14 1.4 1.4 1.4 1.4 1.4
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Table 2, Patristic distances obtained by UPGMA (below the diagonal) and the modified Farris
method (above the diagonal) from observed distances in Table 1, D is used. 4Nv= 0.2 and M = 0.1

OTU 1 2 3 4 5 6 7 8

1 0.260 0.434 0.556 0.732 1.086 1.137 1.362
2 0.260 0.423 0.626 0.803 1.156 1.207 1.432
3 0.429 0.429 0.800 0.977 1.330 1.381 1.606
4 0.661 0.661 0.661 0.786 1.139 1.150 1.415
5 0.824 0.824 0.824 0.824 0.978 1.029 1.254
6 1.138 1.138 1.138 1.138 1.138 1.459 1.684
7 1.234 1.234 1.234 1.234 1.234 1.234 1.487
8 1.463 1.463 1.463 1.463 1.463 1.463 1.463

Table 3. Observed distances (below the diagonal) and patristic distances (above the diagonal)
obtained by UPGMA when Dp is used. The same gene frequency data as those for Tables 1 and 2

are used. 4Nv=0.2 and M = 0.1

oTU 1 2 3 4 5 6 7 8

1 0.313 0.399 0.499 0.565 0.654 0.679 0.732
2 0.313 0.399 0.499 0.565 0.654 0.679 0.732
3 0.398 0.400 0.499 0.565 0.654 0.679 0.732
4 0.453 0.487 0.559 0.565 0.654 0.679 0.732
5 0.556 0.559 0.597 0.550 0.654 0.679 0.732
6 0.678 0.648 0.676 0.650 0.620 0.679 0.732
7 0.637 0.636 0.693 0.665 0.713 0.733 0.732
8 0.692 0.682 0.757 0.722 0.761 0.768 0.742

Table 4. Observed distances (below the diagonal) and patristic distances (above the diagonal) ob-
tained by UPGMA when fj is used. The same gene frequency data as those for Tables 1 and 2 are

used. 4Nv=0.2and M= 0.1

OTU 1 2 3 4 5 6 7 8

1 0.381 0.535 0.650 0.755 0.846 0.885 0.978
2 0.381 0.535 0.650 0.755 0.846 0.885 0.978
3 0.556 0.515 0.650 0.755 0.846 0.885 0.978
4 0.596 0.615 0.740 0.755 0.846 0.885 0.978
5 0.754 0.724 0.815 0.725 0.846 0.885 0.978
6 0.869 0.822 0.898 0.822 0.818 0.885 0.978
7 0.831 0.817 0.945 0.845 0.933 0.938 0.978
8 0.937 0.903 1.036 0.940 1.021 1.012 0.999

Table 3 gives the Dy values obtained from the
same gene frequency data as those used for computing
the D values in Table 1 and the patristic distances
obtained by UPGMA. It is clear that Dy is greater
than the expected number of gene substitutions when
this number is small but smaller than the expected
number when this is large. Thus, when the expected
number or expected distance is 0.2 (between OTUs 1
and 2), Dp is 0.313, and when the expected distance
is 1.4 (between OTU 8 and the other OTUs), it is 0.68
to 0.77. Clearly, Dy is not proportional to the number
of gene substitutions as indicated by Nei (1976) (see
also Figure 5). Furthermore, the patristic distances for
the tree obtained by UPGMA are not necessarily close
to the observed distances. A similar pattern is also ob-

served for Cavalli-Sforza’s distance fy, though this
quantity can be greater than 1 (Table 4).

Figure 2 shows the evolutionary trees constructed
by the three tree-making methods with Dy and fg fOf
the same set of gene frequency data (replication 3).
UPGMA again gives the correct topology for both
Dy and fy, but the other tree-making methods produc®
an incorrect topology. To compare the efficiencies ©
different tree-making methods, however, we must
examine the average performances of the methods 0vé
all replications.

Rooted Trees. Table 5 shows the proportion (P) of ref”
lications in which the correct topology was obtained:
Each value in this table is based on ten reconstruct?
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Fig. 2, Reconstructed trees by using Dp and fy
in replication 3 of computer simulation. The
value given to each branch is the estimate of
branch length. 4Nv = 0.2, M = 0.1, and the
number of loci used is 50. (a) dp = 0, SE =
0.448, Sg = 0.030. (b) dp = 6, Sg = 0.388,
8¢ = 0.086. (c) dT =4,8g= 0.449, 8¢ = 0.032.
E-0243 80—0068 ) dT—4 Sg =
0. 278 Sp=0.038

™ N OwmAE W~

Ta
ble §, The proportion of replications in which the correct topology was obtained. 4Nv = 0.2 and M= 0.1

E‘; of UPGMA Farris Modified Farris

D D. Dy f D, D D, Dy f, D, D D, Dy f, D,

Rooted tree

;g 0 0 0 0 ) ) 0 0 o 0 0 0 o 0 0
3 0 01 0 0 0.1 0 0 0 0 0 01 0 02 01 0.1
e 01 o1 01 01 02 0 0 0 0 0 02 02 0 02 01
5 01 01 01 03 01 01 01 0 01 0.1 02 03 02 02 03
6 02 02 02 03 02 02 01 01 02 0 03 03 03 02 03
% 02 03 02 03 03 01 01 0 01 0.1 03 04 03 04 03
80 04 04 04 04 05 02 0 0 0.1 0 04 04 03 04 03
% 04 05 04 03 0.6 02 01 01 01 02 06 07 05 05 09
100 05 05 04 04 06 03 01 01 02 02 07 07 07 06 09

