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A method is developed to investigate the additive structure of data that, 
(a) may be measured at the nominal, ordinal or cardinal levels, (b) may be ob- 
tained from either a discrete or continuous source, (c) may have known 
degrees of imprecisioB, or (d) may be obtained in unbalanced designs. The 
method also permits experimental variables to be measured at the ordinal level. 
I t  is shown that the method is convergent, and includes several previously 
proposed methods as special cases. Both Monte Carlo and empirical evalua- 
tions indicate that the method is robust. 
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I n  th is  paper  we consider  ways  to ob t a in  add i t i ve  r ep re sen ta t i ons  of 
d a t a  s t ructures .  Th is  p rob l em is no t  new, of course;  i t  has  a long h i s to ry  
under  the  misnomer  "ana lys i s  of va r i ance" .  We are  no t  so p r e s u m p t u o u s  
as to  consider  all  aspec ts  of the  problem.  Ra the r ,  we focus our efforts on a 
pa r t i cu l a r l y  robus t  way  to ob t a in  add i t i ve  r ep re sen ta t i ons  for qualitative 
d a t a  s t ruc tures ,  i.e., those  wi th  nomina l  a n d / o r  o rd ina l  da ta .  

E v e n  this  p rob lem is no t  new. As ear ly  as 1938, F i she r  [1938, pp.  285-298] 
p roposed  an  e igenvec tor  m e t h o d  for a p p l y i n g  the  s imple add i t i ve  model  to  
nomina l  da ta ,  a m e t h o d  which has  been  red i scovered  per iodica l ly  over  the  
years  [Hayashi ,  1952; Carrol l ,  No te  2; Nishisa to ,  No te  7, No te  8]. More  
r ecen t ly  Kruska l  [1965] p roposed  a g r ad i en t  p rocedure  for i nves t iga t ing  
the  add i t i ve  s t ruc tu re  of o rd ina l  d a t a  [see also Roska m,  1968; de Leeuw, 
No te  3; Lingoes, 1973]. Our  work  is s t rong ly  r e l a t ed  to  de Leeuw ' s  [1973] 
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discussion of methods for analyzing nominal data and to Young's [1972] 
alternating least squares method for finding additive structure in ordinal data. 

Our work is placed in a theoretical framework from which flows an 
elegant and simple method for investigating additive structure in qualitative 
data, including as special cases all the methods mentioned in the preceding 
paragraph. The data may be defined at the nominal, ordinal or interval levels 
of measurement, or may be a mixture of two or three levels. In any case the 
observation categories may represent an underlying process which is either 
discrete or continuous, an important  theoretical and practical distinction 
which is seldomly discussed in this context. I t  is also very  simple, within our 
framework, to introduce constraints on the parameters of the additive model. 
Thus, for example, it is quite simple to specify ordinal constraints for some 
factor in a design, if there is a priori reason to do so. Finally, our framework 
allows us to investigate observations arising in certain unbalanced, incom- 
plete factorial designs. If, for example, we have a replicated factorial design, 
but  have been unable to obtain an equal number of observations in all cells 
of the design, our developments call still be applied. 

1. Introduction 

The analysis of additivity has usually been introduced in the context 
of a statistical model for factorially classified observations, requiring assump- 
tions that  are often very strong and unrealistic. In many situations much 
less specific models are called for, based on much weaker assumptions. We 
discuss the classical assumptions briefly. 

Ill stochastic versions of the analysis of additivity, one analyzes a model 
(Model S) whose assumptions are 

S~: Y~i = ~ ' + a i  + ~ i  + ~ , ,  
S~ : the e.~ are independent random variables, 
$3 : the e ,  have a centered normal distribution with finite variance ~ .  

(A bold face symbol is used to distinguish random variables from fixed con- 
stants). Model S generalizes in a straightforward way to incomplete and/or  
replicated multi-factor situations, in which the number of indices and of 
corresponding sets of parameters is larger. (In order to avoid eumbersome 
notation we shall only t reat  the two-factor ease in this paper. The generali- 
zations to more complicated factorial designs are obvious.) 

Observe that  S does not say that  there are parameters % a~ , ~ such 
that  each additive combination ~, + a~ + B; is close to the corresponding 
y ,  ; it merely makes a statement about the two-way strueture of the expeeta- 

2 tions E ( y , ) .  The variance a can be arbitrarily large, and if it is unknown 
(which is the usual ease), we can only test  hypotheses about the parameters 
within S (i.e., while assuming S to be true). In many eases S itself is not very 
reasonable, as the parametric assumption $3 is too strong in many applica- 
tions. Even the independence assumption $2 is often not obviously true. 
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Within the framework of established statistical theory, the logical step 
out of these difficulties would seem to be to make weaker, nonparametric 
assumptions. Model N, a straightforward extension of S, involves the fol- 
lowing nonparametric assumptions: 

N,: Y,i = 7 + a ~ + B i  + ~ i ,  
N2 : the e ,  are independent random variables, 
N~ : the ~, have a centered, centrally symmetric, continuous distribution 

with finite variance. 
Unfortunately, the statistical theory based on the assumptions of this model 
is fragmentary, and from the point of view of data analysis, inferior to that 
based on Model S. 

In the case of Model S, the natural estimation method and the optimal 
way of testing hypotheses follow directly from elementary properties of the 
model. The method of least squares should be used. The orthogonality prop- 
erties of the complete factorial design lead to additive partitionings of the sums 
of squares and to optimal tests of hypotheses. These properties are very 
valuable for summarizing some of the important structures in the data. 
Model N, on the other hand, leads to robust significance testing and estima- 
tion, but the properties of the tests and estimates are usually only approxi- 
mately known, and the beautiful structure of a complete least-squares 
analysis is lost. Refer to Puri and Sen [1971] for a summary of some of the 
results that can be obtained. 

Another basic complication is that in many applications even the assump- 
tion S, or N, cannot be applied because the observed data arc qualitative. 
That is, they consist of a small number of categories for which no precise 
numerical values are known. This not only violates the assumption of a 
continuous distribution, but it also makes S, and N, meaningless because 
y ,  is not defined. In this paper we reformulate the basic structural assumption 
St or N, in such a way that it also applies to categorical data. For this purpose 
we use the notion of optimal scaling [Fisher, 1938; Guttman, 1941; Burt, 1950; 
Bock, Note 1; Nishisato, Note 7; de Leeuw, 1973]. We shall assume that 
the data are in K mutually exclusive and exhaustive categories. We define 
the K-ary random variables z ,  k to be equal to one if the observation in cell 
(i, j) of the design is in category lc, and equal to zero otherwise. In this simple 
case, the model we employ is 

K 

k=l 

Observe that we have introduced the optimal scaling parameters 0k, which 
we use to quanti~" each of the k categories. I t  is through restrictions on the 
optimal scaling parameters 0~ that we can treat qualitative (as well as quanti- 
tative) data. If we do not know precise numerical values for the observations 
we can represent each unique observation by a parameter 0k and try to 
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parametrize the data (as well as the model) to optimize the fit between the 
two. (Naturally, there must be fewer categories than observations, or we 
will have a perfect, but  trivial fit.) Since we wish to work in the familiar 
least-squares framework, we measure the fit of a particular arbitrary choice 
of parameters by a suitably normalized version of the loss function 

)~ = - - y - - a ~  - -  f l i  • 
i =  i = l  k ~ l  

The computational problem is to choose the parameters 8k , % al , and fli 
in such a way that  h is minimized. 

