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1. Introduction 

It is a known fact that decomposition methods are very useful in spaces of 
functions and distributions defined in R.. The methods can be described as follows. 
l f f  is a given function or distribution in R,, then one asks for the approximation of 
f by entire analytic functions of exponential type (rate of convergence, etc.). By the 
Paley--Wiener--Schwartz theorem this problem can be reformulated. One asks for 
the approximation of the Fourier transform Ff  o f f  by distributions with compact 
support. This is essentially the same as the problem of decomposition of Ff by dis- 
tributions with compact support: Ffis represented as an infinite sum of distributions 
of this type. The supports of these distributions are determined by corresponding 
decompositions of R, in subsets. Systematic treatments of (isotropic and anisotropic) 
Sobolev--Lebesgue (= Bessel-potential)--Besov (= Lipschitz)-spaces on the basis 
of such decomposition methods may be found in [10] and [15, Chapter 2]. But these 
methods work also in other spaces [8, 14, 15] (the spaces ASp, q and Fv, q). For all 
these considerations multiplier theorems of Michlin--H6rmander--Marcinkiewicz 
type for Lp-spaces are very important. This has the consequence that the above 
mentioned decompositions of R, must be related to decompositions of R, appearing 
in the corresponding multiplier theorems (dyadic decompositions). From this point 
of view one has at least two decompositions of R, which seem to be of peculiar 
interest: 

(i) R, is decomposed in differences of parallelepipeds centered at the origin 
(this is essentially the method in the above cited papers and books and gives isotropic 
and anisotropic spaces of the above type. A short description is also given at the 
beginning of Subsection 6.2). 

(ii) R, is decomposed in parallelepipeds o f  type {x: 2 kJ < •j Xj ~ 2 kJ +1 ; e j  = + 1 }, 
(this includes isotropic and anisotropic spaces, spaces with dominating mixed deriva- 
tives, and more general spaces related to spaces considered in [5], and [17, Appendix]). 

In both cases one has again two possibilities: for instance, in case (ii) one can 
consider the above parallelepipeds, where k j=0,  _+1, +2 . . . .  (homogeneous 
spaces); or one can consider only the parallelepipeds where kj = 0, 1, 2 . . . .  (obviously, 
here one must modify the decomposition near the axes) (non-homogeneous spaces). 
Although cases 0) and (ii) (and their homogeneous and non-homogeneous subcases) 
are mutually independent, we shall be concerned here only with (homogeneous and 
non-homogeneous) decompositions of type (ii). Of peculiar interest seems to be the 
homogeneous case. It includes spaces where the norms are given by IlD'f}izp or 
IIF-I[xI~FUI[L, where fl is real. The complex interpolation [',']112 of the spaces 
characterized by O~f/Ox~ and 02f/Ox~, respectively, gives the space characterized 
by 02f/OxlOx~, see (56). In order to consider these spaces we must generalize the 
notion of distributions. 
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This paper is the third part of a series started with [16, Part I]. In the first part 
motivations are given for decomposition methods in the framework of spectral 
theory. The second part deals with basic spaces from which more general spaces 
considered here are built up: Lp-spaces, where the supports of the corresponding 
Fourier transforms are contained in a given compact subset of  R,.  The third part 
presented here is self-contained. Here are proved the basic properties for spaces 

+ + 
B 9t*) Bg}~ ) F g(x) and Fp~ density of smooth functions, completeness, p , q  ~ ~ p , q  

equivalence of  norms, inclusion properties, comparisons between the different 
types of  spaces, interpolation. The fourth part  of  this series wilI be a direct continu- 
ation of this paper. For the spaces treated here there will be considered special 
properties: representation theorems, duality, multipliers, embeddings, traces. In the 
fifth part (again essentially self-contained) there will be considered the spaces B~}~ ) 
and Fp~ ~) for 0 < p _  <- 1 and p =  oo. Although some results proved here remain true, 
the situation will change completely: the methods will be closely related to the methods 
developed by FEFFERMAN and STEIN [13] in connection with the real variable 
approach to Hardy spaces. 

Insignificant positive constants will be denoted by c, c' ,  c~ . . . .  which does not 
indicate that these numbers are equal in different occurences. 

2. Definitions, preliminaries 

+ 

2.1. Classes M and M 

In the sequel R n is the n-dimensional real Euclidean space; its general point 
is denoted by x = ( x l  . . . . .  x.). Let e--(el . . . . .  e.) where e i is either 1 or - 1 .  There 
are 2 n vectors of this type. The set of  all these vectors is denoted by E. Let N~ be 
the set of  all vectors k = ( k  I . . . .  , k,), where the k i ' s  are integers. N,* is the subset 
of  N~ where k j = 0 ,  1, 2, ... for j =  1 . . . . .  n. Then 

(1) Qk,~ = {x :2k~ < ejx~ < 2k~+1; j = 1 . . . . .  n} 

+ 

gives a decomposition of R,: 

{ } + (2) x : / / x ~ e O  = R . =  U C)~,.. 
j = l  k E N n ,  e E E  

Let 

(3) Pk,~ = {X: t/0, kj2k~ < g iX j  < 2k.~+1; j : l . . . . .  n},  
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where kEN*.  Here ~0, kj=0 for kj=O and t/0,kj=l for k j = l ,  2 . . . . .  We have 

(4) R, = U Pk,,. 
kCNt*,eCE 

The decomposition (2) leads to homogeneous spaces (the fact that the hyper-planes 
{x: xj =0}, j is fixed, do not appear in the decomposition (2) will be very important), 
the decomposition (4) leads to non-homogeneous spaces. 

+ + 

D e f i n i t i o n  2.1/1. M is the set of all positive functions g(x) defined in R n and 
+ 

n times continuously differentiable in R, for which there exists a positive number c 
such that for all multi-indices ?=(71 . . . . .  ?,) where ?j = 0 or 1, and for all 
xE R. 

! 

(5) [ ~I x~W~ g(x) <= ~g(x) 
I j = l  

holds~ 

R e m a r k  2.1/1. A simple application of the mean value theorem to logg(x)  
shows that there exists a positive number e such that for all parallelepipeds Qk,~ 

(6) max g (x) =< c min g (x), k E N n, 13 E E. 
xE~k,~ xE~2k,~ 

D e f i n i t i o n  2.1/2. M is the set of all positive functions g(x) defined in R, 
and n times continuously differentiable in R, for which there exists a positive number 
e such that for all multi-indices 7=(71 . . . .  , ?,) where yy = 0 or 1, and for all 
xE R,  

(7) x ~J/~D ~ x <= c x . 

R e m a r  k 2.1/2. Similarly to Remark 2.1/1 one obtains that there exists a posi- 
tive number c such that for all parallelepipeds Pk, 

(8) m a x g ( x ) < - c m i n g ( x ) ,  kEN*,  eEE. 
xEPk,~ xEPk,~ 

+ 

R e m  a r k 2.1/3. The classes M and M are related to the differentiability proper- 
ties of the spaces under consideration. For  instance, in the "classical" counterpart 
the smoothness index s in the Besov spaces B~,q would correspond to g ( x ) =  
=(1 + Ixl~) s/'. 

+ + + 

L e m m a  2.1/1. ( i ) L e t  g(x)EM,  gl(x)EM, g2(x)EM; 2 > 0  and u real 

numbers. Then 

+ 
+ + + + gl (x) E M. 2g(x)EM, g~(x)EM, g l (x )+gz(x )6M,  gl(x)g2(x)EM, gz(x'---~ 
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+ 

(ii) I f  g(x)EM, then there exist three positive numbers c, sl, and s 2 such that 

n --s2 + 

(9) g(x) <_- c(l+lxl2)sx j~xj for xER, .  

L e m m a  2.1/2. (i) The assertion of  Lemma 2.1/1 (i) remains true i f  one replaces 
+ 

M b y M .  
(ii) I f  g(x)EM, then there exist two positive numbers c and s such that 

(10) g(x) <- c(l+lxl~) s for  xER, .  