06 07 06 03 07 05 03 03 03 05 08 08 08 06 09
. Unrooted tree
23 0 0 0 0 0 0 02 02 01 02 0 02 02 02 02
0 01 01 0 0 0.2 02 02 03 04 03 03 03 04 05 05
“ 01 o1 01 02 02 02 02 03 04 03 03 06 04 04 04
5 01 01 01 03 01 02 03 02 03 04 03 04 03 03 05
P 02 02 02 03 02 03 05 04 05 04 05 04 04 05 05
% 02 03 02 03 03 03 05 04 05 05 05 04 05 06 05
0 04 04 04 04 05 03 04 05 05 05 06 06 06 06 06
% 04 05 04 05 06 05 05 05 08 07 07 09 08 1.0 10
0 05 05 04 04 06 06 07 06 08 07 08 09 09 10 10

06 07 06 03 07 09 09 09 10 10 09 1.0 1.0 1.0 10

i‘;ees PWhen rooted trees are constructed by using 10
e 4 18 O for all tree-making methods irrespective of
of Io IStance measures used. It increases as the number

PeICeCI (r) increases, but even with 100 loci it is not 100

methn; In general, UPGMA and the modified Fam_s

’netho SI:IOW a better performance than the Farris

od with this criterion. The poor performance of
N nc;ms method seems to be due to overestimation of
lengths that occasionally occur in this method

(Tateno et al. 1982). This overestimation is caused by
chance effects, and it is larger in long branches than in
short branches. Furthermore, a large part of topolog-
ical errors in this method occurs when the root is given
to a reconstructed tree, as will be seen later.

The differences in P among different distance meas-
ures are rather small, but D and D, tend to give a
higher proportion of correct topologies than the other
distance measures. As mentioned earlier, Farris (1981)
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Rooted tree

Unrooted tree

Fig. 3. Relationships between dt and

the number of loci used for the case ©

o 50 100 o 50

Number of loci

criticized the use of D for the reason that it is not a
metric, and Swofford (1981) suggested that Dp be
used in conjunction with the Farris method. Table 5
indicates that for obtaining the correct topology Dy
shows a poor performance compared with the other
distance measures in any tree-making method. Indeed,
it is the poorest distance measure when the Farris
method is used. Clearly Farris’ or Swofford’s conten-
tion is not supported.

The average distortion indices (CTT) over ten repli-
cations for the case of M = 0.1 are given in Fig. 3 in
relation to the number of loci used. It is seen that the
‘TT for rooted trees is very large when r = 10 but rap-
idly declines as r increases. However, the decrease of
(TT with increasing r is nonlinear, and the rate of de-
crease in dp is not very large when r is equal to or
larger than 30. When 30 loci are used, d is already
about 2 in UPGMA, which means that the amount of
error of the reconstructed tree is about one interchange
of branches from the true tree. As the number of loci
increases further, HT decreases very slowly, and even

M = 0.1. Solid line: UPGMA. Chain lin¢
100 Farris method. Broken line: Modified Fart®
method

with r = 100, cTT is not 0. It is also seen that UPGMA
and the modified Farris method generally give a smallef
value of d than the Farris method for all values of I
This is so even when Dy is used as a distance measur®
This again refutes Swofford’s contention. The diffe”
ence in d—T between UPGMA and the modified Fart®
method is small, but the latter tends to show a little
better performance than the former when the numbe’
of loci is large. The differences among different distan®
measures are also small, though D, tends to give a bette!
topology than the other measures. There is a stronf
negative correlation between P and ET’ as expected.

Most evolutionists are interested 12
S 2

Unrooted Trees.
making a rooted tree, but under certain circumstance
unrooted tree is constructed. The topological errors fo
unrooted trees are equal to or smaller than those {0
rooted trees, because in rooted trees an additional err0f
may be generated in the process of putting the root- The
difference in topological errors between rooted and V%
rooted trees depends on the tree-making method; it 8



EECh.larger in the Farris and modified Farris methods
; 1 1n UPGMA. Thus, the proportion (P) of correct
OPologies obtained for unrooted trees is considerably
angher in the former two methods than in UPGMA for
giv); Number of loci (Table 5). In this case even 10 loci
cent t'hI‘e correct topology with a frequency of 20 per-
in r‘ he dT value is also smaller in unrooted trees than
IOOO%ted- trees and when the number of loci is 80 —
» Ay is often 0 or close to O (Fig. 3). In terms of d.

¢ modified Farris method generally shows the best
ferformance in topology-making irrespective of the dis-
ance measure used. These results are consistent with
terose obtained with nucleotide substitution in long-
) M evolution (Tateno et al. 1982). The Farris method
8enerally better than UPGMA when D_,Dy.fy.and

A re used, but when D is used, it is worse than the

:tter except when the number of loci used is 80 or
Iger,

f: Case of M = 0004, When M is very small, genetic dis-
19n7ce has a large coefficient of variation (Li and Nei
ox 5), so that the topology of a reconstructed tree is

Pected to be subject to a large stochastic error. Table
thzhows the proportion (P) of correct topologies among
son ten re:plications for the case of M =0.004. Compari-
tial of this table with Table 5 indicates that P is s.ubstan-
rooty lower for M = 0.004 than for M = 0.1 in both
tre e.d and unrooted trees. Particularly when a rooted

€ Is constructed with r equal to 30 or less, the correct
OPology i rarely obtained. In the case of rooted trees,
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the Farris method again shows the poorest performance,
and when Dy, is used no correct topology has been ob-
tained for any number of loci used. The modified Farris
method showed a slightly better performance than the
Farris method particularly when fy and D, are used.
UPGMA again shows the best result when P is used as a
criterion. Among the five distance measures examined,
fB and D A® particularly the latter measure, show a good
performance in all-the tree-making methods.

The values of dy. for M = 0.004 are presented in Fig-
ure 4. This quantity is always smaller in the trees recon-
structed by UPGMA than in those reconstructed by the
other two methods, and the d value for the modified
Farris method is generally smaller than that for the
Farris method. Therefore, the results obtained from this
criterion are virtually the same as those obtained from P.