In the several cases we will discuss, not all vectors of real numbers are 
admissible as parameter vectors: i.e., the admissible values for Ok , ai , fll , 
and ~, may be subject to certain restrictions. Through these restrictions we 
cope with a variety of measurement levels. For example, if the data are 
measured at the ordinal level, then we restrict the value of 0~ < 0,: if we know 
that  the corresponding data categories stand in this relation. As another 
example, if we know a priori  that  the levels of some factor (say factor I) 
have ordinal properties, then we can restrict the estimate of aL < a2, if tha t  
is the desired order. Other types of useful parameter  restrictions will be 
discussed in the body of the paper, but  we should always keep in mind that  
our goal is to optimize, within the least-squares framework, the relationship 
between a possibly restricted set of model parameters ai , flj , and ~, and a 
possibly restricted set of optimal scaling parameters Ok • 

An important  difference between this approach and the one based on 
either models S or N is that  we have no guarantee that  our estimates will 
be "good" estimates according to any of the accepted statistical criteria. 
We merely compute estimates, and afterwards we can t ry  to find out how 
they behave under various more-or-less specific assumptions about the distri- 
bution of the z¢/'. Rather  than estimate the parameters of a model in the 
usual sense, we study the properties of a particular transformation or reduc- 
tion of the data [cf. also de Leeuw, 1973, Chapter  I, for more extension 
discussion of the difference between the two approaches]. 

We use a computational method for optimizing h which we call add i t i v i t y  
analysis by alternating least squares (ADDALS). This is an iterative method 
which alternates between a) minimizing X over all admissible optimal scaling 
parameters e~ for fixed values of the model parameters ~ , f l ; ,  and v, and b) 
minimizing ~ over all admissible model parameters for fixed values of the 
optimal scaling parameters. In each of the two phases of art interation the 
optimization is complete; tha t  is, the values obtained for one of the sets of 
parameters absolutely minimize the function X conditional on a fixed set of 
parameters. Thus, the name alternating least squares: we alternate between 
two phases, one of which determines the (conditional) least squares estimates 
for the optimal scaling parameters and the other of which determines the 
(conditional) least squares estimates for the model parameters. This type 
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of procedure is philosophically much like the N I L E S / N I P A L S  procedures 
developed by Wold and his associates [Wold & Lyttkens, 1969] with the 
distinction that  Wold is usually concerned with optimizing only model param- 
eters. The class of procedures used by Wold and by us is known in the mathe- 
matical programming literature as block relaxation or nonlinear Gauss- 
Seidel methods. Although our procedure always converges to a stationary 
point it may not be the most robust one for each of the special situations 
outlined above. Thus, we compare our method with others which have been 
suggested for some of the special cases, with generally satisfactory results. 
As will be seen, the iterates are very simple (yielding an algi)rithm which 
may be used on small machines) and very quick (enabling the analysis of 
large problems on large machines). 

2. Data Theory 

In this section we outline the data theory in which the developments 
of this paper are embedded. This section is divided into three subsections, 
concerned with the empirical, model, and measurement aspects of the data 
theory. 

Empirical Aspects 

For the sake of simplicity and clarity, we restrict our formal develop- 
ments to the case where there are only two conditions (called factors, inde- 
pendent variables, components, dimensions, facets, classifications, etc., 
by others). The first condition has n levels (values, elements, structs); the 
second, m levels. We shall assume that  each combination of levels (cell, 
structuple) is replicated R times, an assumption which will be relaxed shortly. 
Finally, we view the experimental design as being the Cartesian product of 
all the conditions and the replication factor. 

An assumption fundamental to our work is that  an observation is a 
discrete entity which belongs to a particular observation category. Specifically, 
an observation is said to be in the same category as another observation if 
they are indistinguishable from each other in terms of their observational 
characteristics other than the time and place of observation. Note that  the 
categories are mutually exclusive and exhaustive subsets of the entire set of 
observations. There are K observation categories in total. 

This view of the basic nature of the data allows us to recode the data 
in a binary form indicating the category membership of each observation. 
The resulting binary matrix, called the indicator matrix, has one column 
for each observation and one row for each level of each experimental condi- 
tion, as well as one row for each observation category. Thus, in our situation 
there are Rnm columns, and n W m + K rows. The rows of the matrix are 
partitioned into three subsets, as follows. The first set of n rows indicates 
the level of the first experimental condition; the second set of m rows indicates 
the level of the second experimental condition; and the last set of K rows 
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indicates the category membership of the observation. The first set of rows is 
denoted as the submatrix U, the second set as the submatrix V, and the last 
as the submatrix Z. The column corresponding to the replication r of cell 
(i, ]) has elements equal to unity in row i of submatrix U, in row ] of sub- 
matrix V, and, if the observation is in category k, in row k of submatrix Z. 
An example of a set of observations obtained in a 3 X 2 factorial with two 
replications and three response categories is presented in Table la, with 
the corresponding indicator matrix in Table lb. 

I t  is now possible to indicate how we relax the assumption that  there 
are an equal number of replications of each cell. If  a particular observation 
is missing (i.e., there are fewer replications of a particular cell), then we simply 
assign it to its own unique category. That  is, the missing observation is 
coded in the indicator matrix as belonging to a separate category of which 
it is the only member. Thus, every missing observation gets assigned to a 
unique observation category. This shows, at least as far as the coding of the 
data is concerned, that  the assumption of a perfectly balanced factoriaI 
design is not a restriction of generality. We shall see later on how the coding 
conventions affect the results of our analysis. 

Table la 

Condition 2 Condition 2 

1 2 i 2 

~i i 2 ~i i 2 

o o 
~2 3 1 ~2 1 2 

0=3 i 2 0=3 l i 

Replication 1 Replication P 

Table Ib 

Replication i Replication 2 

Cell (1,1)(1,2)(2,1)(2,2)(3,1)(3,2) (1,1)(1,2)(2,1)(2,2)(3,1)(3,2) 

1 i 0 0 0 0 i i 0 0 0 0 
Cond i 0 0 1 i 0 0 0 0 1 1 0 0 

0 0 0 0 i i 0 0 0 0 1 1 

1 0 i 0 1 0 I 0 i 0 i 0 
Cond 2 

0 1 0 I 0 1 0 1 0 I 0 i 

1 0 0 1 1 0 i 0 i 0 i i 
Observ 0 1 0 0 0 1 0 1 0 I 0 0 

0 0 i 0 0 0 0 0 0 0 0 0 
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M o d e l  A s p e c t s  

The model involves concepts which parallel those involved in the 
empirical situation. Corresponding to the two experimental conditions are 
two vectors of parameters. Just  as each condition has levels, each parameter  
vector has elements, denoted a~ and fli (we use Greek characters for param- 
eters). There is no notion in the model which corresponds to the empirical 
notion of replications, since we assume that  any differences which arise be- 
tween replications are random fluctuations not included in the model. (If 
we were in fact interested in modeling these fluctuations, then we would 
view the "replications" factor as an additional experimental condition.) 
Finally, there is a direct correspondence between the experimental design 
and the model. Whereas the former involves the Cartesian product of all the 
experimental conditions and the replication factor, the latter involves the 
factorial combination of all the parameter vectors. For both the Cartesian 
product and the factorial combination we define two real-valued functions 
which generate the data and model spaces, respectively. Thus, the model 
space is defined by 

b : c l i  = a i + ~ i ,  

and the data space by 
K 

t : y l i  = ~ z l i k O ~ .  
k = l  

In matrix notation these definitions are 

I: C = U a  + V ~ ,  

t: Y = ZO.  