Proof .  Part (i) of either lemma can be proved by direct computation. Let us 
prove (9). Let us set k~ 0 . . . .  ,0) and k 1 =(1, 0, ..., 0), I fc  has the same meaning 
as in (6), then it follows that 

max g(x) <= c min g(x) <= c max g(x). 
XE ~kl, e x~ O.kl,~ xs t~l~o,~ 

Here e(:E is fixed. If  Ik[= Z Ikjl, then it follows by induction that 
j = l  

max g(x) <- c Ikl max g(x). 
XEQk, e x6 ~.k o, e 

But for x6_Qk,~ 

C Ikl ----- 2 c'lkl ~ C" X j I +  
j = x  ~ IXjl 1 

holds. This proves (9), (10) can be proved in the same way. 

E x a m p l e s .  With the aid of the above lemmas one can construct immediately 
+ 

a large variety of examples of functions belonging to M and M. Since Ixjl belongs 
+ 

to M, so do also Ixjl~ (xj real) and every rat ional  function of Ixjl~ with positive 
+ 

coefficients. Furthermore, log(2+lx j l )~M , .... Of peculiar interest are the fol- 
+ 

lowing functions belonging to M: 

Ixl S, s real (isotropic spaces), 

IxjlS~, sj real (anisotropic spaces), 
j = l  

D Ixjl ~, sj real (spaces with dominating mixed derivatives), 
j = l  

IxlSllog (2+ Ixl)l t, s and t real, 
where the related spaces seem to be of interest in the theory of pseudo-differential 
operators. If  one replaces i n t h e  above functions Ixjl by (1 +x~) x/2 and Ixl by 
(1 + Ixl2) xt2, one obtains functions belonging to M. 
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2.2. Spaces Z and Z" 

D is the space of all complex-valued infinitely differentiable functions, defined 
in Rn, with compact support. S is the well-known Schwartz space of all complex- 
valued infinitely differentiable rapidly decreasing functions defined in R,. Both 
spaces will be considered as locally convex spaces equipped in the usual way with 
a topology. D' and S" are the dual spaces (distributions and tempered distributions, 

+ 

respectively). Wha t  is needed here is a generalization of D'.  Let D be the subset of D 
+ + 

consisting of all functions of D with compact support in R,.  Again, D will be consid- 
ered as a locally convex space equipped in the usual way with a topology (see, for 

-4- + 

instance, [9, p. 76]). The dual space is denoted by D' (distributions over R,). Let 
F be the Fourier transform, defined on S by 

(Ff)(x) = ( 2 z )  -n/~ f eixr162162 x~ = ~ xjCj. 
Rn j = l  

The inverse Fourier transform F -1 is given by a corresponding formula, where i is 
replaced by - i .  As is known, F is a one-to-one map from S onto S. The image of 
+ + 

D by such a map is denoted by Z. Hence Z : F D .  By the Paley--Wiener theorem 
Z consists of entire analytic functions of exponential type. The topology of Z is to 

+ 
be taken over from D by this mapping. Let Z" be the corresponding dual space. I f  

f E Z ' ,  then the Fourier transform o f f ,  denoted by Ff, is defined as an element 
+ 

of D' by 
+ 

(Ff)(~0):f(Fq~) forall ~oED. 
+ 

As usually, the Fourier transform in S p is defined in the same way if D is replaced 
by S. We have 

+ 
(11) FZ'  = D', F S ' =  S'. 

+ 

(The inverse image under the Fourier transform of a given distribution gED' is 
fEZ"  defined by f(~o)=g(F-l~p)). For the later considerations it will be useful to 
note that we also have 

+ + 

Z : F-1D and F-1Z" =D', 

where F - ~ f  ( fEZ ' )  is defined in  an obvious way. All the dual spaces, considered 
here, are equipped with the strong topology. 
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2.3. B-spaces, F-spaces, and H-spaces 

First we need an extension of the definition of  the parallelepipeds Qk,~ and 
Pk, ~ given in Subsection 2.1. Assume that e has the same meaning as explained 
there. Let L be a natural number. Then 

(12) t3(L) _~. {X" 2kj - L  2kj+L+l; n}, kE e ~k,e < ejXj < j = 1 . . . . .  iV., E E, 

and 

(13) p~z~ = {x: qo.kj2k~ -L < ejXj < 2kj+L+x; j = 1 . . . . .  n}, kEN*,  eEE. 

Here qO, kj= 1 for k j=  1, 2 . . . . .  and qo, o = - 1. There exists a number N(depending 
+ 

on L) such that each point xER. ,  respectively xER. ,  belongs to at most N paral- 
lelepipeds B(L) respectively ~(L) ~ k ,  e ~ ~ k ,  e " 

+ 

D e fi n i t  i o n 2.3 / 1. If L = I, 2 . . . . .  then ~L is the set of  all systems {~0k, ~}k C N., ~ ~ E 
of functions with the following properties: 

+ 

OtL)�9 (14) (i) tpk ,8(x )ED , supp tpk,,C . . . . .  

(ii) for each multi-index 7=  (71 . . . . .  7.) there exists a positive number ce such 
that for all kEN. ,  all eEE, and all xER. ,  

(15) I(D,~o~,.)(x)l <__ C,2_r~kx_ .... r.k, ; 
+ 

(iii) there exist two positive numbers c and C such that for all xER.  

(16) c <= ~ q~k,~(X) <= C. 
kENn, es 

Let us set 
+ + 

~ =  ~ L .  

D e f i n i t i o n  2.3/2. If L- -  1, 2 . . . . .  then ~L is the set of all systems {~Ok, e}kEN*,tEE, 
of functions with the following properties: 

( L ) .  (i) ~Ok,~(x)E D, supp qgk, eC  Pk,~ , 

(ii) for each multi-index 7=(7a . . . . .  7.) there exists a positive number c~ 
such that for all kEN*,  a l l  eEE, and all xER.  (15) holds; 

(iii) there exist two positive numbers c and C such that for all xER.  (16) holds. 
Let us set 

~ =  ~ L .  
L = I  

R e m a r k  2.3/1. This is the counterpart to corresponding systems of  functions 
used in [14] and [15, 2.3.1] in connection with th~ Besov spaces B~,q and the spaces 
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F~,q. (There is an irrelevant difference in comparison with the systems in [14, 15]: 
there we used the Fourier transform of the functions in the systems instead of the 
functions themselves). The assumptions for the functions ~0k, ~ may be weakened: 
for instance, it will be sufficient if (15) holds for multi-indices ?=(?a . . . .  , ?.) where 
all ?j are either 0 or 1. 

+ 

It is not difficult to see that ~z and ~z are non-empty. Let ~oED be such that 

~o (x )= l  for I x j l < l / 2  ( j = l  . . . .  ,n) ,  ,p_->0, 

and ~o (x)= 0 outside a small neighbourhood of {y:lyj[<= 1/2}. Let x k'~ be the centre 
of Qk. ~. Then the system of functions {~Ok,~}KCN.,~CE defined by 

q~k,,(X) = q~(2-kl(xl--~ ' ') .... ,2--k"(x,--xk'~)) 
+ 

belongs to ~z. After a small modification one obtains in the same way systems belong- 
+ 

ing to ~L. Furthermore, {~bk,~}kCN,,,~EE~L, where 
+ 

q,~,~(x) = ~0~,~(x)[ 2~ ~o,,~(x)] -1, x ~ g . .  
t E N . , ~ E E  

This system has the advantage that (16) can be replaced by 

+ 

(17) .~ ~'k,~(X) = 1 for xER.. 
kEN~,~EE 

Corresponding assertions hold for ~L- (17) is a partition of unity. 
Now we can define the B-spaces, F-spaces, and H-spaces considered here. I f  

1 < p <  ~, then Lp has the usual meaning: it is the Banach space of all complex-valued 
Lebesgue-measurable functions in R, such that 

( /  '~/' 
IlfllL, = If(x)iPdxJ <oo. 

+ 
D e f i n i t i o n  2.3/3. (Homogeneous spaces.) Let g(x)EM and l < p < o o .  