As mentioned earlier, Tateno (1982) studied the
topological errors of reconstructed trees by using his
own distortion index DI but did not find much differ-
ence between the tree-making methods. He used only
Nei’s distance D for the case of M = 0.002. A close
examination of his Fig. 4, however, indicates that DI
tends to be smaller in UPGMA than in the Farris meth-
od. The small difference between the two methods
seems to be due to the inefficiency of his index.
Although there is a high correlation between d and
DI when dy is relatively small (Tateno et al. 1982),
DI is not proportional to the number of branch inter-
changes between the two trees compared. This non-
proportionality seems to have reduced the power to

T;
e 6. The proportion of replications in which the correct topology was obtained. 4Nv = 0.2 and M = 0.004

N
oot UPGMA Farris Modified Farris

D D, Dgp 1 D, D D, Dg f, Dy D D, Dy f, D,

Rooted tree

ég 0 0 0 0 0 0 0 0 0 o 0 0 U 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
50 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.1 0 0 0 0.1 0
50 0.1 0.1 02 01 02 0 0 0 0 0.1 0 0 01 0 0.1
70 0.1 0.1 0 03 03 0 0 0 0 0.1 0.1 0 02 03 05
80 0.1 0.1 0.1 0.4 0.3 0 0 0 0 0.1 0 0 0 0.1 0.2
9 0.1 0.1 0.1 04 03 0 0 0 02 0.1 0 0 0 02 03
109 0 0 02 05 0.4 0 0 0 02 0.1 0 0 0 0.1 0.2

62 02 02 03 06 0.1 01 0 01 0 0 0 0 02 02
. Unrooted tree
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0
40 0 0 0 0 0 0 0 0 02 0.1 0.1 01 0 0.1 0.1
50 0.1 0.1 02 02 01 0 0 0.1 02 03 0.1 0.1 02 02 02
60 01 01 02 01 02 02 01 0.1 02 02 02 0.1 02 0.1 0.3
7 0.1 0.1 0 03 03 02 01 0 02 0.2 02 02 03 03 0.5
80 63 03 01 05 03 0.1 01 01 05 05 0 0 0 02 04
90 02 02 03 05 03 0.1 0.1 0.1 0.6 05 0.1 0.1 01 05 0.3
109 0.1 0.1 03 06 04 0.1 0.1 0.1 06 04 0.1 0.1 0 0.5 0.3

03 04 04 07 0.3 04 0 04 03 02 02 0 05 03
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Rooted tree

Unrooted tree
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Fig. 4. Relationships between d and th®
number of loci used for the case of M
0.004. Solid line: UPGMA. Chain liné:
Farris method. Broken line: Modified Fartis
method

0 50 100 o S0

Number of loc;

detect the difference in accuracy of topology con-
struction between different methods. (Furthermore,
there were some errors in his construction of topol-
ogies.)

Figure 4 shows that, like the case of M = 0.1, D,
and fy give a smaller value of d than the other distance
measures. The better performance of fg compared with
D when genetic distance is small can be explained by
the fact that the coefficient of variation of fp is smaller
than that of D. To see whether or not all the results in
Table 6 can be explained by this factor alone, we com-
puted the coefficients of variation for all distance meas-
ures (observed values). Table 7 shows the results for
the case of 60 loci; the results for other numbers of loci
are not presented because they showed essentially the
same pattern as that for 60 loci. This table indicates that
fg and D, indeed have a smaller coefficient of variation
than D and D, but Dy, which has shown a rather poor
performance in topology making, also has a small co-
efficient. Therefore, the coefficient of variation alone
is not sufficient for explaining our results. Actually the

quantity which is more directly related to P or dris the
coefficient of variation of the estimates of the shortest
branches (internodes) of the tree in Figure 1a. Indeed;?
distance measure that has a relatively large value of
or a small value of d in Table 6 tends to show sm
coefficients of variation of the estimates of the shortes
branches (D, — D, in Table 7). Therefore, a st
value of P or a large value of ... is apparently caused oY
random errors of the differences between distance et

mates that correspond to the shortest branches.

The results for unrooted trees for the case of M’f
0.004 are somewhat different from those for the case ©
M = 0.1. Namely, unlike the case of M = 0.1, UPGM
generally shows a better performance in topology mak’
ing than the other two methods even for unrooted treeS:
This is clear from the values of P (Table 6) and dy (Fig:
4). On the other hand, the Farris and modified Far0®
methods show more or less the same values of P and
in all distance measures. As in the case of rooted tre””
D, and f, generally show a larger value of P and a sma

eSs



T?ble 7. Coefficients of variation of various distance measures.
ij Tefers to the distance between OTUs i and j» whereas Dy;-
kg 18 the difference between distances D;; and Dyg. 4Nv = 0.%,

Mﬂumber of loci used is 60

\D D Dr fo Dy
‘312 0.118  0.097 0.084 0078  0.121
n34 0302 0296 0.113  0.091 0122
D36 0.249 0226 0137 0111  0.176

o 0292 0280 0172 0126  0.170

¢ D2 0472 0467 0201 0187 0216

p¥ D3 0406 0383 0411 0253 0327

p6D3q 0657 0608 0682 0373 0535

p&7Dgs 1229 1115 1775 0.663  0.776

78-Dsg 1499 1478 1538 0724 0.895

:: Valuﬂ‘ of d. than the other distance measures in all
®making methods.
of ¢ (l)le effect of the number of loci used on the accuracy
dif Pology for the case of M = 0.004 is also slightly
°rent from that for the case of M = 0.1. In the case
= 0.1 the accuracy increased rapidly as the number
e Ci increased from 10 to 30, but after r = 30 the in-
8¢ of the accuracy was slow. In the case of M =
e:r)104 the' accuracy for rooted trees increases almost lin-
e \4 ll_ntll r reaches about 40, and then the rate of in-
3se is generally slowed down. When trees are made by
ve MA with D > however, d decreases almost linearly
% M up to r =100. Essentially the same pattern is ob-
™ed for unrooted trees.