Fina]ty, as mentioned above, we wish to parameterize the two spaces 
so that  they are as much alike as possible. This objective is realized in the 
usual way of minimizing the sum of squared error terms. Thus, we wish to 
minimize (subject to normalization) 

h = Ok - otl - -  i , 
i = l  1'= 1 \ k = l  

or in matrix terminology 

X = trace (ZO - U a  - V t 3 ) ' ( Z O  - U a  - V f l ) ,  

by judicious assignment of values to the parameters of the two spaces. The 
minimization is subject to constraints which we may place on the parameters. 
These constraints are discussed in the next section. 

M e a s u r e m e n t  A s p e c t s  

In this section we discuss those restrictions that  may be placed on the 
data and model parameters. I t  is through these restrictions that  we are able 
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to t reat  the variety of measurement conditions under which the observations 
may have been obtained, including the level and precision of measurement, 
the nature of the process which may have generated the observation, and the 
measurement characteristics of the experimental conditions themselves. 
We distinguish three types of parameter restrictions, identification restric- 
tions, model restrictions, and data restrictions, and discuss them ill turn. 

Identification restrictions. Note that  the model 

c,; = a ~ + ~ i ,  

can be written as 

c .  = 7 + a ~ + ~ i ,  

with a~ and ~j restricted in such a way that  

i~l i = l  

These constraints merely serve to identify the model parameters, since with- 
out them we can add a constant to all as and subtract  the same constant 
from all ~i without affecting the fit. We shall always impose these constraints, 
but  they must be distinguished from other types of constraints which go 
beyond the basic specifications of the model and data spaces. 

Model restrictions. There are two types of optional restrictions which 
may be placed on the permissible values of a~ and fL and may be appropriate 
in certain situations. One type of restriction is invoked when we know that  
the levels of one (or both) of the experimental conditions fall in some a priori 
order. In such a situation we restrict the corresponding model parameters 
(a~ or Bi) to be in the desired order. The other type of restriction applies 
when we know that  the levels of an experimental condition are related to 
each other in some clearly specified functional manner, for example by a 
linear or polynomial function. In this situation the parameter vector is 
restricted to be a function of a fixed and known vector. 

Data restrictions. The restrictions on the optimal scaling parameters 
0k are somewhat more complex than those just presented. These restrictions 
fall into two classes which are factorially combined to produce six types of 
data which differ in terms of their measurement characteristics. 

The first class of restrictions is concerned with the measurement level 
of the data, and is precisely the same as tha t  discussed in the previous section. 
Tha t  is, there are order restrictions on 0~ when the data  are ordinal, and linear 
(or other functional) restrictions on 0~ when the data. are numerical. Just  as 
the model parameters, the data parameters may also be unrestricted which, 
when combined with the process restrictions discussed in the next paragraph, 
implies that  the observations are measured at the nominal level. 

The second class of restrictions on the optimal scaling parameters 0t~ 
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corresponds to our assumptions about the process which generated the obser- 
vations. If  we believe tha t  the process is discrete, then we restrict all the 
observations in a particular category to be represented by a single, discrete 
number. Thus in this case the optimal scaling parameter Ok is a single number 
for each k. On the other hand, if we believe that  the process is continuous, 
then we define Ok to be a bounded interval of numbers so that  all the observa- 
tions in a particular category are represented by a number in the interval. 

By factorially combining the three level restrictions (no restrictions, 
order restrictions, and numerical restrictions) with the two process restrictions 
(discrete and continuous), we obtain six types of restrictions on the parameter- 
ization of Ok , which correspond to six different types of measurement, as 
follows. When we combine the "no" level restrictions with either one of the 
two process restrictions, we obtain two different forms of what are commonly 
called nominal data. The discrete process restrictions are appropriate to data 
defined at the nominal level. In this case all observations in a given category 
are assigned a single number, with no restrictions between the various 
categories. We call this well-known case the discrete-nominal case. On 
the other hand, when the process is assumed to be continuous, we obtain 
permissible parameterizations of Ok which are appropriate to what we call 
continuous-nominal data. Here we assign a range of numbers of observations 
in each category, with no restrictions between categories. Obviously, the 
requirement that  all observations in a category must be quantified by an 
interval is much too weak, as any arbitrary quantification always satisfies 
the restrictions if the category intervals are wide enough. Thus, we need 
to specify additional restraints. One possibility for achieving meaningful 
and non-trivial boundaries is to view the supposedly continuous-nominal data  
as actually being continuous-ordinal (to be discussed in a moment), but with 
the order of the categories unknown. We call this the pseudo-continuous- 
ordinal case. 

When we combine the ordinal restrictions with either of the process 
restrictions, we obtain the two commonly discussed forms of ordinal data  
that  correspond to how tied observations are handled. The discrete-ordinal 
combination is appropriate when tied observations are to remain tied. 
(Kruskal, 1964, calls this the secondary approach to ties.) The continuous- 
ordinal combination is used when tied observations are to be untied. (Kruskal 
calls this the primary approach to ties.) 

When we combine the numerical restrictions with either of the process 
restrictions, we obtain a measurement level which corresponds to two forms 
of numerical (quantitative, cardinal) data. What  is most commonly thought 
of as numerical data is obtained when the discrete process restriction is used, 
since in this case all observations which are equal (i.e., in the same category) 
remain equal (are parameterized by a single 0~) and all observations which 
are not equal (in different categories) are functionally related. On the other 
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hand, when we use the continuous process, we obtain a form of numerical 
data whose measurement characteristics take into consideration the precision 
of measurement, since in this case each observation is functionally related 
to every other observation within a certain degree of tolerance. The degree 
is specified by the width of the interval around each observation. Note that  
there is a subtle difference between the present usage of interval restrictions 
and the previous usage. Whereas previously we assumed that  the boundaries 
of the intervals were determined internally (i.e., according to the nature 
of the data and model), we now assume that  the boundaries are specified 
externally before the data are analyzed. Thus we assume that  the researcher 
can specify an upper boundary 0~ + and a lower boundary 0k- on each observa- 
tion category. Generally, there is but  one observation in each category for 
numeric data, so we are usually specifying a precision interval for every single 
observation. In many situations we will wish to specify an interval of constant 
width for all observations, with the midpoint of the interval being equal to 
the observation. Tha t  is, we need only to specify 0 ~ from which we can 
determine Ok + -- Ok d- 0 a and Ok- = Ok - 0 a. There are other interesting 
uses of the continuous-numerical parameter restrictions. For example, external 
boundary constraints can be used to impose nonnegativity (by setting Ok- = 0 
and Ok + = co) or other types of range restraints. External  boundary con- 
straints can also be used to impose constancy on certain portions of the data 
by setting 0~- = 0k + = p~, where p~, is a known constant. 