+ 

Let x k'" be the centre of Qk,,. Let {q~k,,}k~N.,,cEE~" 
(i) If  1 =< q <= o% then 

+ 

(18) Bap}~)={f:fEZ', Ilfll~g}~,=( Z IIg(xk'")F-Xq~k,,Ffll~)X/a<~176 
kENn, e. EE 

(If q=  ~, then the lq-norm in (18) must be replaced by the 1~o- norm). 
(ii) If l < q < ~ ,  then 

+ 

(19) Fva}~ ) = {f:fEZ',  [Ifll~,}g)= I1( .~  ]g(xk'")(F-~Ok.,Ff)(x)lq)x/~llt..<~}. 
kENn, t;fzE 

+ + 

(iii) Hg (~) = F~,~ ) . 
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D e f i n i t i o n  2.3/4. (Non-homogeneous spaces.) Let g ( x ) E M  and l<p<~o .  
Let x k'~ be the centre of Pk, ~. Let {~O~,~}k~N*,~C~E 4. 

(i) If  1 <= q =< ~, then 

(20) B~!~)= {f:fES ", IlfllBg,A,=( ~ '  [Ig(xk")F-Xq~k,~Ffll~p)l/~<oo}. 
kEN*n, eEE 

(If q = co, then the/q-norm in (20) must be replaced by the/,~-norm). 
(ii) If l < q < ~ ,  then 

(21) F~!~ ) = { f : f E S ' ,  IIflI~LT I1( Z Ig(xk'~)(F-X~O~,~Ff)(x)la)l/allLp<~176 �9 
kEN*,eEE 

(iii) Hg(x)_ Fg(x) 

R e m a r k  2.3/2. The norms (18)--(21) obviously depend on the choice of the 
+ 

system {q~k, ~}C 4, respectively {~Ok, ~}E 4. But we did not stress this on the left-hand 
side of (18)--(21): it will be shown later on that all the norms (18) (respectively 

+ 
(19), (20), or (21)) for different choices of systems belonging to q~ are mutually 
equivalent and so, from our point of view here, are not essentially different. 

R e m a r k  2.3/3. For f C Z '  the expression F-lq~k,~Ff is meaningful. By (11) 
+ 

we have Ff~D' .  Hence, by an appropriate interpretation, ~Ok,~Ff~S" and so 
F-lq~k, ~ Ff6 S' .  Furthermore, by the Paley--Wiener--Schwartz theorem, all the 
distributions F -  ~ ~ok, ~ F f  are entire analytic functions of exponential type. 

2.4. Multipliers in Lp 

For the convenience of the reader we formulate here two multiplier theorems 
in L~ which will be useful in later considerations. 

T h e o r e m  2.4/1. Let l < p < o o  and l < q < o o .  Let #j be complex measures in 
Rn ( j =  1, 2 . . . .  ) with bounded variations: 

(22) Var/ij  = I~jI(R.) = < B, 

where B is independent o f  j. Let 

j l  ~n 
(23) mj(x)  : dl~j : /~ j ( {y :  - ~ < y l  < xt; 1 : 1 . . . . .  n}). 



230  H .  T r i e be l  

Then there exists a positive number c depending only on p, q, and n such that f o r  all 

systems {fj}~=l,fiE S, 

(24) f ~(x) =-- 0 with the exception o f  a f inite number o f  these functions, 

<_- cB If~(x)t~J (25) I(F-lm'iFf'i)(x)JqJ L ~ 

holds. 

R e m a r k  2.4/1. The case n = l  is due to SCHWARTZ [11, Lemma 11] (see also 
[1, 11.11, Lemma 24]). The general case, inclusively the above formulation, is due to 
LIZORKIN [6, p. 241]. (25) is meaningful: F f  ~ E S, m j  F f  E S" , and hence F -  1 mj  F f  i E S ' .  
By (25) F - l m j F f j  belongs to L~, considered as a subspace of S' .  This inequality 
can be extended by completion arguments to systems of functions {f~};=~ for which 
the right-han d side of (25) is finite. 

+ 

Examples .  1. Let {~Ok,~}k~N,,~CgE~. Let 

O" r dx.  
dl~k,~ -- Oxl ... 3x,, 

Then 

and 
- - o o  - -~  

I~,~ I(R.) ~ c f ~ d x  < c" 2 - ~ -  . . . .  k . d x  -< " 

c" is independent of k E N  n and eEE. Hence, after introducing an appropriate new 
enumeration, the functions mj in (25) can be identified with ~0k, ~. In the same way it 
follows that the system {~0k,~}kEN*,~cEE ~ satisfies also the hypotheses of the theorem. 

2. Let Q={x:  0 < x j ~ l ;  j = l  . . . .  ,n} be the standard cube. Let 6~a 1 ..... i,) be 
the Dirac-measure with respect to the point (21 . . . . .  2n) where 2j is either 0 or 1. If 

then Ipl(R,)=2" and 

/ ~ =  • (-1)al§ 1 ..... a~), 
( t  1 . . . . .  ~ )  

~ 1  2gn 
m (x) . . . .  f d ,  = X(x), 

- - o o  - -~  

the characteristic function of Q. The arguments hold true for an arbitrary parallel- 
epiped in R~ with edges parallel to the axes. Hence Theorem 2.4/1 holds true if 
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mj (x)=Zj (x) is an arbitrary set of  characteristic functions of  parallelepipeds with 
edges parallel to the axes. 

T h e o r e m  2.4/2. Let mi,t(x) 
+ 

tiable functions defined in R,. Let 

(j, l= I, 2 . . . .  ) be n times continuously differen- 

(26) x~ ~ ID~mi, l(X)[2J <= B for x E R  n 
j , = l  

and for V=(Vl . . . . .  V,), 7r is either 0 or 1. I f  l < p < ~ o ,  then there exists a positive 
number e, depending only on p and n, such that for all systems {fJ};=l, f jES ,  satis- 
fying (24), 

(27) 

holds. 

[ [f J(x)12j Lp 
/=1 " j = l  

R e m a r k  2.4/2. This is essentially the Hilbert space version of Marcinkiewicz's 
multiplier theorem. We refer to [13, IV. 6] and [7]. 

3. Fundamental properties 

3.1. Independence, completeness 

The aim of this subsection is to show that the spaces defined in 2.3 are inde- 
+ 

pendent of the choice of the systems belonging to q~, respectively ~, and that all 
these spaces are Banach spaces. 

+ + 

T h e o r e m  3.1/i .  The spaces B~(~ (where gEM, l < p < ~ %  and l<-q<=~o) 
+ + 

and the spaces F~ ~ (where gEM, l < p < o o ,  and l < q < o o )  from Definition 2.3/3 
+ 

are Banach spaces. They are independent of the choice of {~Ok.~}k ~ S,,~ C es ~ (equivalent 
norms). 

T h e o r e m  3.1/2. The spaces B~!q ) (where gEM, l < p < o o ,  and l<-q<-oo), 
and the spaces F~,~ ) (where gEM, 1 < p <  oo and 1 < q < * o )  from Definition 3.3/4 
are Banach spaces. They are independent of the choice of  {q~k,~}k~U*,~c~E ~ (equivalent 
norms). 

P r o o f .  We shall prove the first theorem, the second one may be proved in the 
same way. 
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+ + + 

Step 1. Let {(Pk,~}E~ and {g/k,~}E~- Assume that the spaces B g(x) and - - p , q  
+ + 

Fg(~ ) are defined by the first system. Let fEFg,tq ~). We have 

(g/k,,Ff)(x) Z tPt,~(x) F I .~F- l tp , , .F f j ( x )  q 
IENn 

Here tEE  is fixed, the summation ~ can be restricted to a finite number of terms, 
rEN n 

Ir--kl~A, independent of k and e. Example 1 to Theorem 2.4/1 shows that the 
Z 1 system {g/k,~(cNqh,~ )- }R~N,.~E satisfies the hypotheses of Theorem 2.4/1. Fur- 

thermore, we shall use the fact that g(xk'~)/g(x~'~), where ]r-kl<=A, c a n  be esti- 
mated from below and from above by positive constants, independent of k, r, and e. 
Now it follow~ from Theorem 2.4/1 that 

I[( N_~.~EEI(g(xk ) (F g/ Ff)()1) ]] < ,e --1 k,~ X q 1/q Lp 
ks ~, 

U ~  . ~ lg (x~'9 ( F -  ~ q~k" Ff  ) (x) [q)l/~l[L~ " 
kE n,e~ 

+ + 

This proves the independence of Fg~q ) from the choice of {tpk, ~} E ~. For the proof 
+ 

of the corresponding assertion for the spaces B~(q ) one needs only the scalar case of 
Theorem 2.4/1. 