of 1g

E
10t of the Estimates of Branch Lengths

1

a:cCaSe of M = 0.1. Another important criterion of the

maturacy of a reconstructed tree is the deviation of esti-
%S of branch lengths from true branch lengths. We
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have seen that the topology of the tree reconstructed
by UPGMA in replication 3 for M = 0.1 is correct irre-
spective of the distance measure used (Figs. 1b, 2a, and
2d). However, the estimates of branch lengths are con-
siderably different from each other. Comparison of these
trees with the true tree. (Fig. 1a) indicates that D gives
a better result for estimating branch lengths than other
distance measures. Indeed, the S value for D is 0.073,
whereas the Sg’s for Dp and f, are 0.448 and 0.270, re-
spectively. Therefeore, with this criterion the tree pro-
duced by UPGMA with use of D is the best among the
three. One might think that the Farris method gives a
good tree when Dy, is used. That this is not the case can
be seen from comparison of Fig. 2b and Fig. 1b. Com-
pared with D, Dy generally gives a tree in which the
part near the root is condensed whereas the other part
is elongated. This is because D_ is not proportional to
the expected number of gene substitutions. A similar
pattern is observed for D, f,, and D, , though the re-
sults for D_ and D, are not shown here. In other rep-
lications D did not necessarily give a correct topology,
but the properties of estimated branch lengths from the
five distance measures were essentially the same.

The average values (§E) of S;’s over all replications
for the cases of 20 loci, 60 loci, and 100 loci examined
are presented in Table 8. Since the general trends of the
effect of number of loci can be seen from these cases,
Sg’s for other numbers of loci are not included. The
value of S, varies considerably with the tree-making
method and the distance measure used. The smallest
value is obtained when UPGMA with D is used. This
supports our visual conclusion from Fig.1 and 2. When D
is used, the modified Farris method also shows a rela-
tively small value of Sg. In contrast, the S for the
Farris method is nearly twice as large as that of UPGMA.
This large value of S is apparently caused by overesti-
mation of branch lengths (Tateno et al. 1982, Table 9).

Tay _
Jg 8. Means of average deviations of patristic distances from expected distances SSE). 4Nv = 0.2 and
we results are based on 10 replications. All values should be divided by 10
D D Dp £, D,
Urg 20 loci
Farri?A 252+ 26 539: 12 457 + 11 305 + 17 426 13
odif 461 * 66 497 + 13 417 + 13 272+ 16 386 + 14
'ed Farris 291 31 539+ 11 458 + 10 309 + 16 427+ 12
Up 60 loci
G
Farri?A 136 £ 10 540+ S 456+ 4 295 + 11 426+ 5
odif; 225+ 12 511+ 7 430z § 268 £ 12 397+ 5
ted Farris 161 9 541+ § 457+ 4 297 £ 10 427+ 5
UP(; 100 loci
Farg A 122+ 8 534+ 5 452+ 4 296+ 8 420+ 5
Mogig; 204 + 13 510+ 5 427+ § 271+ 9 395+ 6
¢d Farris 140+ 6 535+ 5 452+ 4 297+ 8 421+ S




164

In the case of D, §E decreases as the number of loci
used increases, as expected.

When the other distance measures are used, UPGMA
no longer gives the smallest value of §E. On the con-
trary, this method and the modified Farris method give a
larger value of §E than the Farris method. The smallest
value of Sp for the Farris method when D, Dg: f o> and
D, are used is apparently due to the nonlinear relation-
ship of these distance measures with the number of gene
substitutions and overestimation of branch lengths in
this method. As mentioned earlier, the values of these
distance measures are usually smaller than the number
of gene substitutions when the latter is larger than about
0.6 (Tables 1, 3, and 4), whereas the Farris method tends
to give overestimates for long branches. Therefore, when
the Farris method is used, the differences between pa-
tristic distances and expected distances are reduced to
some extent. When D, Dp, fp, and D, are used, -S—E
does not necessarily decrease with increasing r; rather it
remains nearly the same irrespective of the number of
loci used. This is due to the fact that the expectations of
these distance measures are not equal to the branch
lengths of the true tree, i.e., the expected numbers of
gene substitutions, and thus even if the effect of stochas-
tic errors are reduced, §E does not necessarily decrease.

The fact that the Farris method indeed gives overes-
timates of long branches in the present case can be seen
from Table 9, where the observed values of D and the
patrisitic distances for some pairs of OTUs are presented.
It is clear that the patristic distances obtained by UPG-
MA and the modified Farris method are close to the ob-
served distances and none of the differences is statisti-
cally significant. In the case of the Farris method, how-

ever, the patristic distances are generally greater than the
observed values particularly when the distance is larg®
This result corrorates Tateno et al.’s (1982) similar find-
ing with the evolutionary trees reconstructed from n¥
cleotide sequence data. A similar tendency was also ob-
served for the case of M = 0.004 in the present study. Al
this point it should be mentioned that overestimation 0

branch lengths in the Farris method occurs by chance ef
fects, so that the variance of the estimates is also ecpect’
ed to be large. Comparison of the standard errors of th°
estimates in Table 9 among the tree-making methods 1
dicates that this is indeed the case.

In Table 8 fy gives a smaller value of S than the ot
er distance measures except D. This is caused by large
patristic distances for f, for long branches except for D»
as seen from Tables 1—4.

Although S is a quite good measure of the deviatio®
of patristic branch lengths from true branches (Tateno ot
al. 1982), it cannot be computed for a tree constructé
from actual data because in this case we do not kno¥
the true tree. For this reason the average deviation ©
patristic distances from observed distances (S) or 2 sim’
ilar quantity has been used by many authors (e.g. Fitch
and Margoliash 1967; Farris 1972; Prager and Wilso?
1978). Tateno et al. (1982) have shown that this qua”
tity is a rather poor measure of deviation of estin‘lﬂt‘gd
branch lengths from true or actual branch lengths, bv
because there is no other measure computable they hav®
suggested that S be used as a very crude measure. They
have also noted that there is little correlation betwee”
Sg and S or between S, and d. .

