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1. Introduction

It is a known fact that decomposition methods are very useful in spaces of
functions and distributions defined in R,. The methods can be described as follows.
If fis a given function or distribution in R,, then one asks for the approximation of
f by entire analytic functions of exponential type (rate of convergence, etc.). By the
Paley—Wiener—Schwartz theorem this problem can be reformulated. One asks for
the approximation of the Fourier transform Ff of f by distributions with compact
support. This is essentially the same as the problem of decomposition of Ff by dis-
tributions with compact support: Ff'is represented as an infinite sum of distributions
of this type. The supports of these distributions are determined by corresponding
decompositions of R, in subsets. Systematic treatments of (isotropic and anisotropic)
Sobolev—Lebesgue (=Bessel-potential)—Besov (=Lipschitz)-spaces on the basis
of such decomposition methods may be found in [10] and [15, Chapter 2]. But these
methods work also in other spaces [8, 14, 15] (the spaces A4}, and F, ). For all
these considerations multiplier theorems of Michlin—Hoérmander—Marcinkiewicz
type for L,-spaces are very important. This has the consequence that the above
mentioned decompositions of R, must be related to decompositions of R, appearing
in the corresponding multiplier theorems (dyadic decompositions). From this point
of view one has at least two decompositions of R, which seem to be of peculiar
interest:

(i) R, is decomposed in differences of parallelepipeds centered at the origin
(this is essentially the method in the above cited papers and books and gives isotropic
and anisotropic spaces of the above type. A short description is also given at the
beginning of Subsection 6.2).

(ii) R, is decomposed in parallelepipeds of type {x:2%<e;x;=2%%";¢;=+1},
(this includes isotropic and anisotropic spaces, spaces with dominating mixed deriva-
tives, and more general spaces related to spaces considered in [S], and [17, Appendix]).

In both cases one has again two possibilities: for instance, in case (ii) one can
consider the above parallelepipeds, where k;=0, £1, £2,... (homogeneous
spaces); or one can consider only the parallelepipeds where k;=0, 1, 2, ... (obviously,
here one must modify the decomposition near the axes) (non-homogeneous spaces).
Although cases (i) and (i) (and their homogeneous and non-homogeneous subcases)
are mutually independent, we shall be concerned here only with (homogeneous and
non-homogeneous) decompositions of type (ii). Of peculiar interest seems to be the -
homogeneous case. It includes spaces where the norms are given by || D* f L, °of
| F-1x [P Ef | L, where B is real. The complex interpolation [, -]y, of the spaces
characterized by 0*f]0x% and & f/dx5, respectively, gives the space characterized
by 0% f/0x0xs, see (56). In order to consider these spaces we must generalize the
notion of distributions.
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This paper is the third part of a series started with [16, Part I]. In the first part
motivations are given for decomposition methods in the framework of spectral
theory. The second part deals with basic spaces from which more general spaces
considered here are built up: L, -spaces, where the supports of the corresponding
Fourier transforms are contained in a given compact subset of R,. The third part
presented here is self-contained. Here are proved the basic properties for spaces

+
90 F99, and F2P: demsity of smooth functions, completeness,
equivalence of norms, inclusion properties, comparisons between the different
types of spaces, interpolation. The fourth part of this series will be a direct continu-
ation of this paper. For the spaces treated here there will be considered special
properties: representation theorems, duality, multipliers, embeddings, traces. In the
fifth part (again essentially self-contained) there will be considered the spaces Bf,f;‘)
and Fg’(;) for 0<p=1 and p=o. Although some results proved here remain true,
the situation will change completely: the methods will be closely related to the methods
developed by FEFFERMAN and STEIN [13] in connection with the real variable
approach to Hardy spaces.
Insignificant positive constants will be denoted by ¢, ¢’, ¢;, ... which does not
mdicate that these numbers are equal in different occurences.

+
Be® , B (x)
P q

2. Definitions, preliminaries

+
2.1. Classes M and M

In the sequel R, is the n-dimensional real Euclidean space; its general point
is denoted by x=(x, ..., x,). Let e=(g, ..., &,) where g; is either 1 or —1. There
are 2" vectors of this type. The set of all these vectors is denoted by E. Let N, be
the set of all vectors k=(k,, ..., k,), where the k;’s are integers. N is the subset
of N, where k;=0,1,2,... forj=1,...,n Then '

) Qi = {x:2h < g;x; <267%1; j=1,..,n}

+
gives a decomposition of R,:

n + —
(#)) {x: Il x; = 0} =R,= U 0.
j=1 k€N, ecE
Let

3) Py, = {x: nos, 2l <ex; <29+ j=1,..,n)}
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where k€N, . Here ”lo,kao for k;=0 and Mo,i,= 1 for k;=1,2,.... We have
@) R,= U Py,

KENS, ecE

The decomposition (2) leads to homogeneous spaces (the fact that the hyper-planes
{x: x;=0}, jis fixed, donot appear in the decomposition (2) will be very important),
the decomposition (4) leads to non-homogeneous spaces.

+ +
Definition 2.1/1. M is the set of all positive functions g(x) defined in R, and

+
n times continuously differentiable in R, for which there exists a positive number ¢
such that for all multi-indices y=(y,,...,7,) where y; =0 or 1, and for all
XER,
&)
holds.

gx)| = cg(x)

Remark 2.1/1. A simple application of the mean value theorem to log g(x)
shows that there exists a positive number ¢ such that for all parallelepipeds @ .

(6) Jnax gx)=c QO g(x), kEN,, e€E.

Definition 2.1/2. M is the set of all positive functions g(x) defined in R,
and n times continuously differentiable in R, for which there exists a positive number
¢ such that for all multi-indices y=(y, ..., ¥,) where y; = 0 or 1, and for all
XER,

n
¥ 1a +x§)vf/2DVg(x>{ = cg(x).
Jj=1

Remark 2.1/2. Similarly to Remark 2.1/1 one obtains that there exists a posi-
tive number ¢ such that for all parallelepipeds Py ,
®) max g(x) = cmin g(x), k<N, ecE.

x€F, . xEP, .

n

Remark 2.1/3. The classes M and M are related to the differentiability proper-
ties of the spaces under consideration. For instance, in the “classical” counterpart
the smoothness index s in the Besov spaces B; , would correspond to g(x)=
=(1+[xPy™.

+ + +
Lemma 2.1/1. (i) Let g(x)éM, g, (x)EM, g (x)eM; A>0 and x real
numbers. Then

x)

IEWEM, MM, gM+HEEM, §MaOEM, g‘()
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+
(i) If g(x)EM, then there exist three positive numbers c, sy, and s, such that

9) g(x) = c(1+|x|Pn for xE;Q,,.