Step 2. It is not hard to see that Ilfll~.~7) and IlflJ~%~, arenorms. (llfl[ =0 if 

and only if f = 0 ,  is also a consequence of the considerations below). Let us prove 
+ 

the completeness. Let {~Ok,~}E �9 be such that 
+ 

(28) ,~  (Pk,*(X)= 1 for xEg~ 
kENn, eEE 

+ 

(Remark 2.3/1 ensures the existence of such a system), and let {g/k, ~} E ~ be such that 

g/k,~(X) 1 for xEsupp~ok,~. 

Further, Lp(I~) denotes the vector-valued Lp-space consisting of all functions v(x), 
defined in R. ,  with values in lq such that [[v(x)[I, ~ EL n. The operator ~, defined by 

(29) 5Pf -~- { g ( X  k'e) F - 1  ~Ok, ~ F f  }kE N.,  EE E, 

+ 

gives a linear and bounded map from F a(~) into Lp(]q). The operator M, defined by P,q 

(30) M {hk,~} ---- ~ g-'(xk'~)F-1@k,~Fhk,~, 
k E N . , ~ E E  

+ 

gives a linear and bounded map from Lp(lp) into F g(~)" p,q �9 
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(i) The convergence in (30) must be understood in the sense of Z ' ;  
(ii) One must again use Theorem 2.4/1 in the same manner as above. 

+ 

If  f c F  g~'~ then it follows J ~- p , q  

~ S a f  = Z F-aq~k,~(x)Ff = f 
k E N n , ~ E E  

(convergence and equality in Z'). Furthermore, 

(~M)~ = ~ M ~ M  = ~ M  

is a projection in Lp(I~). In particular, the image of ~M, denoted by I (~ '~) ,  is 
a complemented subspace of Lp(lq). It follows that ~ is a one-to-one map from 
+ + 

Fp~ ) onto I(~:~).  Since I (~M) i s  a Banach space, so is Fp~ ). In the same way one 
+ 

proves that 50 is an isomorphic map from B~(~ ) ,  onto a complemented subspace 
of  l,(Lp). 

3.2. Density 
+ 

T h e o r e m  3.2/1. Let  g E M  and l < p < o o .  
+ 

(i) I f  1 <-q < ~o, then Z is dense in Bgn~ ~) , * 

+ 

(ii) I f  1 < q < o% then Z is dense in F~(,q ). 

T h e o r e m  3.2/2. Let  g E M ,  l < p < ~ ,  and FD = { f :F fED} .  
(i) I f  1 <-q< o% then FD is dense in B~(q ) �9 �9 

(ii) I f  l < q <  co, then FD is dense in F~,q ). 

Proof .  Prove the first theorem (the proof of the second one is essentially 
+ + 

the same). Let fE Fne,~q). Let {~0k, e} E cp. Assume that (28) is statisfied. Let 

(31) Zt(x) = Z ~~ (l = 1,2 . . . .  ). 
I k l~_ l ,  e E  E 

+ 

Let {~kk,,}E~ be an arbitrary system. Then it follows from Theorem 2.4/1 (and 
Example 1 to this theorem) that 

I1( <= 
Ilf-F-1x*Ffl[+F~ff' = kc , r 

<= �9 

Here l ' ~  for l ~ .  But by Lebesgue's convergence theorem the right-hand 
side of the last inequality tends to zero for l '  -~ co. This proves that F -  1Z~ F f  approxi- 

+ 

mates f The same arguments may be applied to B~!~ ) provided that q <  co. Hence, 
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in both cases it will be sufficient to approximate a function .f6Lj, where supp Ff 
+ 

is a compact subset of R, in Lp. Let t/E S be such that 

q(O) = 1, suppFqc{y:lyl  <= 1}. 

Let ~lh(X)=q(hx), h>0.  Then fh(x)=tl(hx)f(x ) has the desired properties: 
(i) fh(x)~f(x) in Lp for h + 0; 

(ii) Ffh = F f .  h-" (Fq) (x/h), and hence 
+ 

supp Ffhc supp Ff + {y: IY[ <- h}cR , ,  

provided h is small enough; 
+ 

(iii) Ffh~D, provided h is small enough. 

R e m a r k  3.2/1. The last part of the proof coincides essentially with the state- 
ment in [16, II, Theorem 4.2]. But to be self-contained, we included the above 
proof here. 

R e m a r k  3.2/2. It is possible to show that not only FD, but also S is contained 
in all spaces B~}~ ), where l<_-q<= ~, and in all spaces F~!~), where l < q <  ~, (Obvi- 
ously, FD~ S). This wil! be an easy consequence of the inclusion properties proved 
later (see Remark 6.1/1). 

3.3. Comparison 

Here are considered two types of spaces: homogeneous spaces (Definition 2.3/3) 
and non-homogeneous spaces (Definition 2.3/4). The question arises whether these 
two types of spaces can be compared. Furthermore, what are the relations between 
the "classical" spaces H i (Lebesgue spaces=Bessel potential spaces=Liouville 
spaces), Bp, qs (Besov spaces=Lipschitz spaces), and the spaces F~,q introduced in 
[14] and the spaces considered here. From the view-point of Section 5 and Subsection 
6.2 it will be clear that of peculiar interest is a comparison between Hi ,  Hp ~ and 
+ 

H~ ~x). Recall the definition of Hi :  If  - ~ < s < ~  and l < p <  % then 

(32) H i = {f: fES' ,  IIfLI/~; = IIF-X(I+ IXl2)S/~FfI[L~<~}, 

If  m=s= 1, 2 . . . . .  then H i =  W~" are the usual Sobolev spaces, H~ (see [15, 
2.3.3]). 

But a serious problem arises. The continuous embedding Z c S  holds if 
both spaces are equipped with their natural topology, but Z is not dense in S (this 

+ 

is an easy consequence of the fact that D is not dense in S). So it is not possible to 
compare the dual spaces S' and Z" on the basis of the usual procedure (that is, if A c B  
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is"a densely continuous embedding, then fEB" can be interpreted, by restriction 
to A, as an element of  A'. This is a one-to-one correspondence. Hence B ' c A ' ) .  
We describe here a possibility how to overcome this difficulty and give examples. 
A discussion of  the questions described above will be given later in Subsections 
5.2 and 6.2. 

Let A be a locally convex space (for our purpose here it would be sufficient 
to assume that A is a Banach space). Let 

(33) S c A ,  Z c A  

be dense and continuous embeddings. Then it is meaningful to interpret the dual 
space of  A either as a subspace of S',  denoted by As, or as a subspace of Z ' ,  denot- 
ed by A z. Because Z is dense in S in the topology of  A, there is a natural 

�9 t one-to-one correspondence between the elements of A s and the elements of A z.  
In this case spaces A s and A z can be identified: ' " ' �9 ' A s = A z = A  . In other words: 
there is no essential difference, if A" is considered as a subspace of  S �9 or as a subspace 
of  Z �9 If  this situation happens then we write: A'EI-I. The notation BEl l  means 
that there is a space A with the above properties such that A ' =  B. 

T h e o r e m  3.3olf - ~ o < s < ~  and l < p < ~ o ,  then H~,EFI. 

P r o o f .  Let A=L~ where l < q < , ~ ,  or A = C ,  the space of  all complex- 
valued continuous functions, defined in R,,  vanishing at infinity. Then (33) is satisfied 
and S is dense in A. We must show that Z is also dense in A. Let X~ (x) be the function 
defined in (31). If  f E S  then F-1zzFfEZ. We have 

(34) I l f - r - x z t F f l l c  ~- f I1-zt(x)l  [(Ff)(x)ldx~O 
R,, 

for l~oo. Hence A = C  satisfies the above hypotheses. Let l < r < q < o o .  Then 

(35) IIf - F-tz~FfIILo ~_ Ilf - F-1ztFf[l~ -'/~ Ilf - F-~ztFf[l~fl. 