At any rate, when D is used, the S, values for t
trees reconstructed by UPGMA, the Farris method, 2"

Table 9. Observed and patristic distances for some pairs of OTUs for the case of M = 0.1. The
distance measure used is D. The results obtained are based on ten replications

OTUs Observed Patristic distance
distance UPGMA Farris M-Farris

20 loci

1 and 4 0.54 £ 0.04 0.54 = 0.05 0.56 £ 0.05 0.54 £ 0.05

land 6 1.09 £ 0.10 1.12 £ 0.07 1.29 £ 0.17 1.08 £ 0.10

land 8 1.69 £ 0.17 1.56 £ 0.11 2.02 £ 0.17*** 1.65 + Q.11
60 loci

1and 4 0.53 £ 0.04 0.54 + 0.04 0.55 £ 0.04* 0.54 £ 0.04

land 6 1.00 + 0.05 1.01 £ 0.04 1.10 £ 0.07* 1.00 = 0.05

land 8 1.51 £ 0.08 1.54 £ 0.04 1.70 + 0.08** 1.55 + 0.06
100 loci

land 4 0.55 +0.03 0.56 £ 0.02 0.57 £ 0.03 0.55+0.03

1and 6 1.05 £ 0.05 1.05 £ 0.04 1.11 £ 0.06* 1.02 £ 0.05

land 8 1.56 + 0.05 1.55 £ 0.03 1.77 £ 0.04** 1.56 + 0.03

*, %% and *** indicate that the difference between the observed and patristic difference is sig-
nificant at the 5%, 1%, and 0.1% level, respectively. Statistical tests were done by using the t-
test based on pairwise comparisons rather than on the standard errors given in the table



;2‘(’1 ?Odiﬁed Farris method in replication 3 (in Figs. 1
3 ) are 0.109, 0.145, and 0.106, respectively. There-
mre aCf{ording to this criterion, the modified Farris
®thod is the best and the Farris method is the poorest.
ribée 10 shows the §O values over all replications for
Unm?’ 60,and 100 in the case of 4Nv=0.2and M =0.1.
for alf S.E’ Sy declines with increasing number of loci
it 'dlst.ance measures. This is understandable because
fang Stic distances are now compared with observed dis-
Stituet's rather than with expected numbers of gene sub-
st lons. When D is used, UPGMA no longer shows the
ot performance according to the criterion of SO; the
meth Performance is attained by the modified Farris
Bngt}(:d. In other words, for estimating the branch
tor 8 of a gene-tree the modified Farris method seems
o :hbetter than UPGMA. This result is the same as that
1 982)3 case of nucleotide substitution (Tateno et al.
- The S, values for other distance measures are
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smaller than for D because of their smaller absolute val-
ues for long branches. In all distance measures the modi-
fied Farris method gives the smallest value of S, and
the Farris method gives the largest value. The large value
for the Farris method is caused by overestimation of

branch lengths.

2) Case of M = 0.004. Table 11 shows the §E for the
case of M = 0.004. When D is used, the relative values of
Sg for the three tree-making methods and the effect of
number of loci are more or less the same as those for the
case of M = 0.1, though the absolute values of Sy are
much smaller in this case. In the other distance mea-
sures, however, the relative values of S—E are not the same
as those for the case of M = 0.1. Unlike the previous
case, the Farris method gives a larger value of Sg than
other two methods in all cases but one. This is, however,
again caused by overestimation of long branches in this

Ta —
ble 19, Means of average deviations of patristic distances from observed distances (S ). 4Nv=0.2 and

0.1, These results are based on 10 replications. All values should be divided by 103

D D Dy f, D,

U 20 loci
F:ﬁMA 205 + 26 43¢5 43+ 4 594 47+ 5
Mogs 268 + 45 72+8 73+ 10 819 73¢8
ified Farris 136 + 19 38+ 4 39: 5 451§ 37¢4

Up 60 loci
parG.MA 97+ 9 25 +2 4t 2 40+ 1 27£2
Mogin 118 + 10 445 41+ 4 496 4556
ied Farris 72+ 6 2242 20 1 2612 212

U 100 loci
F:SMA 78+ 6 191 20+ 1 30+2 2:1
odif 118 £ 13 36+ 4 36+ 3 41:4 374
ied Farris 60+ 4 18+ 1 18: 1 2242 19¢1

Ty _
ble 11, Means of average deviations of patristic distances from expected distanges (Sg). 4Nv=0.2 and

*0.004. These results are based on 10 replications. All values should be divided by io4

D D Dy £, D,

U 20 loci
pa,(;’.MA 152 + 13 136 + 14 768 + 41 1348 £ 47 237+ 19
Modig 242+ 18 179 + 10 917 + 41 1587 £ 64  351%32
tied Farpig 170 £ 10 148 + 11 783 + 41 1365 + 48 248 + 20

Un 60 loci
Fa,S'iMA 92+ 10 90 + 14 774 + 35 1294 + 19 188 + 15
Modisf- 157 + 15 108+ 8 876 + 40 1455 + 24 25320
ted Farris 103+ 9 98 + 12 778 + 35 1303 « 18 193+ 15

UPG 100 loci

Fa,ﬁ}:[A 65+ 9 84+ 9 762 + 29 1292 + 18 179 + 14
Modit, 103+ 15 77+ 5 836 + 32 1406 + 26 224 118
ied Farris 7+ 8 90+ 8 765 + 29 1297 « 18 183 + 14
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Table 12. Means of average deviations of patristic distances from observed distances (S_’O)' 4Nv =0.2 and
M = 0.004 were used. These results are based on 10 replications. All values should be divided by 104

D Dm DR ft9 DA
20 loci
UPGMA 103+ 3 83+ 4 134+ 7 271 225 91+ 5§
Farris 128 + 14 102+ 11 196 + 14 312 £ 37 141 £ 22
Modified Farris 67+ 8 54+ 6 103+ 7 190 + 18 68+ 6
60 loci
UPGMA 59+ 3 47 + 2 83+ 6 143+ 11 52+ 4
Farris 100 £ 10 85+ 7 146 + 13 223+ 18 89+ §
Modified Farris 54+ 4 42+ 3 76t 6 125 £ 11 48+ §
100 loci
UPGMA 47+ 4 38 3 63« 5 115+ 7 40+ 3
Farris 66t 6 53+ 4 104 + 11 158 + 18 60+ 8
Modified Farris 37+ 3 29+ 3 58+ 5§ 86+ 8 32: 3

method. In the present case the absolute values of genet-
ic distances are small, so that they are approximately
linear with the expected number of gene substitution in
all distance measures. Therefore, overestimation of
branch lengths is expected to increase the value of §E' It
is also noted that UPGMA gives a somewhat smaller
value of §E than the modified Farris method. Therefore,
we can conclude that with the criterion of S, UPGMA
shows the best performance.