I x;
ji=1
Lemma 2.1/2. (i) The assertion of Lemma 2.1/1 (i) remains true if one replaces
+
M by M.
(i) If g(x)€ M, then there exist two positive numbers ¢ and s such that
(10) g(x) =c(+|x])° for x€R,.

Proof. Part (i) of either lemma can be proved by direct computation. Let us
prove (9). Let usset £°=(0,0, ...,0) and k'=(1, 0, ..., 0). If c has the same meaning
as in (6), then it follows that

max = ¢ min X)=c¢ max X
Jhax g(0) =c min g(x)=c max g(x)

Here ¢€E is fixed. If |k]= 2’ |k;|, then it follows by induction that
i=1
= Kl ,
. xrggéag(X) =c xg}igc’eg(x)
But for x€Q, ,
M = 2¢lK = ¢~ H(]le+ I I)
J

holds. This proves (9). (10) can be proved in the same way.

Examples. With the aid of the above lemmas one can construct immediately
a large variety of examples of functions belonging to M and M Since |x;| belongs
to J\}, so do also |x;|*s (x; real) and every rational function of |x;*; with positive
coefficients. Furthermore, log (2+lxj|)61;1, .... Of peculiar interest are the fol-
lowing functions belonging to Xl :

|x[%, s real (isotropic spaces),

12"' |x;]%, s; real (anisotropic spaces),

]] |x;1%, s; real (spaces with dominating mixed derivatives),

|x| llog 2+ x|, s and ¢ real,
where the related spaces seem to be of interest in the theory of pseudo-differential
operators. If one replaces in-the above functions |x;| by (1+x})Y* and |x| by
(1+1x|*%, one obtains functions belonging to M.
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2.2. Spaces Z and Z'

D is the space of all complex-valued infinitely differentiable functions, defined
in R,, with compact support. § is the well-known Schwartz space of all complex-
valued infinitely differentiable rapidly decreasing functions defined in R,. Both
spaces will be considered as locally convex spaces equipped in the usual way with
a topology. D’ and S” are the dual spaces (distributions and tempered distributions,

+
respectively). What is needed hereis a generalization of D’. Let D be the subset of D

+ +
consisting of all functions of D with compact supportin R,. Again, D will be consid-

ered as a locally convex space equlpped in the usuval way with a topology (see for

instance, [9, p. 76]). The dual space is denoted by D’ (distributions over R,,) Let
F be the Fourier transform, defined on S by

ENE) = @0 [exf@d, xt= 3 xc

The inverse Fourier transform F-! is given by a corresponding formula, where i is
replaced by —i. As is known, F is a one-to-one map from S onto S. The image of
+

+
D by such a map is denoted by Z. Hence Z=FD. By the Paley—Wiener theorem
Z consists of entire analytic functions of exponential type. The topology of Z is to

+
be taken over from D by this mapping. Let Z’ be the corresponding dual space. If
J€Z’, then the Fourier transform of f, denoted by Ff, is defined as an element

of 5’ by
(Ef)(¢) = f(Fp) forall ¢eD.

+
As usually, the Fourier transform in S’ is defined in the same way if D is replaced
by S. We have

+
(1) FZ' =D, F§' =58’

+
(The inverse image under the Fourier transform of a given distribution ge€D’ is
f€Z’ defined by fl(p)=g(F ~1¢)). For the later considerations it will be useful to
note that we also have

+ +
Z=F1D and FZ'=D,

where F~1 f (fc€Z’) is defined in an obvious way. All the dual spaces, considered
here, are equipped with the strong topology.
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2.3. B-spaces, F-spaces, and H-spaces

First we need an extension of the definition of the parallelepipeds Q, , and
P, . given in Subsection 2.1. Assume that ¢ has the same meaning as explained
there. Let L be a natural number. Then

(12) O ={x: v L <gx; <24+L+1; j=1,...,n}, kEN,, e€E,
and
13 PR = {x: o, 287 L < gyxy < 26HL+1; j=1,...,n}, kCNS, eCE.

Here n,, =1 for k;=1,2, ..., and ng ,= —1. There exists a number N (depending
J + ?
on L) such that each point x€R,, respectively x€R,, belongs to at most N paral-

lelepipeds O, respectively P).

+
Definition2.3/1.If L=1,2, ..., then &, isthesetofall systems {@; Jeen .cE
of functions with the following properties:

+
(14) (l) (Pk,s(x)EDa Supp (Pk,sc Qg‘g’

(ii) for each multi-index y=(y,, ..., y,) there exists a positive number ¢, such
that for all k€N,, all ¢cE, and all x€R,,

5) (D ¢y, ) ()| = C, 27 k== Inkn g .
(iii) there exist two positive numbers ¢ and C such that for all x¢R,
(16) c= 3 pm=C
kEN,,e€E
Let us set

+ o T
d’ = U QL'
L=1

Definition2.3/2. If L=1, 2, ..., then &, is the set of all systems {@; hcen* ocE
of functions with the following properties:

@ @r,(X)€D, supp @y, ,C PY;

(ii) for each multi-index y=(y,,...,7,) there exists a positive number c,
such that for all k€N, all ¢€E, and all x€R, (15) holds;

(iii) there exist two positive numbers ¢ and C such that for all x¢R, (16) holds.

Let us set

Remark 2.3/1. This is the counterpart to corresponding systems of functions
used in [14] and [15, 2.3.1] in connection with the Besov spaces Bj, o and the spaces
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F; ,- (There is an irrelevant difference in comparison with the systems in [14, 15]:
there we used the Fourier transform of the functions in the systems instead of the
functions themselves). The assumptions for the functions ¢, . may be weakened:
for instance, it will be sufficient if (15) holds for multi-indices y=(yy, ..., 7,) where
all y; are either O or 1.

. +
It is not difficult to see that &, and &, are non-empty. Let @€D be such that
e(x)=1 for |x;|<1/2 (j=1,...,n), =0,

and ¢ (x)=0 outside a small neighbourhood of {y:|y;|=1/2}. Let x** be the centre
of Q.- Then the system of functions {@ Jeen .cp defined by

Or,e(X) = Q27100 — X9, ..., 27Fn (3, — X0 %))
belongs to @, . After a small modification one obtains in the same way systems belong-
+
ing to @, . Furthermore, {Y; Jicn .cp€®Pr, Where

V) = 00,3 01,1, x€R,.

This system has the advantage that (16) can be replaced by
+
17 2> Yp.(x)=1 for x€R,.
kEN,, eCE

Corresponding assertions hold for &;. (17) is a partition of unity.