By Marcinkiewicz's multiplier theorem (the scalar case of Theorem 2.4/1 and the 
first example to this theorem) 

IIF-Xz, FflIL, ~- cllfllL, 

holds, where c is independent of / .  Using this fact, it follows from (34) and (35) that 
the left-hand side of  (35) tends to zero for l-*oo. This proves that also A=L~,  
where 1 < q <  ~o, satisfies the above hypotheses. Hence A'EH. By the above interpre- 
tation A'=(L~)'=Lp, provided that l < p < ~  and 1 / p + l / q = l .  If  A = H q  s, 
where l < q <  0% then again S is dense in H~ -~. f f  f E S ,  then 

IIf-F-1z~FfIIH~, = Ilg--F-1ziFg[lL~, g = F - I ( I  +]xI2)- ' /~FfES. 

$ Analysis Mathematica 
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Hence, by the above arguments, Z is dense in HaS. This shows that ( H ~ ) ' C H .  
By the above interpretation (HqS)'=H~, provided 1 / p + l / q = l  (see [15, 2.6.1]). 

R e m a r k  3.3/1. The proof shows that C'CII  holds. However, the dual space 
to C, by the above interpretation, coincides with the space of all complex Radon 
measures with finite variation (Riesz's representation theorem). 

R e m a r k  3.3/2. The theorem can be generalized in several directions. Let 
BSp, q be the usual isotropic Besov spaces, where - o o < s < o o ,  l < p <  o% l<_q<= ~,  
which can be defined by 

s = 51 = ( 1 - O ) s 0 + O s  1. Bp, q (H~ ~ s 0 < s < s l ,  s 

(Here (- ,  ")o,q denotes the real interpolation method, see [15].) We have the dense 
and continuous embedding ~" 

S ~ H s + ~  c s .< co. --p Bp, q, q 

Since Z is dense in 0p74 s+~, Z is also dense in BSp,q. Hence, the above hypotheses for 
A=B~,q are satisfied. We have A'=(B~,q)'=B;,~q, [15, 2.6.1]. Consequently, 

B~v, q6 Fl for - o o  < s < oo, l < p < oo, and l < q < - o o .  

This assertion holds true also for q = l  (here one must use A -  -B,,oo ~ [15, 2.6.1]) 
and for the spaces F~,q ([14] or [15, 2.6.2]). 

R e m a r k  3.3/3. It is not very hard to see that the theorem cannot be extended 
to Loo. If  L~ is interpreted as the dual space of L1, then Loo ~[//. Obviously, (33) 
holds true for L1. So we must show that Z is not dense in L1. Let 9 E S be such that 
(F~p) (0) = 1 and let ~k ~ Z. In particular (F~) (0)--- 0. Hence 

1 = ](Fq~)(O)-(f~)(O)l <-_ f k o ( x ) - ~ ( x ) [ d x  = II~p-~IIL1. 
Rn 

Hence ~p cannot be approximated in L~ by functions belonging to Z. 

3.4. Translation invariance 

Let hER n. I f  f 6 Z "  (or f ~ S 3 ,  then T h f i s  defined by 

(T  h f)(~p (x)) = f(q~ (x--  h)) 

(translation operator). Here ~pEZ (or ~pES). It is not hard to see that ~p(x)-~ 
-,-~p(x-h) is an isomorphic map from S onto S and from Z onto Z. Hence T h 
is an isomorphic map from S'  onto S'  and from Z '  onto Z' .  
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+ 

T h e o r e m  3.4/1. Let g (x )EM and 1-<p<~o. 
+ + 

(i) I f  1 <--q<= ~ then Tn is an isomorphic map from B~ ) onto B~(~ ) 
+ + 

(ii) I f  l < q <  ~, then T h is an isomorphic map from Fg,~ ~) onto F~p!~ ). 
+ + 

T h e o r e m  3.4/2. Theorem 3.4/1 remains valid i f  one replaces M by M, B by B, 
+ 

and F by F. 

P r o o f .  I f f 6 Z "  (or f ~S ' ) ,  then 

F T h f  = ei~l' Ff, 

where xh is the scalar product in R,. I f f  belongs to one of the above spaces, then 
both theorems follow from the equalities 

(F-~Ok,~FTJ)(x)  = (F-l<pk, e(y)elYh Ff  )(x) = (F-l~ok, eFf)(x  + h) 

and from the definition of these spaces. 

4. Interpolation 

4.1. General interpolation formulas 

If l < p < o o  and l_<-q<=o o, then the spaces Lp(I~) and l~(Lp) are defined 
below either by (i) or by (ii), depending as we are concerned with homogeneous 
spaces or with non-homogeneous spaces. 

+ 

(i) Let g(x)EM. Then Lp(l~) is the space of all sequences {ak,~(X)}keN.,~en 
such that 

Here x k'~ has the same meaning as in Definition 2.3/3. l~(Lp) is the space of all 

sequences {ak,~(X)}kCN,,~n suchthat  

= N~,e [Ig(xk'")ak,"(X)[l[p) l/q<~176 

For q = oo one must modify in the usual way. 
(ii) Let g (x) E M. Then L v (l~) and I~ (Lp) are defined for sequences {ak, ~ (X)}k ~N*,, ~ 

in the same way: N~ is replaced by Am*, and x k'~ has the meaning of Definition 2.3/4. 
Furthermore, we shall use the notation of interpolation theory [15, Chapter 1]. 

Although the theorem below is formulated for an arbitrary interpolation functor ~,  
one may assume that ~ is either the complex interpolation functor [ . ,  �9 ]0 or the 
real interpolation functor ( - ,  .)0,,, where 0 <  0 <  1 and 1 <_- r <_- oo. 

5* 
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+ + 

T h e o r e m  4.1/1. Let go(x)EM, gz(x)EM, l<p0<~o, and l<pl<oO. Let 
~P be an arbitrary interpolation functor. 

(i) I f  l<-q0<-~o and 1<:q1<-o% then 
+ + 

(36) q,:Rg0(x) Rg,(x)~ {f: fEZ ' ,  -1 = IIF (0k,,Ffli~,ag0:L,~ : I L ,  <co}. ~ ' ~ P o , q o  ~ ~ P l , q l l  " qo " . v ) ,  q t ( P ~ ) )  

Oi) I f  l < q 0 < ~  and l < q i < o o  , then 
+ + 

- 1  o o  (37) qJC~'Oo(x) 17gl(x)~={f:fEZ," IIF ~o~Ffll~,~,oego~ , . ~ g ~ <  }. k" P0, qo ' ~ P l ,  q l l  ' . L ~ v . l q o . ,  L ~ . l q l . _  

T h e o r e m  4.1/2. Let go(x)E M, gz(x)EM, 1 <p0<o% and l < p z < ~ , .  Let 7 j be 
an arbitrary interpolation functor. 

O) I f  1-<q0<_ -oo  and l<:ql<-~, then 

- - 1  (38) qtrng0(~) ng~(x)a = {f: fES ' ,  IIF rPk,,Ff[l~,ag0 L , f~ L , < oo}. ~ \ ~ P O ,  q o '  ~ P l ,  q l /  . q~ ( p ~ ) ,  ql  ( p ~ ) )  

(ii) If  l < qo < ~  and l < ql < ~ ,  then 

(39) _,.wtF"~ *F~ = {f: fES ' ,  IlF-lqgk,,Ffll~'(Lpo~t~Oo),Lp~(t~p) < co}. 

P r o o f .  Let us prove the first theorem. (The proof of the second one is the 
same.) Modify the operators 6e and ~ from (29) and (30): 

(40) 5r = {F-l~Pk,~Ff}~u.,,ee, N{hk,,} = Z F-l~bk,,Fhk, e �9 
k E N n ,  s E E  

By the same arguments as in the second step to the proof of Theorem 3.1/1 it follows 
+ 

that ~5t ' f=f  Furthermore, Sais an isomorphic map from F g"(~) onto a complemented 
P0~ q0 

+ + 

subspace of Lpo(l~g~). Corresponding assertions hold true for F g~(~) Rgo~) and 
Pl, q l  ' ~P0 ,  q0 ' + 

B ~(~`) By the interpolation property, this remains valid for all interpolation spaces Pl, q l  " 

obtained from these spaces. (36) and (37) are examples of this general statement. 