The values of §0 for M = 0.004 are presented in Table
12. Tt is seen that the relative values of S for the tree-
making methods and the effect of number of loci are
nearly the same as those for the case of M = 0.1 in all
distance measures. Furthermore, Tateno (1982) obtain-
ed a similar result for the case of M = 0.002 by using D.
Therefore, whether M is large or small, the modified
Farris method seems to show the best performance in
estimating the branch lengths of a gene-tree, whereas the
Farris method shows the poorest performance.

Discussion

We have shown that both the topology and branch
length of a reconstructed tree are often quite wrong un-
less a large number of loci is used. In the study of phylo-
genetic relationships of related species in terms of elec-
trophoresis many authors have used 20 to 40 genetic
loci. Our study indicates that even if 30 loci are used and
M is as large as 0.1 some parts of a reconstructed tree
are incorrect with a high probability. In this study we
used only 8 OTUs because of limited computer time
available, but the error in reconstructed trees is expected
to increase disproportionately as the number of OTUs
increases (Tateno et al. 1982). One important factor for
determining the accuracy of a reconstructed tree is
the branch lengths of the true tree. If there are many
branches of which the true distances are as small as

0.004, the reconstructed tree is usually incorrect even if
100 loci are used. This result is discouraging, but #°
must accept it since it is due to the stochastic nature ¢
gene substitution. Clearly, we cannot be overconfider
about the tree reconstructed from electrophoretic dat#
Nevertheless, our study suggests that a large part of the
topology of a reconstructed tree is correct if 30 or mor®
loci are used. In many cases even this approximate phy’
logenetic tree is useful for studying various evolutioft
problems. Furthermore, in the future the number of
loci used is expected to increase rapidly because of the
recent introduction of the restriction enzyme techniq®?
in evolutionary studies.

In actual data we will almost never be sure about £
reconstructed tree, unless there is some other supPOrt'
ing evidence. However, a rough idea about the accurady
of the tree may be obtained by the product (A) of th
smallest branch length (M) of the species-tree recO”
structed in terms of Nei’s distance and the number ©
loci used (r). This product (A = M) represents the 10!
number of gene substitutions for the set of loci use™
and if this value is equal to or larger than 3, the reco?
structed tree seems to be quite reliable. Note that A cof”
responds to M in our simulation (see Figure 1).

The accuracy of a reconstructed tree also depends o
the tree-making method as well as on the distance med’
ure used. We have seen that in estimating the bra®
lengths of species-trees UPGMA is the best among
three tree-making methods examined. UPGMA als?
seems to be the best in constructing a good topOlOgY |
though when M = 0.1 the modified Farris meth©
showed a slightly higher value of P than UPGMA. whefj
the number of loci used was 70 or less, UPGMA gene’
ally showed the smallest value of d. for both M = 0 ]
and M = 0.004. It is interesting to see that in conStrf]c._
ting a species-tree the simple UPGMA, which was o1
nally proposed for phenetic taxonomy, shows the bes
performance. The reason for this seems to be that !



lg;'::\ieti;c dis‘tance based on a relatively small number of
ute o fSu;Ject to a largg stochastic error and the proce-
tor g 1stanf:e-averag1ng used in UPGMA reduces this
"0 a considerable extent (see below).
our his conclusion is somewhat different from that of
aseI;ll.‘evmus stud?' (Tateno et al. 1982), where the trees
ase thon nutfleotlde sequences were examined. In this
pects ¢ modified Farris method showed a slightly better
cept lllmance thafl U?GMA in topology construction ex-
ently :der certain circumstances. This difference appar-
tequs ccured because the genetic distance based on gene
«,_ 1tncy data is subject more often to “‘backward” and

Paralle]” changes than the estimate of nucleotide sub-
Stitutions,

¢

c

Hétli\i()t;-that in the presence of stochastic errors the ge-
Siong] Istance be:tween a pair of populations may occa-
thougﬁ, decrease in the evolutionary process (see below),
nucleOt_the expected value always increases. Estimates of
an ide substitutions are also subject to backward
theg ePilrallel mutations, but the chance of occurrency of
events is much lower in this case than in the case
Clugzge frequency data. In our previous paper we con-
5 that the performance of UPGMA is better than
fent arfr}s and modified Farris methods when the coeffi-
. n0° Variation of branch lengths is small. However,
°fﬁciew realize that in the previous St}ld}' the smaller co-
. ';t Of. variation was associated with a larger number
an Cleotide substitutions, and in this case there were
Y backward and parallel mutations. Therefore, we
ioflonclude that in both cases of nucleotide substi-
Pert m?nd gene frequency data UPGMA shows a good
hanges ance when there are many backward and paralle]
The fact that genetic distance occasionally decreases

® evolutionary process can be seen from Table 13

ang
Fig. 5. Table 13 shows one example of allele fre-

Que
eHCy changes at a locus in a simulated population for
Caus::;se of M = 0.004. These frequency changes are

hat by random genetic drift and mutation. It is clear
the allele frequencies for time T = 1000 x vt = 16

tir:alc\(::l}siderably different from those for T = 8 but iden-
Nep d'th those for time T = 0. Therefore, if we compute
" Stance D from this locus alone, it becomes 0.100