3. Method 

In this section we present the alternating least squares (ALS) method 
that  obtains estimates of the optimal scaling parameters 0, and the additive 
model parameters a~ and ~ that  optimize L In the first subsection we discuss 
the decompositions of the function ~ from which flow the ALS procedure 
as applied to the additive model (the ADDALS algorithm). In the next 
subsection we discuss parameter restrictions and their least squares imple- 
mentation in ADDALS. In the third we outline the ADDALS algorithm 
for finding the jointly optimal (restricted) parameterization of the model 
and data  spaces, and prove the convergence of the algorithm under all but  
the pseudo-ordinal restrictions. In the fourth section we show tha t  a) the 
ADDALS algorithm is equivalent to the analytic method proposed inde- 
pendently by Fisher [1938], Hayashi [1952], Carroll [Note 2] and Nishisato 
[Note 7] for discrete-nominal data; b) the ADDALS algorithm is essentially 
equivalent to the MONANOVA algorithm proposed by Kruskal [1965] for 
ordinal data  (discrete or continuous); c) the ADDALS algorithm is equivalent 
to the widely used ANOVA methods for analyzing discrete-numerical data; 
and d) the ADDALS algorithm is equivalent to the widely used procedure 
proposed by Yates [1933] to solve for the optimal values of missing discrete- 
numerical data. Finally, it is observed that  ADDALS obtains least squares 
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parameter  estimates in a wide range of other situations for which, to the 
authors '  knowledge, least squares methods have not been previously proposed. 

D e c o m p o s i t i o n s  

We now introduce the index r for replications explicitly into our equa- 
tions, by defining the quantified observations as 

K 

. 'Yii = E rZli  k rOk ' 
h=l  

in the unpartitioned ease, or 

K ( r )  

~'Yli = E rZii  k rot ' 

k = l  

in the partitioned case. (The number of categories need not be the same for 
each replication.) From the familiar theory of the analysis of variance we 
decompose ,Yli into orthogonal components, using dots to indicate indices 
over which we have averaged. The decomposition we use is 

,y,~ = .y.. + (.Y,. -- .y..) q- (.y.~ - - . y . . )  

+ (.Y~ -- .y,. -- .y.i + .Y..) + (~Y,, - - . y , ) .  

We then define 

& = .Yi .  - - . Y . . ,  

f~  = .Y . i  - -  . Y . . ,  

% i  = .Y~i - -  .Y~. - -  .Y . i  + .Y . .  , 

Observe that  all these quantities depend on the Ok , but  that  we suppress 
this dependence to keep the notation simple. 

I t  is well known that  ~, G , fii are least squares estimates of the corre- 
sponding parameters in the model 

,Y~i = ~ + a i  + fli  + ~ i  ; 

i.e., they minimize the sum of squares of the residuals ,~ii • The corresponding 
minimum residuals are, of course, precisely ,~i;. In  the same way ~, & ,  ~ i ,  
and "L, are the least estimates in the model 

• ~Yli = tt q- a i  q'- fli q - ' Y , i  "~ , G i  , 

and .~.  is the corresponding minimum residual. Although we are really 
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only interested in the first model (any departure from simple additivity is 
assumed to be error), it is sometimes informative to decompose the residual 
into a systematic interaction and error term. 

In ordinary analysis of variance, the decomposit ion of ry~i into orthogo- 
nal components  defines an additive decomposit ion of the sum of squares 
of the ,.Y~i into components,  each of which is the sum of squares of one com- 
ponent of the ry,i • In this paper we use the same orthogonality properties 
to partition our toss functions, 

k= ~ ~ ~(~y~ --.-- ~ -- fl~)~, 
r=1 4=I i=I 

into loss function components  corresponding to each subset of the parameters. 
The relevant partition is given in Table 2. 

In the case in which the parameters are not restricted in any sense, 
minimization can obviously be accomplished by minimizing each of the 
components  over the relevant subset of the parameters. This makes each 
of the three deviation components  equal to zero because we set ~ = ~, a~ = & ,  
and fli = fli • In the constrained case a similar result is true if the constraints 
on the parameters are separated (i.e., there are constraints on a, constraints 
on/~, and no constraints that involve both a and f~). Thus, the overall mini- 
mization problem separates into a number of simpler minimization sub- 
problems. As mentioned previously, we are only interested in the additive 
model in this paper, and the decomposit ion of the ~;i,i into an interaction 

Table 2 

deviation from optimal mean 

deviation from optimal row 

scores 

deviation from optimal col- 
umn scores 

Rnm (~_~) 2 

n 
Rm ~ (~i-~i) 

i=l 

m 

Rn j~l(Sj ~j) 

SUBTOTAL: deviation from 
optimal parameterization 

optimal minimum loss 

R n m ^ ^ ^ 
Z Z Z {(~+ai+~ j ) - (U+a.+~)} 2 

r=l i=l j=l m 3 

R n m 
~ ~ (r~ij) 2 

r=l i=l j=l 

total loss for given paramev 

terization 

R n m 

Z Z Z (rYij-~-~i- ~j ) 
r=l i=l j=l 
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term ~ ,  and an error term ,~,~ is not really relevant. I t  is obvious, however, 
that  Table 2 can be modified very easily to include the interaction param- 
eters. In Young, de Leeuw and Takane [1976] we have done this, and have 
discussed restrictions on the interactions in a form which has recently been 
studied extensively in the statistical literature [for example, Corsten & van 
Eynsberger, 1972]. 

To derive the second decomposition of our loss function we define 

~,i = ~ + ~ + ~ i ,  

and (in the unpartitioned case) 

R 

i=1 i - I  r = l  

with 

• 1 i 1 f 1 

where Mk is the total number of observations in category k, and Ok is the 
average 9ii value of the observations in this category. Consequently, 0k 
is the unrestricted least squares estimator of Ok for given ~, a, ft. Note tha t  
~ is a function of ~, a, and B, but  that  we suppress this dependence to simplify 
the notation. The additive partition of ~, corresponding to the problem of 
minimizing the loss over 0 for fixed a,/3, and ~, is given in Table 3. 

We can use this partition of the total sums of squares to illustrate our 
technique for handling missing data and unbalanced designs. Remember 
that  each missing observations has its o w n  category, and that  the correspond- 
ing category score 0,° is unrestricted. This means that  the optimal score for 
the category equals the corresponding 9ii values, and that  the missing cell 
does not contribute to the loss at all. Minimizing ~ over our artificially bal- 

Table 3 

deviation from optimal K ^ 
E Mk(8 k Ok )2 unrestricted quantification k=l 

optimal minimum loss 
R n m K k ^ ^ )2 

rE=l rE=l jE=l(kElrzij0k-Yij= 

total loss for given 
parameterlzation 

R n m K ^ 
Z E E ( =~ZlrZk j 8k_Yij ) 2 

r=l i~l j=l k 
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anced design is equivalent to minimizing a loss function that  is the sum of 
squares of the deviations of data  and model values in non-missing cells only. 
This is true for obtaining either 0k or ai and/3/ . 

U s e  o] R e s t r i c t i o n s  

In this section we discuss the implementation of the most important 
types of restrictions on the parameters in the two computational subproblems 
(minimizing k for fixed 0 over a, 13, ~/and minimizing ~ for fixed a, 8, "/over 0). 