Now we can define the B-spaces, F-spaces, and H-spaces considered here. If
1 <p<-oo, then L, has the usual meaning: it is the Banach space of all complex-valued
Lebesgue-measurable functions in R, such that

’ 1/p
171, = [17eorax] <
Rn

+
Definition 2.3/3. (Homogeneous spaces.) Let g(x)éM and l<p<oo,
+
Let x** be the centre of Oy ,. Let {9 Jeen, cce€®-
() If 1=g=oo, then

+
(18) BEY = {f:feZ’, |flzpen = ( I8 (%) =gy . FF [, a < oo},
’ kEN,,e€E
(If g=co, then the /,-norm in (18) must be replaced by the /_ - norm).
(i) If 1<g=<-oo, then
+
A9 B = {12 WMlzgep =1(_ 3 186 E 00 BN s, <=2}

+ +
© (il 9(x) _ fg(x)
(i) HE™=F25.
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Definition 2.3/4. (Non-homogeneous spaces.) Let g(x)éM and l<p<oo,
Let x*¢ be the centre of Py .. Let {¢, Jienr cce€P.
(i) If 1=g=-oc, then

(20) By ={f:feS", Iflsgy=( 2 [gG")F oy Ff|f,) 1<}

kKEN) e€E

(If g=-oo, then the /,-norm in (20) must be replaced by the /_,-norm).
(i) If l <g<-<o, then

(e2y) FiQ ={f:/€5, Wl (2 18G9 (F r e £ ))<=},

keN¥ ecE

(iii) Hf,(")z F5Q.
Remark 2.3/2. The norms (18)—(21) obviously depend on the choice of the

+
system {¢@, .}€ P, respectively {¢p; ,}€®. But we did not stress this on the left-hand
side of (18)—(21): it will be shown later on that all the norms (18) (respectively
+

(19), (20), or (21)) for different choices of systems belonging to @ are mutually
equivalent and so, from our point of view here, are not essentially different.

Remark 2.3/3. For f€Z’ the expression F~1¢, .Ff is meaningful. By (11)

+
we have FfeD’. Hence, by an appropriate interpretation, ¢, ,Ff€S” and so
F-lg, ,FfcS’. Furthermore, by the Paley—Wiener—Schwartz theorem, all the
distributions F~'¢, ,Ff are entire analytic functions of exponential type.

2.4. Multipliers in L,

For the convenience of the reader we formulate here two multiplier theorems
in L, which will be useful in later considerations.

Theorem 2.4/1. Let 1<p<oo and 1<g<-oo. Let p; be complex measures in
R, (j=1,2,...) with bounded variations:

(22) Var y; = |;|(R,) = B,

where B is independent of j. Let

*1

(3) m@ = [ o [dy=wmy: —e<y<x; 1=1,...0).

- oo
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Then there exists-a positive number ¢ depending only on p, q, and n such that for all
systems {f;}i=1, /€5,

24 J;(x) = 0 with the exception of a finite number of these functions,
oo 1/q o 1/q
@9) (Z1mmpes) || =es|( 3 15000)
j=1 L, j=1 Lp
holds.

Remark 2.4/1. The case #n=1 is due to SCHWARTZ [11, Lemma 11] (see also
[1, 11.11, Lemma 24]). The general case, inclusively the above formulation, is due to
LizorxIN [6, p. 241]. (25) is meaningful: Ff;cS, m; Ff¢S” ,and hence F~im;Ff;€S’.
By (25) F~'m;Ff; belongs to L, considered as a subspace of . This inequality
can be extended by completion arguments to systems of functions {f; 71 for which
the right-hand side of (25) is finite.

+
Examples. I. Let {@; Jyen .cp€®P. Let

9" ¢y
d =——.1T%e _ dx.
Mk,s axl .. 8xn X
Then
Xy Xn
(pk,a(x) = / . f dﬂk,a
and
" P, e ”
€ Rn =c —— dx = C, Z_kl-“._k"dx =c¢ ?
I“k» I(R,) R‘[ 0Xy ... 0%, o)

¢” is independent of k€N, and ecE. Hence, after introducing an appropriate new
enumeration, the functions m; in (25) can be identified with ¢, ,. In the same way it
follows that the system {@, ,Jicn*,.ce€ @ satisfies also the hypotheses of the theorem.

2. Let Q={x: 0<x;=1; j=1,...,n} be the standard cube. Let &, ,, be
the Dirac-measure with respect to the point (4, ..., 4,) where 2; is either O or 1. If

A= 2

" )(_1)11+...+An5(ll’m’1n)’
1

An

then |u|(R,)=2" and

P

mey= [ o [ldu=10,

— oo

the characteristic function of Q. The arguments hold true for an arbitrary paraliel-
epiped in R, with edges parallel to the axes. Hence Theorem 2.4/1 holds true if
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m;(x)=y;(x) is an arbitrary set of characteristic functions of parallelepipeds with
edges parallel to the axes.

Theorem 2.4/2. Let m; (x) (j,I=1,2,...) be n times continuously differen-
+ .
tiable functions defined in R,. Let

1/2 +
(26) ( 2 |D'my, ,(x)|2] =B for x€R,

Jii=1

and for y=(y1, ..., Vo), ¥, is either 0 or 1. If 1<p<co, then there exists a positive
number ¢, depending only on p and n, such that for all systems {f; i1 JF€S8, satis-
Sying (24),

2))

(S Smamcor) | =es [g]f,-<x)12]m

Lp P

holds.

Remark 2.4/2. This is essentially the Hilbert space version of Marcinkiewicz’s
multiplier theorem. We refer to [13, IV. 6] and [7].

3. Fundamental properties

3.1. Independence, completeness
The aim of this subsection is to show that the spaces defined in 2.3 are inde-

+
pendent of the choice of the systems belonging to &, respectively @, and that all
these spaces are Banach spaces.

Theorem 31/1 The spaces B"(") (where gEM l<p<oo, and 1=q=oo)
and the spaces F”(") (where gGM l<p<oco, and 1<g<e) from Deﬁmtwn 2.3/3

are Banach spaces. They are independent of the choice of {¢y Juen, o€ <D {equivalent
norms).

Theorem 3.1/2. The spaces B (where gEM, 1<p<eo, and 1=q=c),
and the spaces Fg,(;) (where geM, l<p<oo and 1<q<<) from Definition 3.3/4
are Banach spaces. They are independent of the choice of {@, en*,:ce€ P (equivalent
norms).

Proof. We shall prove the first theorem, the second one may be proved in the
same way.
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+ + +
Step 1. Let {p, €& and {Y; J€P. Assume that the spaces B%Y and
+ +
F2%) are defined by the first system. Let f€F25). We have

o F() = T"”w—(’?—)F[ 3 F 0, 10

Here s€E is fixed, the summation 2> can be restricted to a finite number of terms,
ren,

|[r--k|=A, independent of k and e. Example 1 to Theorem 2.4/1 shows that the
system {y,, B( 2 @) e N, e€E satisfies the hypotheses of Theorem 2.4/1. Fur-

thermore, we shall use the fact that g(x*%)/g(x"%), where |r—k|=4, can be esti-
mated from below and from above by positive constants, independent of k, r, and e.
Now it follows from Theorem 2.4/1 that

IC 2 GRS EF Y B X)), =
kEN,,ecE
=cC ||(k€N‘Z‘;€E Ig(xk,e)(F—l(pk’sEf’)(x)lq)l/q“Lp.