®NT=0and T=8but 0between T=0and T =
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Fig. 5. Relationships between genetic distances and evolutionary
time in one replication of computer simulation. Observed
distance represents the distance between generation O and its
descendant generation. 4Nv = 0.2, M = 0.004, and the number of
loci used is 20. The straight line represents the expected value
of D

16. Thus, the genetic distance first increases with evolu-
tionary time and then declines to 0. Of course, computa-
tion of D from one locus is meaningless; D has to be
computed from many loci. However, even if 20 to 30
loci are used, D still may decline occasionally. This can”
be seen from Figure 5, where the genetic distances based
on 20 loci between generation 0 and other generations
are presented. It is seen that D is subject to a considera-
ble amount of random fluctuation and occasionally
declines. Particularly from T =40 to T = 48, D shows a

- drastic decrease. Random fluctuation of D around E(D)

= 2vt decreases as the number of loci increases, but our
simulation has shown that even with 100 loci the fluc-
tuation is not negligible. We note that in UPGMA the
effect of this random fluctuation is reduced because the

Tﬂbl
Ts i(}lg + An example of gene frequency changes in a simulated population. Time is expressed in terms of

0 X vt, where v and t are the mutation rate and generation, respectively. 4Nv = 0.2 and M = 0.004
Alle]e .

ime
0 8 16 24 32 40 48 56

A
A; 0.52 0.76 0.52 0.40 0.30 0.24 0.22 0.14
Aa 0.48 0.24 0.48 0.60 0.68 0.70 0.76 0.78
A 4 - - - - 0.02 0.06 - -
A‘S - - - - - - 0.02 0.04
A 6 - - - - - - - 0.02

- - 0.02
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branch lengths of a tree are estimated by averaging
several distance values. In the Farris and modified Farris
methods random fluctuation of distances is assumed to
represent the real genetic differences between OTUs.
Figure 5 shows that DR, fB’ and D A behave in essen-
tially the same way as that of D, though they are non-
linearly related to evolutionary time. (The behavior of
D is also essentially the same as that of D, though it is
not shown here.)

We have seen that in all the three tree-making meth-
ods examined distance measure D, tends to give a better
topology than the other measures, whereas D generally
gives a better estimate of branch lengths (small values
of Sg) compared with the others. This suggests that D ,
be used for making topology and D be used for estimat-
ing branch lengths. In this case the topology can be con-
structed either by the modified Farris method or by
UPGMA, and once the topology is obtained, the branch
lengths can be estimated by the distance-averaging meth-
od similar to that of UPGMA (Tateno et al. 1982). Of
course, the advantage of D, over D in topology con-
struction is not always great. Furthermore, actual gene
frequencies are also affected by other factors such as
experimental errors, fluctuation of population size, etc.,
so that genetic distances are expected to be subject to
even larger random errors. Therefore, we are not sure
that it is always worth spending more time for this com-
bined method rather than using UPGMA with D.

Swofford (1981) compared the efficiencies of
UPGMA, Farris’ (1972) method (slightly modified), and
Fitch and Margoliash’s (1967) methods of tree-making
by using immunological or electrophoretic distance data.
He concluded that the Farris method is the best and
UPGMA is the poorest. This conclusion is based on the
comparison of patristic distances with observed distances
similar to our S,. As shown by Tateno et al. (1982),
however, Sg is not a good measure of the accuracy of
a reconstructed tree. Particularly when one is interested
in making a species-tree, it is a poor measure. Further-
more, even in obtaining a small value of S, the Farris
method is not necessarily better than UPGMA, as shown
in the present paper.

Some numerical taxonomists claim that the genetic
distance measures used in phylogeny construction
should satisfy the triangle inequaltiy. They give two ar-
guments for this. First, when one wants to represent the
species of populations concemned in a multidimensional
space and measure the geometric distances between
them, it is necessary to use a metric that obeys this prin-
ciple. Second, if every estimate of genetic distance be-
tween OTUs represents the sum of actual number of
gene substitutions for all relevant branches of the true
tree, then the triangle inequality should hold. Represen-
tation of populations in a multidimensional space is
mathematically interesting, but it is not necessary for
tree-making. Furthermore, the geometric distance be-
tween populations measured in this way is not propor-

tional to the number of gene substitutions, and thus i?
is inappropriate for measuring genetic distance (Nf”
1978a). (Genetic distance is the extent of genet
difference between two populations as measured by
codon or nucleotide differences.) Namely, their first
argument cannot be accepted.

Their second argument looks reasonable at first sighf"
but actually it is not realistic. As mentioned earlier, D
an asymptotic metric, and thus if a very large number ©
loci are used, the genetic distance between any paif ¢
OTUs will represent the sum of the number of gene sub-
stitutions for all relevant branches at least theoretically:
In practice, it is virtually impossible to examine hu?
dreds or thousands of loci for phylogeny constructio®
at the present time. Therefore, we must estimate the 8
netic distance from a smaller number of loci, and in the
process of this estimation the metricity of D is disturbe
by statistical errors. In other words, Nei’s (1972) D is 8"
estimate of E(D) in (2) and may deviate from this sub-
stantially when the number of loci is small. NeverthelesS:
it is possible to construct a reasonable phylogenetic tre?
by using D, as shown in this paper. Actually metricity 5
not really required for tree-making as long as a pl’OPer
distance measure and a proper tree-making method aré
used. In this connenction it should be noted that ust
estimates of nucleotide or amino acid substitutions &°
also a nonmetric, because they are estimated statistic
by taking into account back mutations, parallel mut®
tions, and multiple mutations, and essentially the same
argument as the above applies to these estimates (se€ Te
teno et al. 1982). ,