For the first problem we may know, a p r i o r i ,  an appropriate order for 
the levels of I or J ,  and therefore may desire to restri'ct the parameters, for 
example, so that  a, _< a2 _< " "  _< a,, , and/or  8L _< 82 _< "'" _< 8,,~ . Our 
first decomposition (Table 1) shows that  the optimal a under these restric- 
tions can be found by applying the familiar isotonic regression methods 
[Barlow, et. al., 1972; Barlow & Brunk, 1972]. Actually, general partial orders 
on the a~ or the f~i could be incorporated in this way, but the following 
developments only cover the linearly ordered case, with Kruskal's [1964] 
two methods for incorporating ties. Although our developments are limited 
to ordinal restrictions on the model parameters, we could restrict the al 
and 8~ in other ways. For example, the a ,  (or B;) could be required to be 
related by the linear function 

a~ = a + bcei+, , 

or by some other polynomial function. In such a case the decomposition shows 
that  ordinary linear regression can be used to compute the least squares 
estimates of the linearly related a~ and 8~ • (See Young, de Leeuw & Takane, 
1976, for development of this notion.) 

From the second decomposition (Table 3) it  follows that  explicit interval 
restrictions of the form 0k- <_ 0k <_ 0k + with known 0~ + and O~- (e.g., con- 
tinuous-numerical data) can be handled very easily. If  ~ is in the interval, 
then the optimal 0k is equal to ~ .  If ~k is outside the interval, then the optimal 
Ok is equal to the nearest endpoint of the interval (e.g., equal to 0k + if ~ > 0k + 
or equal to O~- if ~ < ~-) .  Order restrictions on 0~ can be handled by mono- 
tone or linear regression again. Using the primary or secondary approach 
to ties takes care of continuous or discrete ordinal data  and discrete categorical 
data. In this last case we set the optimal 0k equal to 0~. 

Only continuous-nominal data present a problem. In the pseudo-ordinal 
case we want the optimal Ok to fall into disjoint intervals, but the order of the 
intervals on the real line is unknown. Obviously the best procedure is to t ry 
out all possible orders of intervals, compute the optimal 0k by monotone 
regression with the primary approach for each interval order, and keep the 
best order to define the optimal ~ for this iteration. This can lead to rather 
unpleasant computations if the number of categories is at  all large, and it 
introduces severe discontinuities in our transformation, which affect the 
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convergence behavior of our algorithm. A second alternative (which is used 
in ADDALS) is to derive the optimal order of the intervals from the order 
of the 0k • This yields a satisfactory approximation in most eases. Again, 
discontinuities may present a problem and convergence is not assured, but  
we can fix the order of the intervals at the current optimum in the final 
iterations, and t reat  the data as continuous-ordinal in the remaining cycles. 
This guarantees convergence. 

Convergence 

In the previous section we showed that  each of the two subproblems 
can be solved in a very  elementary way. Of course, this still does not prove 
anything about the efficiency or convergence of the complete process of 
alternating the two subproblems. 

Let  us formalize this process somewhat. Assume that  there is a point 
x in a Euclidian space. Also assume that  there is a closed convex subset C 
of the same Euclidian space. We define y as the nearest point to x when x 
is projected onto the subset C, if y uniquely minimizes the Euclidean distance 
between x and y (i.e., minimizes ]Ix - YI! where the double bars indicate 
sums of squares). We denote the nearest point notion as y = C(x), which is 
read "y is the nearest point projection of the point x onto the closed convex 
subset C". Now suppose that  there are two closed convex sets C, and C2 . 
Our iterative procedure can be viewed, formally, as a process tha t  starts 
with k = 0, and with some arbitrary y~. The first subproblem proceeds by 
obtaining C,(y~) (the nearest point in CL to Yk) and setting x~.. = C,(yk). 
The second subproblem goes on to obtain C~(xk) (the nearest point in C2 to xk) 
and then sets y~.+~ = C2(xk). The next iteration ensues by incrementing k 
and repeating the process. 

I t  is important to understand that  we can view our algorithm as in- 
volving a cyclically repeated series of optimal conic projections because when 
we view it in this light we can prove the convergence of the algorithm. In 
order to see that  our algorithm does in fact consist of a series of optimal 
conic projections, it is necessary to understand that  a) ordinal restrictions 
force the parameters to fall in a known convex cone; b) the functional restric- 
tions we discussed for numerical data form a parameter vector in a 
p-dimensional subspace, which is a particular type of convex cone; c) con- 
tinuous process restrictions are restrictions on the parameters to fall in a 
bounded interval, which is a specific type of cone; and that  d) discrete process 
restrictions are also interval restrictions where the interval has zero width 
(i.e., is a point), which is also a type of cone. 

Convergence of a cyclically repeated series of optimal projections can 
be proven by theorems already available in the literature. First, there are 
theorems dealing explicitly with cyclic projection on a finite sequence of 
convex sets. The most general results have been given by Gubin, Polyak, and 
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Raik [1967]. Second, there are some general theorems dealing with the 
convergence of block relaxation of convex functions. A representative reference 
is C~a and Gtowinski [1973]. A useful convergence theorem for nonconvex func- 
tions (with statistical applications) is given by Oberhofer and Kmenta  [1974]. 
Finally there are a number of general convergence theorems for relaxation 
processes, of which the most familiar one is given by Zangwill [1969]. I t  
follows from these theorems that  the sequence x~ converges, in an infinite 
number of iterations, to a fixed point x~ which is the point in C, which is 
nearest Ca. Moreover, yk converges to a fixed point y~ which is the point in 
C~ nearest C , .  Consequently, the distance between x= and y~ is the minimum 
of all possible distances between x in Cj and y in C2 • 

These results can be applied directly to the case in which there are 
interval restrictions oll the 0~ , and some restrictions on the a~ and fli • I f -  
both 8k and a~ , ~ are restricted by cone restrictions, however, the results 
are without value. Cones intersect at the origin, and often the origin is the 
only point in the intersection. The theorems quoted above prove that  both 0 
and a, 5 converge to zero in this case, which is a trivial and undesirable result. 

We reformulate our problem by specifying that  we are only interested 
in solutions which are "normalized" in some sense. This normalization (an 
extra restriction on either 0 or a, 5, ~ or both) is chosen in such a way tha t  
the trivial solutions are excluded; the computations are only slightly more 
complicated. The remainder of this section analyzes the normalization prob- 
lem in some detail. 