+ +
This proves the independence of F¢$ from the choice of {¢,, }€ ®. For the proof

3 +
of the corresponding assertion for the spaces Bgf;’ one needs only the scalar case of
Theorem 2.4/1.

Step 2. It is not hard to see that ||f]|+ . and ||f|| . are norms. (]| fI=0if
and only if f=0, is also a consequence of the cons1deratlons below). Let us prove

the completeness. Let {(pk,s}é @ be such that

+
28) 2 (pka(x)-l for - x€R,
kEN,,e€

+
(Remark 2.3/1 ensures the existence of such a system), and let {, .}€® besuch that
l/’k, s(x) =1 fOI‘ xEsupp (Pk, g

Further, L,(J,) denotes the vector-valued L,-space consisting of all functions v(x),
defined in R,, with values in /, such that Hv(x)[[,p € L,. The operator &, defined by

(29) Ff = {g(*) F @ o Ff Jeen, ecEs
+
gives a linear and bounded map from F g,(x’ into L,(/,). The operator 2, defined by

(30) 2 {hk,e} = Z gnl(xk 5) F_ll//k thk e

kEN,,e€E

gives a linear and bounded map from L (/) into F' ‘j,f”;):
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(i) The convergence in (30) must be understood in the sense of Z’;
(i) One must again use Theorem 2.4/1 in the same manner as above.

+
If feF5$), then it follows
RLf= 5 Floy()Ff=f

k€N, e€E
(convergence and equality in Z°). Furthermore,
(PR} = FSRSR =S R

is a projection in L,(l,). In particular, the image of %, denoted by I(¥%), is
a complemented subspace of L,(/,). It follows that & is a one-to-one map from

;g,(;‘) onto I(¥#). Since I(¥#) is a Banach space, so is ;‘g(;). In the same way one
proves that & is an isomorphic map from ng;’ onto a complemented subspace
of [,(L,).

3.2. Density

Theorem 3.2/1. Let gEA} and 1<p<oo,

Q) If 1=q<oo, then Z is dense in }gf;).

(i) If 1<g<w<o, then Z is dense in Fg,(g).

Theorem 3.2/2. Let g€M, l<p<eo, and FD = {f: Ff¢D}.
() If 1=q=<woo, then FD is dense in B,
(ii) If 1<g=<-<o, then FD is dense in F§$.

Proof. Prove the first theorem (the proof of the second one is essentially

+ +
the same). Let feF4%. Let {¢, J€®. Assume that (28) is statisfied. Let

@3hH w@ =2 o) (=12
kl=LecE

. :
Let {y, .}€® be an arbitrary system. Then it follows from Theorem 2.4/1 (and
Example 1 to this theorem) that

1~ F Bl = (2 e E (=1, F) @1, =

sell( eI E Y ED @Y, -
=V, ecE
Here !I’—~< for /-. But by Lebesgue’s convergence theorem the right-hand
side of the last inequality tends to zero for [/’ —~eo. This proves that F-*y, Ff approxi-

+
mates f. The same arguments may be applied to Bgf’;) provided that g< . Hence,
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in both cases it will be sufficient to approximate a function f€L, where supp Ff

+
is a compact subset of R, in L,. Let n€S be such that

n(0) =1, supp Fyc{y:|y| = 1}.

Let n,(x)=n(hx), h=0. Then f,(x)=n{hx)f(x) has the desired properties:
@) fa(x)~f(x) in L, for A} 0;
(i) Efy,=Ff«h™"(Fn) (x/h), and hence

+
supp £/, supp Ff+{y:|y| = h}CR,,
provided 4 is small enough;
+
(iii) Ff,€ D, provided A is small enough.

Remark 3.2/1. The last part of the proof coincides essentially with the state-
ment in [16, I, Theorem 4.2]. But to be self-contained, we included the above
proof here.

Remark 3.2/2. It is possible to show that not only FD, but also S is contained
in all spaces B9, where 1=¢=-o, and in all spaces F, 'where 1<g< oo, (Obvi-
ously, FDcS). This will be an easy consequence of the inclusion properties proved
later (see Remark 6.1/1).

3.3. Comparison

Here are considered two types of spaces: homogeneous spaces (Definition 2.3/3)
and non-homogeneous spaces (Definition 2.3/4). The question arises whether these
two types of spaces can be compared. Furthermore, what are the relations between
the “classical” spaces H, (Lebesgue spaces=Bessel potential spaces=Liouville
spaces), B), , (Besov spaces=Lipschitz spaces), and the spaces F, , introduced in
[14] and the spaces considered here. From the view-point of Section 5 and Subsection
6.2 it will be clear that of peculiar interest is a comparison between H,, H g("), and

+
H¢®_ Recall the definition of HS: If —co<s<oo and l<p<os, then
(32) Hy ={f:feS's Wflmg=F(1+|xPyEf ||, < }.

If m=s=1,2,..., then Hy=W]' are the usual Sobolev spaces, Hy=L, (see [15,
2.3.3]).
But a serious problem arises. The continuous embedding ZcS holds if
both spaces are equipped with their natural topology, but Z is not dense in S (this
+

is an easy consequence of the fact that D is not dense in S). So it is not possible to
compare the dual spaces S’ and Z’ on the basis of the usual procedure (that is, if ACB
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is'a densely continuous embedding, then f¢B’ can be interpreted, by restriction
to A4, as an element of A4’. This is a one-to-one correspondence. Hence B’ A4’).
We describe here a possibility how to overcome this difficulty and give examples.
A discussion of the questions described above will be given later in Subsections
5.2 and 6.2.

Let 4 bea locally convex space (for our purpose here it would be sufficient
to assume that 4 is a Banach space). Let

(33) Scd, ZcA

be dense and continuous embeddings. Then it is meaningful to interpret the dual
space of A either as a subspace of S’, denoted by A5, or as a subspace of Z’, denot-
ed by 4,. Because Z is dense in S in the topology of A, there is a natural
one-to-one correspondence between the elements of Ag and the elements of 4.
In this case spaces Ag and 4, can be identified: Ag=A4,=4". In other words:
there is no essential difference, if A" is considered as a subspace of S’ or as a subspace
of Z’. If this situation happens then we write: 4’¢II. The notation B¢II means
that there is a space A with the above properties such that A"=B.