4.2. Concrete interpolation formulas 

The last two theorems show that each concrete interpolation theorem for the 
spaces Lp(l~) and l~(Lp) gives a corresponding interpolation theorem for the B-spaces 
and F-spaces. 

+ + 

T h e o r e m  4.211. Let go(x)EM, gx(x)EM, and l<p l<oo .  Let 1 < P o  < ~ ,  

I I-0 0 
( 4 1 )  g ( x )  = g ~ - ~ 1 7 6  - -  = q 

P P0 P i  ' 
w h e r e  0 < 0 < 1 .  
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(i) I f  1 <= qo < o% 1 <: ql < o% and 

(42) 1 _ 1 - 0  f 0 
q q0 ql 

then 
+ + + 

(43) rng0(~) ml(xn = B~(~) 
L ~ p o ,  qo ~ "U P z ,  q l J  0 

(ii) I l l  <q0 < o% 1-<ql< 0% and i f  q is determined by (42), then 

+ + + 

(44) Ipgo(x) Fgl(x)l = F~(~) 
L~ Po ,  qo ~ P l , q l  jO , " 

(iii) I f  l<_--q0<o% 1 <- <o~ --ql  , i f  q is determined by (42), and i f  p =  q, then 

+ + r.E+ 
(45) tB go(x) B 01~ = B~!~ ) . 

\ p 0 , q 0  ~ P l ,  q l ] O , P  + + 
T h e o r e m  4.2/2. Theorem 4.2/1 remains valid i f  one replaces M by M,  B by B, 
+ 

and F by F. 

P r o  of .  Prove the first theorem. (36) and (37) show that the following formulas 
are needed: 

(i) for the proof of (43) 

go  g z  (46) [/o. (L,o), lq~ (Lm)]o = l~ (Lp), 

(ii) for the proof  of (44) 

(47) go gl [Lpo (lq0), Lpl ( l q l ) ]  O : L p  (l~), 

(iii) and for the proof  of (45) 

oo gx (Lpx))o, p = l~ (Lp) .  (48) (lqo (L,0), lql 

(46) and (48) are consequences of Theorem 1.18.1 in [15] (interpolation theorem 
for vector-valued/q-spaces). (47) follows from Theorem 1.18.3 in I15] and 

g x  [l~~ lq~lo : l~ 

The last formula can be also obtained from Theorem 1.18.1 in [15]. 

R e m a r k  4.2/1. The most interesting formula seems to be the special case of  
(44), where qo = q l=  q = 2: 

+ + + 
(49) [Hgg (~) , "',xrlg~(~)la0 = Hg (=). 

As will be seen later, this formula has some curious consequences mentioned in 
the introduction, see 5.2. 

R e m a r k  4.2/2. One can compare the above formulas with corresponding 
interpolation formulas for the isotropic Besov spaces B~,q, Lebesgue spaces H~, 
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and the F~,q-spaces, see [14] or [15, 2.4]. One of the most interesting formulas for 
these spaces is 

s o s I s (Bp, q0, Bp,~l)o,q = Bp, q, 

where so#s~, 0 < 0  <1,  s=(1-O)so+Os~, l~q0  , q~,q<-~. Here B~q ~ can be 
replaced by H~ 0 and/or B~I, q~ by H j  ~. But as will be seen later (Remark 6.2/2) in 
general there is no counterpart of  this formula for the spaces considered here. 

R e m a r k  4.2/3. The above theorems contain a large variety of special cases. 
For the homogeneous spaces: 

O) go(x)=lxl ~~ g~(x): tx l  ~, s o and sl real 0sotropic homogeneous spaces), 

(ii) g0(x) = /1  [xj['0., gl(x) -- / I  Ixj['~", 
j = l  j = l  

So, j and sx,j real (homogeneous spaces with dominating mixed derivatives). 
For the second case one may find corresponding interpolation formulas in 

GRISVARD [4, p. 180] and SPARR [12, pp. 302---306]. On the basis of the papers by 
SPARR [12] and FREITAG [2, 3] it seems to be possible to prove further interpolation 
theorems (and also non-interpolation theorems). 

+ 

5. Spaces H~ (x) and H~ (x) 

5.1. Representations 

+ 

By Definitions 2.3/3 and 2.3/4 the spaces H~ (x) and H~ (x) are special cases of  the 
+ 

spaces F~~ ) ,  and F g(x)p,o , respectively. We give here a representation formula for these 
spaces in the sense of  the Paley-Littlewood theorems. 

+ 

T h e o r e m  5.1/1. Let g (x )EM and l < p < ~ .  Then there exist two positive 
numbers e 1 and c~ such that for all f E Z  

(50) c~l[/ll~g}~, <= I l f - lg (x ) f f l lL ,  <- c~[Ifll~g~,. 

T h e o r e m  5.1/2. Let g (x )EM and l < p < ~ o .  Then there exist two positive 
numbers c 1 and c~ such that for all fE FD (defined in Theorem 3.2/2) 

(51) cl [Ifllv~,,~, <= IIF-lg(x)Ffll L~ <- cz [If Ileg ,q"" 

P r o o f .  We shall prove the first theorem. The proof  of  the second one is the 
same. 
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+ + 

Step 1. Let {~0k, e}E(~  and {~kk,~}E~b be the two systems described at the 
beginning of the second step in the proof of Theorem 3.1/1. Let fEZ.  Then it 
follows that 

F-Xg(x) Ff  = ,~ F-ag(x)tPk,~(x)Ff = 
kENn, eEE 

g(x) --1 k 

ks nEE 

Now one can apply Theorem 2.4/2. The functions m~,z(x) appearing there are 
identified with ~k,~(x)g(x)/g(x k'~) (after an appropriate new enumeration). This 
is the first row of the matrix. The other rows are zeros. (27) yields 

[IF-lg(x)FflIL~ ~ cllF-~Ok,=FfllL~tg) 

(in the notation of 4.1). This proves the right-hand side of (50). 

Step 2. Suppose again that fEZ.  Let {mj, t(x)} be the matrix of Theorem 2.4/2, 
where the first column mj,l(x) is given by q~k, ~(x)g(xk'~)/g(x) (after an appropriate 
new enumeration). The other columns are zeros. The vector {fj} appearing in Theorem 
2,4/2 is identified here with the vector (F-~g(x)Ff, O, O, ...). Then Theorem 2.4/2 
yields 

Il f-~q~k,~FfilL~<tg) <= cll F- l  g(x) FfllL . 

This proves the left-hand side of (50). 

+ 
R e m a r k  5.1. By Theorem 3.2/1, Z is dense in H~ ~). Hence Theorem 5.1/1 

+ 
can be extended by continuity to H~ <~). Using Theorem 3.2/2 it follows that (51) 
can be extended by continuity to Hg ~). 

5.2. Comparison theorems for H-spaces. Examples 

In Subsection 3.3 we described a method to identify some subspaces of S" 
with corresponding subspaees of Z ' .  The theorem below must be understood in 
this sense. We recall the definition of the classical Lebesgue spaces H i ,  see (32). 

T h e o r e m  5.2/1. I f  - ~ < s < ~  and l < p < ~ ,  then 
+ 

(52) H~ = H~'  + ~xL,):,, = H~I+ ~x~,):,,. 

P r o o f .  Step 1. It is well-known that S is dense in H~ ([15, Theorems 2.3.2(b) 
and 2.3.3(a)]). Here is a short direct proof. If  fEH~, then F- i (1  +lxl2)S/~FfELp 
can be approximated in L o by gE S. Then F- l (1  + Ixl2)-'t~ggE S yields the desired 
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approximation in H i . But FD is dense in S and consequently also in H i .  Hence by 
(32), Theorem 5.1/2, and Theorem 3.2/2 it follows that H i and H~ l+lxl2w2 coincide 
on the dense subset FD. Completion yields the first equality in (52). 

Step 2. By Theorem 3.3, H~ belongs to the class/7. Since S is dense in H i ,  Z is 
also dense in H~. Then the second equality of (52) is a consequence of (32) and 
Theorem 5.1/1 (and Remark 5.1). 