As a first natural normalized loss function we consider 

I i z -  y!l 
= l l y l l  ' 

which is to be minimized over x in C, and y in Ca , with CL and C~ convex 
cones. We still desire to find the nearest point, but  we must change our defini- 
tion so that. the nearest point minimizes ~ instead of the Euclidian distance. 
Thus, for a fixed y (which is in Ca) we still find the nearest point x in C~ by 
computing C, (y), but  the problem of finding the nearest point in Ca for fixed 
x in C~ is more complicated. I t  has been proven, however, by Kruskat and 
Carroll [1969], that  the solution of this subproblem is still proportional to 
Ca(x). Moreover, the alternative normalized loss function 

t l x  - y l l  

- i! l/ ' 

is connected to g by the simple relationship [Young, 1972] 

rain ~ = min ~', 
y~Cz y~C~ 

for all values of x. Consequently, using ~" instead of ~ does not make any dif- 
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ference. If we combine the results of Kruskal and Carroll with the fact tha t  
for any convex cone C it is true that  C(o~x) = a C ( x )  for all a ~> 0, we find 
the important result that  our previous alternating projection procedures 
also minimize the same subproblems for properly normalized loss functions. 
Moreover, the normalizing can be done whenever we want to; it is not neces- 
sary to normalize after each iteration, although we do. Finally, it does not 
mat ter  which of the two natural normalizations of h we use, as the results 
in each iteration will differ only by a proportionality factor, and the ultimate 
solutions will always be identical. Observe that  an equivalent formulation 
of the normalized problem is the maximization of the product of x and y 
under the condition x ~ Cl , y ~ C2, and under the normalization conditions 
ltxll = 1 and/IYll = 1. This shows that  we minimize the angle between the 
vectors x and y in their cones, without paying at tention to their length. 
An alternative elementary proof of the Kruskal and Carroll results, with 
applications to ALS, is given by de Leeuw [Note 4]. Convergence for nor- 
malized iterations follows in the same way as before from the general con- 
vergence theorems for relaxation processes. 

I t  should be noted that  we have not proven that  our algorithm con- 
verges to the globally optimal point, only that  it converges to a (perhaps 
locally) optimal point. I t  appears to the authors, however, that  the algorithm 
nearly always obtains the global optimum, an assertion supported by some 
evidence presented in the results section. As will be discussed in the next 
section, ADDALS necessarily obtains the global optimum in certain special 
c a s e s .  

Re la t i on  to E a r l i e r  W o r k  

When the data are discrete-nominal and when there are no restrictions 
on a~ and fli , then the projections C~ and C2 arc independent of x and y. 
Thus, there are orthogonal projection matrices A and B such that  

Yk÷~ = B x k  = B A y ~  , 

and 

xk+~ = Ay,~÷~ = A B x k .  

I t  follows that  in this case our ALS method is equivalent to the power method 
for computing the dominant eigenvalue and corresponding eigenvector of 
B A  and A B .  Since the method proposed by Fisher [1938], and rediscovered 
by Hayashi [1952], Carroll [Note 2], and Nishisato [Note 7] finds the eigen- 
value/eigenvector pair of the same matrices, it is clear tha t  ALS is equivalent 
to these methods in this special case. Although the previously proposed 
methods are more efficient, ADDALS is assured of obtaining the global 
optimum (the dominate eigenvalue/vector) in this case. I t  should be noted 
that  some of the previous work involves proposals for obtaining additional 
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subdominant eigenvalues and eigenvectors to yield a multidimensional 
quantification. Our developments do not cover this possibility nor that  of 
interaction terms in the ANOVA model, a development which has been 
treated by Nishisato ]Note 7, Note 8] in the case of discrete-nominal data and 
unrestricted model parameters. A companion paper to our present work 
[Young, de Leeuw, & Takane, 1976] does treat  this topic, however. 

Our missing data technique has been proposed by Yates [1933] in the 
case in which there are no constraints on the model parameters and the 
non-missing observations are known real numbers [see also Wilkinson, 1958]. 
The iterative technique has also been used by some authors as a compu- 
tationally convenient way to estimate parameters in unbalanced designs. 
I t  has been shown that  the technique solves the least squares problem by an 
iterative method based on a regular splitting of the design matrix. The theory 
of such methods has been studied by Berman and Plemmons [1974]. 

I t  is also interesting to study the relationship of ALS and gradient 
methods, since Kruskal [1965] has proposed a gradient method for continuous 
or discrete ordinal data, with no constraints on the model parameters. We 
first consider the general unnormalized problem of minimizing I Ix - Yll over 
x ~ C~ and y ~ C2. I t  is well known that  the function 

v(x) = min [Ix - Yll = [I x - C2(x)[[, 
y~C~ 

is continuously differentiable, with gradient vector x - C2(x). The gradient 
projection method [Levitin & Polyak, 1966] sets 

x ÷ = C , [ x  - K ( x  - C 2 ( x ) ) ] ,  

with the step size K chosen in such a way that  sufficient decrease of v(x) is 
guaranteed. Levitin and Polyak show that  K = 1 is an admissible step size, 
and by setting K = 1 in the update equation we find the ALS method x + = 
Cj(C2(x)) .  Thus, our ALS algorithm is a convergent gradient projection 
algorithm with constant step size. In the normalized case we find v(x), such 
that  

v(x) = min IIx -- Y!I IIx -- C.?(x)[[ 
JJyl l  = - -  I l x l l  ' 

which is continuously differentiable if I Ixll ~ 0, with gradient 

g ( x )  = l l x l l - ' ( x  - - , ( x )  x .  

Again, we can choose the stepsize in a gradient projection algorithm in such 
a way that  it becomes equivalent to ALS, except possibly for a different 
normalization of intermediate solutions. If one of the cones in the normalized 
problem is a linear subspace, we can collect a basis for the subspace in T, 
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and minimize 

v(x) = min ~_Tx --- .y~ 
~ c o  l l T x l l  ' 

unconditionally over x. Kruskal's MONANOVA [1965] is the special case in 
which C2 is the polyhedral convex cone of monotone transformations. In the 
same way as before, we show that. the iterations of ALS can be intepreted 
(up to proportionality factors) as gradient iterations, with a particular 
choice of the step size. In MONANOVA the step size is determined by a 
completely different procedure, which may or may not be more efficient. 

In a paper dealing with another special case of our situation, Bradley, 
Kat t i  and Coons [1962] define 

IITx 
u(y) = min I1~ ,,=--5-~'x" 

and minimize u(y) over C~ by a coordinate descent method. The relationship 
of this method and ALS is complicated, although the basic idea of decompos- 
ing the optimization problem in a cyclic sequence of simpler problems is 
the same for both methods. If follows from the convergence theory of the 
methods we have shown to be equivalent to our method that  convergence 
of ALS in these cases is at most linear (and can degenerate to convergence of 
order zero in some eases). In the computational literature a large number of 
methods are available tha t  can be used to speed up convergence. In particular, 
our analysis shows that  choosing a different step size in gradient projection 
methods corresponds to over or underretaxing the ALS iterations. Our ex- 
amples show that  in some instances convergence of ALS is quite slow, and 
that  experimenting with a relaxation parameter may be quite useful. 

4. Results and Discussion 

In this section we present the results of applying ADDALS to several 
sets of data  whose structures have been investigated by methods which 
are special cases of ADDALS. For these data we expect our results to be 
very much like the previous results. We also present the results of ADDALS 
analysis of artificial data to evaluate other special ADDALS cases. We will 
first discuss nominal data, then ordinal, then numerical. 

Nominal Data 

Due to the equivalence of the iterative ADDALS method and the ana- 
lytic eigenvector method when the data are discrete-nominal, it is unneces- 
sary to determine whether ADDALS will behave robustly with artificial 
error-free data, as it will. However, we should point out certain types of 
discrete-nominal data (with or without error) which do not yield results 
which are unique up to a linear transformation. An obvious example is data 
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which consist of unique categories, i.e., for which there is only one observation 
in each category. For such data, any parameterization of a~ ~nd fl /yields 
perfect, but  meaningless, solution. A necessary condition for a unique solution, 
then, is that  one category contains at least two observations. This condition is 
by no means sufficient, however. Consider, for example, the 3 X 3 table 
with 3 observations in each of 3 categories: 

A A A 

B B B- 

C C C 

In this case the row effects are completely indeterminate and the column 
effects are only determined to be equal at  all levels. As another, more subtle 
example, consider the 3 X 4 table with eight observations categories: 

A D B E 

B E C F. 