Theorem 33, If —co<s<w and 1<p=<oo, then H €Il

Proof. Let A=L, where l1<g<e, or A=C, the space of all complex-
valued continuous functions, defined in R,, vanishing at infinity. Then (33) is satisfied
and Sis dense in 4. We must show that Z is also dense in 4. Let yx,(x) be the function
defined in (31). If f€ S then F-'y, Ff€¢Z. We have

(34) If=F 'y Fflc = Rf |1— ()| [(FF) ()| dx~0

for /->o, Hence A=C satisfies the above hypotheses. Let 1<r<g=<<c. Then

(33 If—=F 0 Ffl, = | f—FruEf e f— F y, Ef {2

By Marcinkiewicz’s multiplier theorem (the scalar case of Theorem 2.4/1 and the
first example to this theorem)

IF 0 Ef g, = cllflL.

holds, where c is independent of /. Using this fact, it follows from (34) and (35) that
the left-hand side of (35) tends to zero for /—~co. This proves that also A=L,,
where 1<g< oo, satisfies the above hypotheses. Hence 4’€ II. By the above interpre-
tation A’=(L)'=L,, provided that l<p<e and 1/p+l/g=1. If A=H;*,
where 1<g<oo, then again §is dense in H*. If f€S, then

If—F'uFflag =lg—FuFgly,, g=F(1+[x[) 2 FfeS.

5 Analysis Mathematica
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Hence, by the above arguments, Z is dense in H_°. This shows that (H_°)'cH.
By the above interpretation (H;°)'=H,, provided 1/p+1/g=1 (see [I5, 2.6.1]).

Remark 3.3/1. The proof shows that C’cIT holds. However, the dual space
to C, by the above interpretation, coincides with the space of all complex Radon
measures with finite variation (Riesz’s representation theorem).

Remark 3.3/2. The theorem can be generalized in several directions. Let
B;, , be the usual isotropic Besov spaces, where — co<s<oo, l<p=eo, 1=g=oo,
which can be defined by

By, = (Hp, HpY)y ys So<s5<51, §=(1—0)s4+0s;.
(Here (-, +)y,, denotes the real interpolation method, see [15].) We have the dense
and continuous embedding
SCH**CB;,, q<e.

Since Z is dense in H;“, Z is also dense in B, ,. Hence, the above hypotheses for
A=B, , are satisfied. We have A'=(B; )=B,%, [I5 26.1]. Consequently,
B, €Il for —w=<gs<oo,l<p=<o, and 1 <g= e
This assertion holds true also for g=1 (here one must use 4= é;’m [15, 2.6.1])

and for the spaces F& , ([14] or [15, 2.6.2]).

Remark 3.3/3. It is not very hard to see that the theorem cannot be extended
to L. If L, is interpreted as the dual space of L,, then L_ ¢ II. Obviously, (33)
holds true for L,. So we must show that Z is not dense in L. Let ¢¢§ be such that
(Fp) (0)=1 and let Y €Z. In particular (Fyy)(0)=0. Hence

1= |(Fo)O—F)©O) = [lo@—y@®|dx = o=,
Rn
Hence ¢ cannot be approximated in L, by functions belonging to Z.
3.4. Translation invariance
Let h€R,. If fcZ’ (or f€S’), then T, fis defined by

(T SN e () = f(@(x—h))

(translation operator). Here ¢€Z (or ¢€S). It is not hard to see that ¢(x)—
—~@(x—h) is an isomorphic map from S onto S and from Z onto Z. Hence T,
is an isomorphic map from S’ onto S’ and from Z’ onto Z’.
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+
Theorem 3.4/1. Let g(x)éEM and 1<p<-co,
+ +
() If 1=q=oo, then T, is an isomorphic map from B% onto B,

+ +
(ii) If 1<q=<co, then T, is an isomorphic map from F2$ onto F2%).

Theorem 3.4/2. Theorem 3.4/1 remains valid if one replaces A-; by M, I;by B,
and ;by F.
Proof. If feZ’ (or f€S’), then
FT,f = ™ Ff,

where x4 is the scalar product in R,. If f belongs to one of the above spaces, then
both theorems follow from the equalities

(F7 04, FT, f)(x) = (F 4, () e”" Ff ) (x) = (F @y,  Ff ) (x+ )

and from the definition of these spaces.

4. Interpolation

4.1. General interpolation formulas

If 1<p<e and 1=g=oo, then the spaces L,(/9) and [9(L,) are defined
below either by (i) or by (ii), depending as we are concerned with homogeneous
spaces or with non-homogeneous spaces.

o+
(i) Let g(x)€M. Then L,(9) is the space of all sequences {a, ,(*)}cn, .ccE
such that
_ k, & / << oo
“ak,e”LP(lg) = "(keN,.Z,;eE lg(x )ak,e(X)la)l q“L, .

Here x*® has the same meaning as in Definition 2.3/3. I%(L,) is the space of all
sequences {a, ,(X)}icn,,.cx such that

— K, 1/
llag, .l BLy = (kENnZ,;EE g (x 8)ak,s(x)”qu) 1 < oo,

For g= one must modify in the usual way. ‘
(i) Letg(x)€ M. Then L, (/%) and I5(L,) are defined for sequences {a; ,(X)}ken* ccE
in the same way: N, is replaced by N, and x** has the meaning of Definition 2.3/4.
Furthermore, we shall use the notation of interpolation theory [15, Chapter 1].
Although the theorem below is formulated for an arbitrary interpolation functor P,
one may assume that ¥ is either the complex interpolation functor [-, -], or the
real interpolation functor (-, -),,, where 0<f0<1 and 1=r=-oo.

5%
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+ +
Theorem 4.1/1. Let gy(x)eM, g,(x)éM, l<p,<oo, and 1<p,<oo, Let
¥ be an arbitrary interpolation functor.
O If 1=qgy=o and 1=q,=, then

+ +
(60 PBRD, B = 12 1F 0h e lyggoctpmscupn <

(ii) If 1<qq<o= and 1<q,<oo, then

+ +
(37) W(Fggqu(,)’ ng,(;l)) = {f fEZ,; ”F—l(pk,eFf”\y(Lpo(lgg), LPI(’ZP’ - °°}

Theorem 4.1/2. Let gy(x)€M, g,(x)€M, 1 <py<oo, and 1 <p,<<co. Let ¥ be
an arbitrary interpolation functor. '

D If 1=gy= and 1=g,=0o, then

(8) PR BED = U SESs IF 0ha B byggo i ticepuy =
(i) If 1 < gy <o and 1 < g, <oo, then

(39 ¥ (FpoG FRG) ={f: fes’, |F? ¢ks3FfI|‘I’(Lpo(lZg),Lp1 @) < oo},

Proof. Let us prove the first theorem. (The proof of the second one is the
same.) Modify the operators & and # from (29) and (30):

(40) Ff ={F 0o Ff Jeenpeces Rl = 5  F 7l Fhy,.