R e m a r k  5.2/1. In particular, it follows that the usual spaces Lp, 1 < p <  ~, 
are special cases of the spaces considered here. The same holds true for the Sobolev 
spaces W;=H";,  l < p < o %  m = l ,  2 . . . . .  But for the Besov spaces B~,qthere arise 
some difficulties, see Subsection 6.2. 

If  f E Z '  and ~ is an arbitrary multi-index, then D'fEZ"  is defined in the 
usual way 

(D~f) (~p) = (_l)l~lf(D,q~) for all q~EZ. 

T h e o r e m  5.2/2. Let l < p < ~ .  I f  ~=(~1, ..., ~,) is a multi-index, then it 
follows that 

+ 

(53) HnlXs I% = {f: fEZ ' ,  D'fELp}, 
+ 
/../r/I x ~l~J and ~D~ f[]tp is an equivalent norm in ~p ~ . 

P r o o f .  Step 1. If  fEZ ,  then it follows that 

(54) [ID=flIL, = IIF -1 /--/x~FfllL,. 
j = l  

By Marcinkiewicz's multiplier theorem it follows that/Tx?/t~fxjl,~ and its inverse 
are multipliers in Lp. Hence, by(54), 

(55) [ID~flIL~ and I[F-I ~Ixjl~sFfIIL~ 
j = : t  

are equivalent norms on Z (this follows also from the simpler fact that the charac- 
teristic functions of {x: O<~jxj< co; j =  1 . . . . .  n}, ~j= ___ 1, are multipliers in Lp). 
By Theorem 5.1/1 it follows that both the spaces in (53) coincide on Z. Since Z is 

+ 
dense in H n I~J I'J one must prove that Z is also dense in the space on the right-hand 
side of (53). 

Step 2. Prove the last assertion. We have in Z '  that 

D~f = F-~FD~f = F-1I-l~sFf. 

If  X~(x) has the same meaning as in (31) and if D'fELp,  then 

D'(r-~ TaFf) = F-a z, F(F-a /TX~ Ff)E L n. 
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Repeating the arguments in the proof to Theorem 3.3 it follows that 

I I D ' f - D ' ( F - 1 z ,  Ff)IIL p ~ 0 for l ~ ~o. 

+ 

On the other hand, b=F-1z tFfC S', and supp Fb is compact in R,. A small 
modification of the end of the proof to Theorem 3.2/2 shows that D"b can be approx- 
imated in Lp by D"u, uEZ. (If one uses Nikol'skii's inequality llD~'bllLp<--cllbllL,,, 
then one can apply the arguments at the end of the proof to Theorem 3.2/2 without 
changes, provided that the supports of the Fourier transforms of all the approxima- 
ting functions are in a small neighbourhood of supp Fb. But this is ensured by 
the above procedure.) This proves the theorem. 

+ 

R e m a r k  5.2/2. Let us denote the space in (53) by W ~ (this resembles the 
usual notation for the Sobolev spaces). The last theorem and (49) have some remark- 
able consequences. For instance 

(56) [1~ /~x ,  W~/~']~/~ = , . ,  . 

Obviously, the counterpart to (53) can be proved also for other special polynomials 
P(O/Oxl . . . .  ,0/0x,,) with constant coefficients. But (56) is only an example of a large 
variety of similar formulas. There are also other special cases which seem to be of 

+ 
interest, for instance the spaces H l~'~ where a is an arbitrary real number. If  
- n < a < O ,  then (by an appropriate interpretation) 

(57) H ;  ~1~ = {/: f 6 Z ' ,  I x -  Yl "+'~ 

(Here we use Flxr=c [xl . . . .  for - n < a < 0 . )  

dy z,, < ~}" 

(58) 

(59) 

6. Inc lus ions  

6.1. Inclusion theorems 

+ 

T h e o r e m  6.1/1. Let g(x)E M and l < p < ~ , .  
O) I f  l < q < ~ ,  then 

+ + + 

BO(X). c F~}~ ) c Rgtx) (continuous embedding). p, mJn (p, q) ~ p ,  max (p, q) 

(ii) I f  1 <-- ql < q~ <= ~, then 

+ + 

Z c B g(=) c I~9(=) c Z" (continuous embedding). P,q l  ~ P , q ~  
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+ 

A corresponding relation holds for the F-spaces, where the values ql = 1 and q2= oo 
are excluded. 

T h e o r e m  6.1/2. Let g (x )EM and l<p<oo .  
(i) I f  l < q < %  then 

(60) Bg(•) c Fg(,~ ) C B ~  (continuous embedding). p, min (p, q) p, max (p, q) 

< < < then ( i i) /f  l = q ,  q~=~, 

(61) S c Bp,q~g(~) c --p,q~R~ c S'  (continuous embedding). 

A corresponding relation holds for the F-spaces, where the values ql = 1 and q2= co 
are excluded. 

Proof .  Step 1. We shall prove (58) (the proof of (60) is the same). Let a,,~= 
=g(xk'*)F-Xq~k,~Ff First assume that l<q<=p<~ .  Then (58) follows from 

Ila~,~lJt={zp) <- Jlak,~JlL~r = JJ ~ lak, dqlJ~/q 
kENn, eEE 

-<- ( ~ Illak,~lqlIL~,) 1/~ = Ilak,=llt~(Lp- 
k6Nn, eEE 

If l < p < q <  % then (58) follows from 

[]ak..ll,q(t.) =l[ f la~,,I ~ dxllI27 " -< 
Rn 

< -  ( f Illak,.l~ll,q,~dx) */~ = Ila~,.ll,~=(,.~ -< Ita~,.ll,~<~;. 
R.  

Step 2. The middle parts of (59) and (61) follow from the monotony of the 
lq-spaces. 

Step 3. Prove the first inclusion in (59) (by appropriate changes a similar proof 
yields the first inclusion in (61)). By Step 2 we may assume that q, = 1. (By (58) this 

+ 

includes also a corresponding assertion for the F-spaces.) Let fEZ .  Using (9) it 
follows that 

(62) IIf[lag?~, ~ c ~ '  2 s lkl  IIF-*~Ok,~FflIL,, 
kENn, rEE 

where s is an appropriate positive number. We have 

IIF-I~Ok,~FflILp ~ cll0 + [XI~m) F-I~Ok,~FfIIL. = cllF-X(l +(--A)")gOk,=Ff]IIL. 

(63) c'll(l +(--A)")[~Pk,,Ff]llL1 ~ c"2 tlkl sup Z ID=(Ff)(x)l, 
xEQ~L)~ I~1 ~- 2n 
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[ ,qcL) where again t is an appropriate positive number. ~ , ~  was defined in (12).) Putting 
(63) in (62) it follows 

(64) [IfII~E, fl <_-- c ~ 2 (s+t)lkl sup ~ '  [O=(Ff)(x)l . 
~ . , ~ c e  ~ ~ o(2~ ) I~l ~- 2. 

The norm on the right-hand side determines a neighbourhood in Z (more precisely, 
the set of all f E Z  such that this norm is less than a given positive e is a neighbourhood 
for the zero in Z). 

Step 4. Prove the last inclusion in (59) (a similar argument yields the last inclu- 
+ + 

sion in (61)). One may assume q2= ~o. Use the two systems {q)k, ~}E �9 and {•k, ~}E 
+ 

described in Step 2 of the proof to Theorem 3.1/1. I f  fEB~(~, and q)EZ, then it 
follows that 

[f(q~)] = [ ~ '  r-*r <= 
kENn, eEE 

<= sup Itg(xk'~)r-a~,~Ff[lL. Z [Ig-l(x~'~) F~~176 ", 
k, ~ k,~ 

where l /p+ 1/p'= 1. Hence 

(65) [f(~o)l <-Ilfl13~(~, II~oll~g-l(~).,, 

+ 

Now it follows from Step 3 that the embedding 0(*) , Bp, oo c Z is continuous (Z'  is equipped 
with the strong topology). 

R e m a r k  6.1/1. By (60) and (61), S is contained in B~(q ) ,  and F~(q ) ,  . This question 
was left open (see Remark 3.2/2). 