C F G H 

If these categories are assumed to be discrete (not continuous), then the rows 
are connected (since each shares categories with another  row), but  the columns 
are only partially connected (since Column 1 shares categories only with 
Column 3, and Column 2 only with Column 4). Thus, the rows are deter- 
mined up to a linear transformation, but  the columns are determined up 
to two separable transformations, one for Columns 1 and 3, and another  
for Columns 2 and 4, due to the fact that  Columns 2 and 4 share no categories 
with Columns 1 and 3. Thus, an important  condition to obtain results defined 
at  the interval level from discrete-nominal data is tha t  all rows (columns) 
be connected by common categories. I t  does not seem to be necessary that  a 
row (column) share at  least one category with all other rows (columns), 
but  rather that  a row (column) share at least one category with a second 
row which shares a category with a third, etc. Of course, these are but  ex- 
amples, and we do not mean to imply that  they represent a complete argu- 
ment for a necessary, let alone a sufficient condition which must be met to 
obtain a quantitat ive analysis. In the case of replicated data, for example, 
the condition given above can undoubtedly be weakened. 

We have found that  ADDALS yields results which are within a linear 
transformation of those obtained by the analytic eigenvector procedure 
for discrete-nominal data which meet the necessary condition given above. 
Fisher [1938, pps. 285-298] demonstrated his eigenvector method by analyz- 
ing data concerning twelve samples of human blood tested with twelve sera, 
where the observations were one of five chemical reactions (this is a balanced, 
unreplicated 12 X 12 factorial design with 5-category data assumed by 
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Fisher and ourselves to be discrete). ADDALS obtained a solution with 
-- .5397 in 8 iterations with a random start. (The criterion to terminate 

the iterative process in this and all other analyses, unless otherwise stated, 
is that  the improvement in ~,~ must be less than .0005.) The ADDALS param- 
eter estimates are related to Fisher's estimates by a perfectly linear transfor- 
mation. Carroll [Note 2] demonstrated his CCM method (which is identical 
to Fisher's proposal) with data  obtained in an experimental situation 
described by three variables: the wave form, modulation percentage and 
modulation frequency of a tone. The experimental design was a factorial 
2 X 3 X 4, balanced and unreplicated. The data analyzed by Carroll were 
the five clusters into which each of the 24 tones were placed by a clustering 
program. Our analysis (assuming discrete process) yielded results indis- 
tinguishable from Carroll's analysis, except for a linear transformation 
(h = .4477, 34 iterations, random start). 

We now investigate the behavior of ADDALS using an artificial example 
in which the true population values underlying the discrete-nominal obser- 
vations are known. In Table 4a we present the population values for the 
example, and in Table 4b we present the observation categories (this is a 
6 X 6 balanced design with 2 replications, having 5 observation categories 
in the first replication and 3 different observation categories in the second). 
The population values are completely connected. In Table 4b we have in- 
troduced two types of systematic observation error. First, the true values 
have been collapsed into a smaller number of observation categories; second, 
there are inconsistencies (between replications) in the observation categories. 
However, there is no random error (the true values can be ordered properly 
by the observation categories in each replication). These types of systematic 
errors are common types of observational error in practice. 

In Figure 1 we plot the parameter estimates obtained by ADDALS 
(~ = .3366 in 12 iterations, random initial category values) against the true 
values (the letters indicate category membership). I t  is clear that  the derived 
a~ are linearly related to their true values, though the ~i are not. In particular, 
the derived values of fl~ and f~2 are equal even though the true values are not. 
This anomaly is due to the fact that  the corresponding columns of the obser- 
vation matrix are identical. We note now that  this effect carries through all 
the analyses of these data which are to be presented, and that  a linear relation 
could be obtained with differing observation columns. Identical columns 
(or rows) of observations is of some concern, however, and should be treated 
with caution. 

In the remainder of this section we investigate the behavior of ADDALS 
under the continuous-nominal assumptions. Actually, as noted above, the 
totally unrestricted form of the continuous-nominal assumptions are meaning- 
less, so we impose the additional pseudo-ordinal restrictions discussed above, 
and then reanalyze the data  in Table 4 under these restrictions. The plot 
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sistencies between the five observation categories for the flint replication and 
the three observation categories for the second replication, we note that  
there is no order of all eight observation categories which will permit a perfect 
solution. Observation category G corresponds with the true values ranging 
from 8 through 15, whereas category B has observations which correspond 
to true values as large as 9, and category D has corresponding true values 
as small as 13. Thus, we see that  we must define a partial order of the 
categories in order to obtain a perfect fit (~ = 0), the partial order being 

A <:B<C<_ D < E ,  

F<_G<.H, 

F<_C, 

G < E .  

Since the pseudo-ordinal and ordinal assumptions do not permit partial 
orders (as stated above), we cannot perfectly fit these data. Thus, if we were 
to now use the ordinal information developed by the pseudo-ordinal analysis 
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to order all eight categories, and then use this information as the basis of a 
continuous-ordinal analysis, we should still arrive at precisely the same 
imperfectly fitting solution. Of course it would be relatively trivial to extend 
the notions of the pseudo-ordinM and ordinal types of measurement to include 
(pseudo) partial orders, and in fact we have done so in some other closely 
related work [Young, Note 9; Young, de Leeuw & Takane, 1976]. If we then 
reanalyze these data under the assumption that they represent a pseudo- 
partial order, with the prior knowledge that the pseudopartial order consists 
of two partial orders (one for the first replication, and one for the second), 
then we should certainly obtain a perfect fitting solution, questioning only 
the nature of the relationship of the solution to the true values. We have 
performed such as analysis using the multiple optimal regression by alter- 
nating least squares (MORALS) technique reported by Young, de Leeuw, 
and Takane [1976], which is precisely equivalent to ADDALS for orthogonal 
ANOVA designs, except for the ability of MORALS to handle partial orders. 
The procedure obtained a perfect fit (2 iterations, random start). The derived 
parameter values are plotted versus the true values in Figure 3. The figure 
indicates that the dependent variable and the values of ai are essentially 
linear in their relationship to the true values, and that fl; still displays the 
same nonlinearities as before, but more mildly. The usefulness of such a 
procedure might be questioned since it assumes that we have prior knowledge 
about the nature of the partial order (that we know it consists of two sub- 
orders). However, it is often the case that the observation categories in one 
replication of the experiment bear no simple relationship to the observation 
categories in another replication. In such a situation the (pseudo) order 
really consists of several sub-orders, one for each replication. 

We conclude, then, that under the appropriate conditions ADDALS 
can yield quantitative analyses of nominal data. I t  seems clear that one 
necessary condition is that all rows (columns) be connected by common 
categories, and it is probably the case that the number of observation should 
be large relative to the number of categories. For the latter reason it is desir- 
able to have as many replications as possible. Finally, some care should be 
exercised when a) two or more (columns) are identical, since this necessarily 
means the parameter estimates will be equal; and b) the data are pseudo- 
ordinal, since the parameter restrictions are so weak. 