k€N, ,e€E

By the same arguments as in the second step to the proof of Theorem 3.1/1 it follows
+
that #Ff=f. Furthermore, &is an isomorphic map from F2( onto a complemented

+ +
subspace of L, (/). Corresponding assertions hold true for Fo® o™ and

+
Ba) . By the interpolation property, this remains valid for all interpolation spaces

obtained from these spaces. (36) and (37) are examples of this general statement.
4.2. Concrete interpolation formulas

The last two theorems show that each concrete interpolation theorem for the
spaces L,(/%) and I5(L,) gives a corresponding interpolation theorem for the B-spaces
and F-spaces. :

+ +
Theorem 4.2/1. Let gy(x)eM, g, (x)€M, l<py<oo, and 1<p,<os. Let
1 1-6 6
— +
p Po h

41) g(x) = g (0 gl (%),

where 0<0<1.
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) If 1=go<e, 1=qy<o, and

1 1-0 6
42 — = —,
“2) q 90 Upl
then
+ + +
(43) (B0 BRinle = BSY .
(i) If l1<gy<-oe, l<gq,<eo, and if q is determined by (42), then
+ + +
(44) [Fole s Forallo = FEP.
i) If 1=qe<o, 1=gy<co, if q is determined by (42), and if p=gq, then
+ + I+
45) (B o s BE Do, = BT -

+ +
Theorem 4.2/2. Theorem 4.2/1 remains valid if one replaces M by M, B by B,
+
and F by F.

Proof. Prove the first theorem. (36) and (37) show that the following formulas
are needed:

(i) for the proof of (43)
(46) (120 (Lo 151 (Lp)le = 13(Ly),
(ii) for the proof of (44)
CY) [Lpe U595 Ly, (1D)e = L, (1D,
(iii) and for the proof of (45)
(48) (15 (Lyo, 3 (L))o, p = 15(Ly).

(46) and (48) are consequences of Theorem 1.18.1 in [15] (interpolation theorem
for vector-valued /,-spaces). (47) follows from Theorem 1.18.3 in [15] and

(135 193l = 13-

The last formula can be also obtained from Theorem 1.18.1 in [15].
Remark 4.2/1. The most interesting formula seems to be the special case of
(44), where g,=¢,=¢q=2:
: + + +
49 [HR®, HiM, = HI® ,
As will be seen later, this formula has some curious consequences mentioned in

the introduction, see 5.2.

Remark 4.2/2. One can compare the above formulas with corresponding

interpolation formulas for the isotropic Besov spaces B, ,, Lebesgue spaces H,
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and the F, -spaces, see [14] or [15, 2.4]. One of the most interesting formulas for
these spaces is
(B;‘:qo’ Bls—"l,q1)9,q =B

bya>
where so7s5;, 0<0 <1, s=(1—-0)s,+0s,, 1=g,, g, g=<. Here B2, can be
replaced by H» and/or B}, by H,. But as will be seen later (Remark 6.2/2) in

Py
general there is no counterpart of this formula for the spaces considered here.

Remark 4.2/3. The above theorems contain a large variety of special cases.
For the homogeneous spaces:
() go(x)=x", g (x)=|x", s, and s; real (isotropic homogeneous spaces),

n n
@) go(x) = ]]1 |xjls00, g1(x) = ]]1 xjfss 7,5
Jj= j=

8y,; and s, ; real (homogeneous spaces with dominating mixed derivatives).

For the second case one may find corresponding interpolation formulas in
GRISVARD [4, p. 180] and SPARR [12, pp. 302—306]. On the basis of the papers by
SPARR [12] and FREITAG [2, 3] it seems to be possible to prove further interpolation
theorems (and also non-interpolation theorems).

T+
(x) x
5. Spaces H7™ and HY™
3.1. Representations

+
By Definitions 2.3/3 and 2.3/4 the spaces H%™ and H?"™ are special cases of the

+
spaces F8C) and F8$), respectively. We give here a representation formula for these
spaces in the sense of the Paley-Littlewood theorems.

+
Theorem 5.1/1. Let g(x)éM and l<p<oco, Then there exist two positive
numbers ¢, and ¢, such that for all feZ

(50) il gy ZIF 8@ H e, = el f Il

Theorem 5.1/2. Let g(x)éEM and 1<p<oo, Then there exist two positive
numbers ¢, and ¢, such that for all f¢ FD (defined in Theorem 3.2/2)

1) el gy = 1F 8 I, = call fl gy -

Proof. We shall prove the first theorem. The proof of the second one is the
same.
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+ +

Step 1. Let {¢ 6P and {Y, J€P be the two systems described at the
beginning of the second step in the proof of Theorem 3.1/1. Let f€Z. Then it
follows that

Flg(x)Ff = kéNZB'EE Fg(xX) o, . (x) Ff =

1| _&g®) ke
k€N, eCE ' [ g (x*:%) ‘pk,sF(F g(x* )Cok,st)] .

Now one can apply Theorem 2.4/2. The functions m, ,(x) appearing there are
identified with ¥, ,(x)g(x)/g(x") (after an appropriate new enumeration). This
is the first row of the matrix. The other rows are zeros. (27) yields

I g ) Efl, = el F 7 0ue o Bf I gy
(in the notation of 4.1). This proves the right-hand side of (50).

Step 2. Suppose again that f€Z. Let {m; (x)} be the matrix of Theorem 2.4/2,
where the first column m; ;(x) is given by ¢, .(x)g(x*°)/g(x) (after an appropriate
new enumeration). The other columns are zeros. The vector { f;}appearing in Theorem
2.4/2 is identified here with the vector (F~'g(x)Ff,0,0,...). Then Theorem 2.4/2
yields

1F @u Ff il ap = cl F g () Ef Il

This proves the left-hand side of (50).

+
Remark 5.1. By Theorem 3.2/1, Z is dense in Hg("). Hence Theorem 5.1/1

+
can be extended by continuity to H?*. Using Theorem 3.2/2 it follows that (51)
can be extended by continuity to H9™,

5.2. Comparison theorems for H-spaces. Examples

In Subsection 3.3 we described a method to identify some subspaces of S’
with corresponding subspaces of Z’. The theorem below must be understood in
this sense. We recall the definition of the classical Lebesgue spaces H,, see (32).

Theorem 5.2/1. If —oo<s<oo and |l <p<oo, then

(52) H; — Hp(1+[x|s)s/z — I};l-p‘xlz)s/z-

Proof. Step 1. It is well-known that S is dense in H; ([15, Theorems 2.3.2(b)
and 2.3.3(a)]). Here is a short direct proof. It f€HS, then F-1(1+|x[)"*FfcL,
can be approximated in L, by g€S. Then F~}(1+|x[?)""2Fge S yields the desired
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approximation in Hj. But FD is dense in S and consequently also in H},. Hence by
(32), Theorem 5.1/2, and Theorem 3.2/2 it follows that HS and H3**9"* coincide
on the dense subset FD. Completion yields the first equality in (52).