R e m a r k  6.1/2. Of peculiar interest is the embedding 

(66) + + + 
B g(x) H~,(*) og(*) p,min(2t, p) C C Up ,  max(2,p) 

and its counterpart for H~ (~). 

6.2, Comparison theorems for B-spaces 

The question arises whether (52) can be carried over to the B-spaces. The answer 
is in the negative. The method developed below works for the non-homogeneous 
spaces and for the homogeneous spaces. However, we restrict ourselves here mainly 
to the non-homogeneous spaces. 

First we must recall the following characterization of BSp, q, [14] or [15, 2.3]. Let 

qt = {x: Ixjl < 2t; j = 1 . . . . .  n} (I = 0, 1, 2 . . . .  ). 
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Let {~h}t%0 be a system of functions belonging to D with the following properties: 
(i) supp~hcqz+2-qt_ 1 for l=1,  2 . . . . .  supp~/0cqx; 

(ii) for each multi-index ~, there exists a positive number cr such that for all 
1=0, 1, 2 . . . .  and x~R~ 

[D~/l(X)] <---- cr2 -slrl 
holds; 

(iii) there exist two positive numbers c and C such that for all xERn 

o o  

c < Z n ( x ) <  c 
1=0 

Obviously, this is the counterpart to the system {~p,,~} in Subsection 2.3. 

If  - ~ < s < ~ ,  l < p < ~ o ,  and l<_-q<_-~, then 

B~, g = { f :  fE  S' ,  112 t2 F -anl Fflllq ~Lp) < ~}. 

For the proof of the fact that B~,q and --p,R (lq-[x[2)s/2q are not equal we consider 
only the case p = 2. 

T h e o r e m  6.2/1. I f  - ~ < s < ~  and q~2,  then 

s l~(l+lxl~) ~/2 
B2, q ~ ~2,q 

P r o o f .  Let L(I) be the number of parallelepipeds Pk, ~ (formula (3)) which are 
contained in qz+~-qt. We have L ( l ) ~ o  as 1 ~ .  Let fCS" be given by 

{ ak,,(= const) for XEPk,~ C ql+l--ql, 
(Ff ) (x )= 0 otherwise. 

Then it follows (by an appropriate choice of ~h) that 

(67) Ilfl[~,, = 2'2( Z ]ak, d 2 [ek,~]) a/z. 
Pk,  ~ Cql  + l - -ql  

On the other hand, 

(68) IIf IIB(x+l~l')~/' ~ 212( ~Y [a~,,I q Iek,~lq/~) ~/~-. 
2,q Pk,  r Cql  + l - - q !  

(Here " ~ "  means equivalence, and the corresponding constants are independent of l.) 
Since ak, ~ can be chosen arbitrarily, it follows that the right-hand sides of (67) and 
(68) cannot be equivalent to each other (q~2,  L ( I ) ~  as l ~ ) .  

R e m a r k  6.2/1. The same argument yields 

, - ~  ~ -~ q ~ JO2, q 

provided that q~2.  
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(69) 

and 

(70) 

T h e o r e m  6.2/2. Let --~o<s<oo, c~>0, l < p < o o ,  and l<-q<=oo. Then 

BS+Z D( l+lx lS ) s /a  s s t:t(l+lxlZ)S/2 s ' 6  p,q = ,.,p,~ c Bp,1 c Bp,.o c ~ , ,~  c Bp,q 

B(l+lxla) ~/~ s B ( l+ lx l~ )~ / z  
p, rain (2, p) C B p ,  p C p, max (2, p) .  

Proof .  Step 1. We prove the first inclusion in (69). One obtains as an easy 
consequence of the definition of the B-spaces that 

lifliBcl§ <= clIfilB<x§ ~' > O. 
p,1 p , ~  

Hence 

(1+ [xl~)(s + ~')/~ ~ (similarly, B ~+~' (71) Bp,~ c ~,p,1 p,,. c Bp,1). 

Consequently, by (60) and (61) (the corresponding formulas for B~,q and H~), and 
(52) it follows that 

B,+a H;+a/2 (l§ (z'+n)/a B(Z+lxla)(='+6)/4 o ( l + l x l Z )  " l l  
p, q C = n p  c p, ~ c .Op, 1 �9 

In the same way one may prove the last inclusion in (69). 

Step 2. The second inclusion follows from 

IIF-~thFfllLp <= c Z IIF-I~Pk,~FfIIL~ �9 
Pk, ~ Cqt  + 2 ~q l  - 1 

(Here we used again a multiplier theorem.) Similarly, it follows the last but one 
inclusion from 

sup 
Pk, c c q l  + 2--qt -1  

Hence (69) is proved. 

II F-I~R,~ Ff[IL~ =< clIF-Xn, FflILo. 

Step 3. Let us prove (70). Let 1 <p-< 2. Using a Paley--Littlewood theorem it 
follows for fixed 1( I=0,  1, 2 . . . .  ) that 

IlF-l~h FfllLp <= cliF-lthq~k,~FfllLpttv <-- c'l[F-XCpk,~Ffl[L, ttz) <= c"llF-Xcpk,~FfllL~%), 

where Lp(12) and Lp(lp) indicate summation with respect to k and e over values 
such that Pk, ~=q,+z--ql-1. This proves the left-hand side of (70). The right-hand 
side follows from 

(72) Bp, c HpS = __pH ( l + l x l z P / 2  C ~p,2R(l+lxl2)*/a" 

(Here we used (52) and (66).) Let 2 < p <  oo. Then the left-hand side can be obtained 
similarly to (72). The right-hand side is a consequence of 

[]F-acpk,,Ffl[Lp(tp) <-- [IF-lq~k,~Fflln~tt~) <= cllF-Xth Ffl[L~, 
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where again  Lp(Iv) and  Lp(12) must  be unde r s tood  in the above  way, for  fixed l. 

This proves  (70). 

R e m a r k  6.2/2. (69) has the fol lowing consequence:  In general, the two spaces 

(73) (B  (:+lxl~)~/~ u(:+l~t~)~/2~ and  /~ O+1~1~)~/~ k - - p ,  qo ~ JLJp, q l  ]O,q ~ p ,  q 

where So < S < S~ , s =  ( 1 -  O) so + OSD l ~ q 0 ,  ql , q <= ~ ,  do not coincide ( a s o n e  would  

expect  in compar i son  with the spaces B~,q, see R e m a r k  4.2/1). Assume  tha t  the  two 

spaces in (73) coincide for  all values o f  the parameters .  Then it fol lows f rom (69) 

and  the re i tera t ion  theorem of  in te rpola t ion  theory  tha t  

S S O S 1 ( I + I x l e )  s l2  
By, q : (Bp, qo , Bp,ql)O,q : Bp, q 

(with the same values o f  the pa ramete r s  as above).  By Theorem 6.2/1 this is impossible .  
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O 6 m u e  OymcJixona~miue npocTpancrna.  III  
(IIpocTpancrna B~!~ ) x F g<~)p,q , 1 < p  < oo: ocnoBm, le cnoficTna) 

X. TPHSEHb 

HacTo~man pa6oTa (a Tmcxce ee n p o ) I o ~ e H H e -  pa6oTa <<O6mrte qbyrmtraoHanmxl, m npo-  

cTpaHcTBa, IV,>) liOCBatt~eHa rtccne~oBarIrtm 6al~aXOBbtX npocTparlCTB B~!~ ~ r~ F~!~ ) pacnpe~enenrI~i 

(o6o6menr~btx) a R, .  B cneunazmr~brx cay~a~x 3Trt npocTparicTBa pO,~CTBeHHbl H3BeCTHbIM K~accaM 

Co6oaeBa--Jle6era--BecoBa,  H3OTpOIIHHM I4 ami3oTpoim~rM. 3~Iecb pacCMaTpHBatOTC~ cneJaylo- 

lithe CBO~ICTBK: IlTIOTHOCTb FJIaJ~KHX ~yHKI]~Ii~, 3KBHBaYieHTHbIe HOpMbI, HHTeplIOYDII.(H~I, BKJItOtleHHH 

H cpaBHeHtlH. 
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