Recently, Farris (1981) criticized Sarich and Wilso? 5
(1967) immunological distance and Nei’s (1972) ¥
tance for their nonmetricity, and claimed that any not
metric distance cannot show clocklike behavior. He a}?’
parently failed to see that molecular clock is stochast’
rather than deterministic and subject to errors dué
backward and parallel mutations. Nonmetricity it*°
does not deprive clocklike behavior. Furthermore,
criticism on D is based on gene frequency differenc®
for one locus. In practice, D is designed to be used !
many loci and should never be used for one locus
1972). Note also that, unlike Farris’ assumption, &
amount of gene frequency difference between two poP ]
ulations is not proportional to evolutionary time whet ]
er there is selection or not. This is an elementary k“o_w
ledge in population genetics. In Farris’ view no negat! ]
estimates of branch lengths are allowed in tree constr¥
tion. However, we have shown that negative bran‘ ;
length can occur legitimately when distance estimat)
are based on a relatively small number of loci (Figuré
They are caused by sampling error not by the defect 0.,
the distance measure used. If we forbid negative ©
mates, the estimates will no longer be unbiased, and &
biasedness will introduce another source of errofs
tree-making. Considering gene frequency differeﬂche
at a single locus, Farris (1981) stated that none of t



(llrsltaﬁce. measures currently available permits path
ev;:t mtt.!rprfatations. As mentioned above, how-
sin ’e glenetlc d1sitance should not be computed from a
o Ocus. It is also very important to know the dy-
thaki of gene frequency changes in populations for
Whennfh? proper interpretation of branch lengths. Only
one g 13 dymm}es is taken into account properly, can
evolu:vebp a distance measure that is proportional tp
Way l0nary time. D has been developed exactly in this
As mentioned earlier, Rogers’ (1972) distance (Dg)
often been used in conjunction with the Farris meth-
’becflllSe it satisfies the triangle inequality. The fact
:t th1§ distance does not give negative branches when
N soams method is used seems to have been attractive
oes me Wlorkers. However, metricity of distance itself
Seen, ROt give any advantage in tree-making, as we have
tancem Our computer simulation. J.ust like D, tms dis-
Proces may occasionally decrease in the evolutionary
not 1 S because of stochastic errors, and thus Dy does
€cessarily show the true genetic relationship among
. For example, in Table 3 the observed values of
R for OTUs 1 and 6, 1 and 7, and 6 and 7 are 0.678,
o 7, and 0.733, respectively. These values suggest that
OTUS 1 and 7 are most closely related among the three
mores' In the true tree (Fig. 1a), however, 1 and 6 are
closely related than 1 and 7. In the Farris method
Pr:seerved values of genetic distances are assumed to re-
ey Nt frue distances, but as is clear from this example
is are generally quite different from true distances.
o ®IToneous assumption is also one of the reasons for
Poor performance of this method. In UPGMA ob-
n:ei distances are regarded as estimates of true dis-
recc; and with this understanding branch lengths of
cidentSSthted tree are estimated (cf Nei 1975). Irf-
Mate ly, UPGMA also does not produce negative esti-
d i, of branch lengths, and if the topology reconstruct-
branchcoﬂeot, UPGMA gives least-squares estimates of
lengths (Chakraborty 1977).
this point it should be indicated that in addition
Nonlinear relationship with evolutionary time Dy
Sam;nothw theoretical defect. Namely, it is not neces-
< €ven when the two populations concerned have
D(lly,-:red glleles. This occurs when the populations are
ed Orphic. For example, when there are five nonshar-
t e eles in each population and all allele frequencies
er‘l}‘:al, te. 1/5, we have Dy = 1/V'5 = 0.45.0n the
Ufg,, and, if the two populations are fixed for different
thig is, R becomes 1. From the genetic point of view,
Wity, o POOr property. A similar property is observed
Whigh . or the Manhattan distance (‘21>‘.,|xii - yijD
1S often advocated by numerical taxonomists.
ur c(t)he present study we have assumed no selection.
in p._0clusion, however, would not change very much
pe:t Presence of advantageous mutation, as long as the
Thi ise-d rate of gene substitution remains constant.
preciablbecause the distribution of D is not affected ap-
€ by advantageous selection (Chakraborty et al.
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1977). However, our assumption of constant rate of
gene substitution may not hold under certain circum-
stances. This is particularly so with gene frequency data,
because the extent of genetic distance is affected by the
bottleneck effect (Chakraborty and Nei 1977). When
long-term evolution is considered, the effect of varying
rate of gene substitution is generally to increase the vari-
ance of genetic distance, and thus it increases the rela-
tive merit of UPGMA over the other methods (Tateno
et al. 1982). When short-term evolution is considered
and the bottleneck effect on genetic distances remains
or when the entire set of genes is subjected to the same
directional change for a relatively short period of time,
the modified Farris method is expected to be better than
UPGMA. However, a more detailed study should be con-
ducted on this point.

In our simulation we used 8 OTUs to save computer
time. However, Tateno et al.’s (1982) study with nucleo-
tide sequences for 32 OTUs suggests that as the number
of OTUs increases, the distortion index (d) of a recon-
structed tree rapidly increases and when the number is
large the chance of obtaining the correct topology is ex-
tremely small unless the number of loci used is very
large. Therefore, it is advisable not to include many
OTUs in tree making. If OTUs to be studied can be di-
vided into groups, it seems better to construct a tree
first among groups and then within groups.

In the present paper we have been concerned with
construction of phylogenetic trees from gene frequency
data. In recent years evolutionists (e.g. Brown et al.
1979; Avise et al. 1979; Shah and Langley 1979)
started to use the restriction endonuclease technique to
study the genetic differences between species or popula-
tions. In this case the number of nucleotide differences
per nucleotide site can be estimated by the statistical
methods of Nei and Li (1979), Kaplan and Langley
(1979), and Gotoh et al. (1979). The estimates obtained
by these methods have a statistical property similar to
that of Nei’s D. Therefore, the conclusions obtained in
this paper seem to apply to these estimates as well. In
this case, however, we must increase the number of en-
donucleases used to raise the accuracy of a reconstructed
tree.
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