Step 2. By Theorem 3.3, H; belongs to the class I1. Since S is densein H}, Z is
also dense in H;. Then the second equality of (52) is a consequence of (32) and
Theorem 5.1/1 (and Remark 5.1).

Remark 5.2/1. In particular, it follows that the usual spaces L, l<p<eoe,
are special cases of the spaces considered here. The same holds true for the Sobolev

spaces W'=H}, 1<p<e, m=1,2,.... But for the Besov spaces B ,there arise
some difficulties, see Subsection 6.2.

If fez’ and « is an arbitrary multi-index, then D*f€Z’ is defined in the
usual way

(D*f) (@) = (=D f(D*p) forall ¢cZ.

Theorem 5.2/2. Let l<p<oe. If a=(,...,,) is a multi-index, then it
Jollows that

(53) HIV% = {f: feZ’, D*feL,),

+
and |D*f|| is an equivalent norm in HYM,

Proof. Step 1. If fcZ, then it follows that

(54) 1D flly, = I F-? g XSl .

By Marcinkiewicz’s multiplier theorem it follows that IIx%/II |x,| and its inverse
are multipliers in L,. Hence, by (54),

(5%) ID*fl, and |F~? ]]1 %1% Ef e,
J=

are equivalent norms on Z (this follows also from the simpler fact that the charac-
teristic functions of {x:0<g;x;<<o; j=1,...,n}, &==1, are multipliers in L,).
By Theorem 5.1/1 it follows that both the spaces in (53) coincide on Z. Since Z is

+
dense in Hy %™ one must prove that Z is also dense in the space on the right-hand
side of (53).

Step 2. Prove the last assertion. We have in Z’ that
D*f = FYFD*f = FIIx% Ff.
If x(x) has the same meaning as in (31) and if D*f€L,, then
DYF g Ff) = F g F(F ' IIx} Ff)EL,.
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Repeating the arguments in the proof to Theorem 3.3 it follows that
\D*f—D*(F 1y, Ff)|L, 0 for 1—ce

On the other hand, b=F-y FfcS’, and supp Fb is compact in 1;,,. A small
modification of the end of the proof to Theorem 3.2/2 shows that D*b can be approx-
imated in L, by D*u, ucZ. (If one uses Nikol’skii’s inequality | D*b]| Lyécllbll L,
then one can apply the arguments at the end of the proof to Theorem 3.2/2 without
changes, provided that the supports of the Fourier transforms of all the approxima-
ting functions are in a small neighbourhood of supp Fb. But this is ensured by
the above procedure.) This proves the theorem.

+
Remark 5.2/2. Let us denote the space in (53) by Wf“ (this resembles the
usual notation for the Sobolev spaces). The last theorem and (49) have some remark-
able consequences. For instance

32/3x1 + ;az/ax2 + 9%/0%, =3

(56) 7> lie =W,

Obviously, the counterpart to (53) can be proved also for other special polynomials
P(3/0x; , ..., 0/0x,) with constant coefficients. But (56) is only an example of a large
variety of similar formulas. There are also other special cases which seem to be of

+
interest, for instance the spaces HX'°, where ¢ is an arbitrary real number. If
—n<06=<0, then (by an appropriate interpretation)

s7) HE" = {f: feZ,

<o),

f fO)

|x yln+a'

Lp

(Here we use Flx|”=c |x|7°7" for —n<0<0.)

6. Inclusions
6.1. Inclusion theorems

+
Theorem 6.1/1. Let g(x)EM and l<p<-co,
() If 1<g<-<o, then

+ + +
(58) BS®oey © FES C BSRhux(p,y (continuous embedding).

() If 1=q,<qy=-oc, then

(59) Zc B'(") c Bgf:; < 2’ (continuous embedding).
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A corresponding relation holds for the F—spaces where the values q,=1 and gy=-
are excluded.

Theorem 6.1/2. Let g(x)éM and 1<p<-co,
D) If l<q<oo, then

(60) BY o CFIR CBY®, (v (continuous embedding).

(i) If 1=q,<qy=<o, then

61) SC B < BSD < 8" (continuous embedding).

A corresponding relation holds for the F-spaces, where the values ¢,=1 and q,=-<
are excluded.

Proof. Step 1. We shall prove (58) (the proof of (60) is the same). Let a; ,=
=g(x"*)F-1¢, ,Ff. First assume that l<g=p=<o. Then (58) follows from

”ak’sul"a“’) = ”ak""”l‘p”q’ = ” 2 lak slqnl/:/q =

&€

= (kENZE “|ak elq”LP/q)Uq ”ak,e”lq Ly)-
If 1<p<g<oo, then (58) follows from

[Iak,e”lq(LP) = f Iak:slp dx”ll.:/l; =

n

= ( fl”ak,elp”tq,pdx)up = llax, ez, ap = gl @,
R

n

Step 2. The middle parts of (59) and (61) follow from the monotony of the
l,-spaces.

Step 3. Prove the first inclusion in (59) (by appropriate changes a similar proof
yields the first inclusion in (61)). By Step 2 we may assume that ¢,=1. (By (58) this

+
includes also a corresponding assertion for the F-spaces.) Let f€Z. Using (9) it
follows that

(62) Iflgep=c > 2M|F g FflL,,
’ keN,,ecE
where s is an appropriate positive number. We have
IF 2 @p, Ff I, = A+ [xP") F oy Ff [z, = c| FH (1 +(=4)") o, Ff . =

(63) = (1 (=) g, F 1, = 72 M Sup 2 [D*(E)),

€0y L) |el'=2n
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where again 7 is an appropriate positive number. (Qf% was defined in (12).) Putting
(63) in (62) it follows

(64) g = 3 20+0W sup 3 |DA(EN)E))

€€ E er(L) |a| = 2n

The norm on the right-hand side determines a neighbourhood in Z (more precisely,
the set of all f€Z such that thisnormisless than a given positive ¢ is a neighbourhood
for the zero in Z).

Step 4. Prove the last inclusion in (59) (a similar argument yields the last inclu-
sion in (61)). One may assume ¢, =-<o. Use the two systems {(p,c o€ ¢ and {y, .}€ <D

described in Step 2 of the proof to Theorem 3.1/1. If fEB" ™ and ¢€Z, then it
follows that )
f@l=] 2 F ', Ff(For . Flo) =
kEN, e€E

= sup g *)F 2, Ff ., kZ g™ (x*%) Foy,. F 1 ollL,.»
, & &

where 1/p+1/p’=1. Hence
(65) ADI=1fllige l@hsg-10-
Bp Bp1

+
Now it follows from Step 3 that the embedding Bgf’QCZ ” is continuous (Z” is equipped
with the strong topology).

Remark 6.1/1. By (60) and (61), S is contained in B¢G’ and F2&. This question
was left open (see Remark 3.2/2).

Remark 6.1/2. Of peculiar interest is the embedding

(66) +
Biine,n C H”(x) c B"’(max(z,p)

and its counterpart for H9™.

6.2. Comparison theorems for B-spaces

The question arises whether (52) can be carried over to the B-spaces. The answer
is in the negative. The method developed below works for the non-homogeneous
spaces and for the homogeneous spaces. However, we restrict ourselves here mainly
to the non-homogeneous spaces.

First we must recall the following characterization of Bj ,, [14] or [15, 2.3]. Let

={x:|x|<2%j=1,..,n} (I=0,1,2,..)
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Let {y};2, be a system of functions belonging to D with the following properties:
(D) supp 1, qy1a—qy—1 for I1=1,2, ..., suppnoCq;
(i) for each multi-index y there exists a positive number ¢, such that for all
1=0,1,2,... and x€R,

D'y (x)] = cyz—”ﬂ
holds;

(iii) there exist two positive numbers ¢ and C such that for all x€R,

c= yx)=C.
=0
Obviously, this is the counterpart to the system {¢, .} in Subsection 2.3.
If —co<s<oo, l<p<oo, and 1=g=e<o, then

By, ={f: f€S" 112°F ', Ff ) < >}

For the proof of the fact that B _ and B“,fj"“z)‘/" are not equal we consider
only the case p=2.

Theorem 6.2/1. If —co<s<oo and q#2, then

B; = B;l,-;lxlz)dz
s q s .
Proof. Let L(/) be the number of parallelepipeds P, , (formula (3)) which are
k, &
contained in ¢;4;—¢q,. Wehave L(l)—> as I—-o. Let f€S’ be given by

ay, (= const) for x€P,C ¢ 1—aqp,

@ =17

otherwise.

Then it follows (by an appropriate choice of #,) that

(67 Iflsy,, =2 3 lawllPe)
’ Py, :Cr 41N

On the other hand,

(68) 1S U g isimera ~ 25( 2 el |Py TR
,q

Py e CO 1~

(Here “~” means equivalence, and the corresponding constants are independent of /.)
Since gy, . can be chosen arbitrarily, it follows that the right-hand sides of (67) and
(68) cannot be equivalent to each other (g2, L(l)~ as [-co).

Remark 6.2/1. The same argument yields

+ 2)s/2 1 2ys/2 + 2ys/2
B;,q =t B(1+|xf) B;,;"Jd) = Bgf—qui)

2.9 > H

provided that g=2.
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Theorem 6.2/2. Let —oco<s<oo, 6=>0, l<p<oo, and 1=g=oo, Then

2ys/3 s/ —_
(69) By, < BUi™" < Byy < By < BRLM < By Y
and

1+] la)slz 14| 2)s/2
(70) Bg,mifl @n C Bpp C Bf,, oo ()2, p-

Proof. Step 1. We prove the first inclusion in (69). One obtains as an easy
consequence of the definition of the B-spaces that
Il ja+ixmee = | fll jasimmesserrn, 6" >0.
p,1 Py oo
Hence

2y(s+67)/2 2)s/2
(71) BT o gUihn A

(similarly, By e C Bp,1).
Consequently, by (60) and (61) (the corresponding formulas for B; , and H}), and
(52) it follows that
S48 s+d/2 A +]x|2)(2s+8)/a 1+ |x[2)2s+6)/4 (1+]x|2)s/2
By, cH,”"" = H, C Bp C By .
In the same way one may prove the last inclusion in (69).

Step 2. The second inclusion follows from

WF=tn Ef L, = ¢ 2 I F oy L,

ke Cdr+2 -1
(Here we used again a multiplier theorem.) Similarly, it follows the last but one
inclusion from

sup  1F 7 o Ff o, = cll F7'n Bf | g,

Py, eCa1i2— %1

Hence (69) is proved.

Step 3. Let us prove (70). Let 1 <p=2. Using a Paley—Littlewood theorem it
follows for fixed 1(/=0,1, 2, ...) that

V2 Ffll, = cl F i@, Ff o, = I F 7 @p Ff 0 = I F 201 Ff 1,0,

where L,(l;) and L,(/,) indicate summation with respect to k and & over values
such that P, .Cq;+2—¢q,—1. This proves the left-hand side of (70). The  right-hand
side follows from

s s . pr@+ix(2s’e @+ |xiD/2
(72) B,,c H,=H, C B3 .

(Here we used (52) and (66).) Let 2<p=<-o. Then the left-hand side can be obtained
similarly to (72). The right-hand side is a consequence of

IF~ @k, e FfliL, ) = N F 7 0o Ef i, 0 = | F7Am Ef ||,
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where again L,(l,) and L,(/;) must be understood in the above way, for fixed /
This proves (70).

Remark 6.2/2. (69) has the following consequence: In general, the two spaces

/2
a+xn?  paxn® Q+ixiHs'
(73) (Bp,qo ’ Bp,q1 )9,11 and B, >

where sy<s<$y, s=(1—8)s,+0sy, 1=q4, 9y, g=0<°, do not coincide (as one would

expect in comparison with the spaces B; ,, see Remark 4.2/1). Assume that the two

spaces in (73) coincide for all values of the parameters. Then it follows from (69)
and the reiteration theorem of interpolation theory that

s — (B% sy — Ra+ix/t
Bp,q - (Bp,qo’ Bp,ql)ﬂ,q - Bp,q

(with the same values of the parameters as above). By Theorem 6.2/1 this is impossible.
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Ooume ¢pyHxmnoHa bHbIe npocrpancrsa. 111
(ITpoctpancrea B u F3(Y), 1 <p<oco: OCHOBHBIC CBOHCTBA)

X. TPUBEJIb

Hacrosmas paboTta (@ Takke e¢ Mpoaopxkenrae — pabora «O6mue GyHKLUMOHAIBHBIE TIPO-
cTpaHCcTBa, IV») 110CBSsMIIIeHa NCCIeHOBAHUIO GAHaXOBBIX IPOCTPAHCTB Bgf’;) u Fgffl‘) -pacnpezeieHuit
(060061ieHHbIX) B R,. B crennasbHbIX CIy4Yasx 3TH HPOCTPaHCTBa POJCTBEHHBI H3BECTHBIM KIIacCaM
Co6oneBa—JleGera—becoBa, H30TPONHBIM ¥ AHH3OTPOITHBEIM. 3/€Ch PAacCMaTpPHBAIOTCA CIIEAYO-
pe CBOMCTBA: IUTOTHOCTS THANKAX (YHKIHA, SKBUBAJICHTHBIE HOPMBI, MHTEPIIOIAMUS, BKIIOMCHAS
¥ CPaBHEHHUS.
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