Ordinal Data 

Our first ordinal example utilizes an artifical example discussed by 
Kruskal [1965] in his paper concerning MONANOVA. His 3 X 3 data are 
the squares of the "true" values obtained by the simple addition of the popula- 
tion row and column values. Thus, his data contain only systematic error. 
Furthermore, his population values have completely connected rows and 
columns. The ADDALS analysis of these data obtained a solution with 
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= .000O in 5 iterations (the discrete-ordinal assumption was used). Since 
this result might have been an artifact of the "rational s tar t"  (i.e., the obser- 
vations were used to initialize the algorithm), we repeated it with a random 
start, obtaining k = .0000 in 8 iterations. Both solutions are indistinguishable 
and are perfectly related to the underlying structure. 

We felt that  the results reported in the previous paragraph might be 
due to the strong connectedness of the data (and the assumption of discrete 
observations), so we analyzed a second set of 3 X 3 artificial discrete-ordinal 
data which have one unconnected column. The results of this analysis were 
essentially identical to those of the first analysis (h = .0000, in 5 iterations 
from a rational strat  and 12 iterations from a random start, estimates per- 
fectly related to true values). We pushed this notion even further by analyzing 
a third set of identical 3 X 3 discrete-ordinal data  for which one row and one 
column are unconnected. In this case the analysis suffered, with the under- 
lying structure not perfectly recovered (although ~ = .0000 in 4 iterations 
for rational start). So, again, it is important  to have connected rows and 
columns, especially for unreplicated matrices as small as the one analyzed 
here. Of course, if we had assumed the data were continuous-ordinal our 
results would have been less encouraging for these 3 X 3 matrices, since this 
effectively disconnects any connections which may be present in the data. 
(We also performed all the previous analyses with Kruskal 's MONANOVA 
and obtained indistinguishable results.) 

Kruskal [1965] used several sets of real data to evaluate his procedure. 
We reanalyzed two of these sets to further evaluate ADDALS (both of these 
sets have also been analyzed by Box & Cox, 1964). The first of these two 
sets of data  concern the strength of yarns (in terms of the number of cycles 
before failure) when the amount  of load placed on the yarn, the amplitude 
of the load cycle, and the length  of the piece of yarn arc varied. Each of 
the three variables had three levels, and one observation was obtained in 
each cell. Thus, this is a balanced, unreplicated 3 X 3 X 3 design. In keeping 
with Kruskal's analysis, we assume that  the observations are continuous- 
ordinal and the experimental conditions are nominal. These data were sub- 
mitted to ADDALS and to Kruskal 's MONANOVA procedure. After 7 
iterations, ADDALS had converged to a value of k = .071, and after  8 itera- 
tions MONANOVA had converged to the same value. Both procedures 
obtained solutions identical up to a linear transformation. 

The second set of Box and Cox data analyzed by Kruskal concern the 
survival time of animals subjected to one of three poisons and one of four 
treatments. These data were obtained from four animals in each condition; 
thus the experiment is a balanced, 3 X 4 design with four replications. The 
results of our analysis, which assumed that  the observations were continuous 
and that  the experimental variables were nominal, were compared with the 
results of Kruskal's analysis (which made the same assumptions) Again, 
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the results are virtually identical: ADDALS h = .3064 on the sixth iteration, 
MONANOVA ~, = .3064 on the eighth. 

By removing some of the observations from these data, we obtain an 
unbalanced design whose analysis can be compared with the analysis of the 
balanced design. Thus, we removed four of the 48 observations, one from each 
of the three cells involving the fourth level of the t reatment  variable, and 
one from cell 1, 1. This leaves us with an unbalanced 3 X 4 design with four 
replications in eight of the 21 cells and three replications in each of the re- 
maining four cells. When we compare the results of this analysis with those 
of the previous one, we see that  the estimates have changed somewhat. We 
also note that the value of ~, (.2751 in 5 iterations) has decreased some from 
the balanced case, suggesting that  its value is a function of the number of 
observations (as is the case in a closely related situation discussed by Young, 
1970). Finally, we note that  the observations have been removed from the 
balanced design in such a way that  two columns have no observations 
removed, one column has one observation removed, and one column has three 
observations removed. The number of observations removed is related to 
the degree of change in the corresponding parameter 's estimate. Specifically, 
the column parameter estimate which changed the most is the one with the 
largest number of observations removed. 

We now turn to two examples involving ordinal constraints on the 
experimental variables. Roskam [19681, in demonstrating his A D D I T  proce- 
dure (which is nearly identical to Kruskal's MONANOVA), used a set of 
data gathered by Ekman [Note 5] concerning the average ratings of un- 
pleasantness of an electrical shock whose intensity and duration was varied, 
involving 5 and 6 levels of each variable. We analyzed these data assuming 
that  the experimental variables were ordinal and the measurement process 
was continuous-ordinal. When we compared our results (h = .0100 in 9 
iterations) with Roskam's (who was unable to assume ordinal effects, and 
so treated them as nominal), we concluded that  the two analyses were highly 
similar (all a~ and/~ were identical for both analyses except two values whose 
order was "incorrect" for the unrestricted analyses). This implies that  the 
assumption of ordinal effects was appropriate, though unnecessary, and that  
it had no deleterious effects on the analysis. 

As a second example of imposing ordinal constraints on experimental 
variables, we analyzed data  gathered by Kempler [1971] concerning the 
number of times each of 100 rectangles was judged to be either large or small 
by several subjects. The variables are the height and width of the rectangles; 
each variable has 10 levels. We analyzed these data  both with and without 
the ordinal constraints on the two experimental variables. Without ordinal 
constraints we (and Kempler) discovered a few inversions from the expected 
order. We note that  the value of h increased f rom.  1558 for the unconstrained 
analysis (5 iterations) t o .  1565 for the constrained analysis (also 5 iterations), 
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a very slight increase due to the restraints. Thus, this aspect of ADDALS 
allows us to observe that  the best fitting constrained estimates (and their 
overall descriptive adequacy) are nearly as adequate as the free estimates. 

Finally, we reanalyzed the artificial data in Table 4 under the assumption 
that  the categories were continuous-ordinal, with the ordinal information 
being derived from the pseudo-ordinal analysis. The results were identical 
to those of the pseudo-ordinal analysis (X = .1196, all parameters the same 
to four decimal places). The only difference was that  less iterations were 
required; this was due, apparently, to the non-random initial category values. 
This lends some credence to the pseudo-ordinal procedure. We also analyzed 
these data under the partial order assumptions discussed above, and obtained 
precisely the same solution as obtained with the pseudopartial order assump- 
tions. 

Numerical Data 

I t  is unnecessary, of course, to give an example of ADDALS applied to 
discrete-numerical data, since ADDALS reduces to computing row and 
column means of the data matrix in this case. Furthermore,  with discrete 
numerical data which have missing observations ADDALS is equivalent 
to the iterative missing data technique proposed by Yates [1933], and there 
are many examples analyzed by this technique in the analysis of variance 
literature. Thus we will not discuss the discrete-numerical case, but  turn 
instead to the continuous-numerical case. 

We cannot compare our method with previous ones in the continuous- 
numerical case since we know of none, so we evaluate this case by analyzing 
a set of artificial data. In Table 5a we present the population values; in 
Table 5b the observation categories and the category constraints are dis- 
played. This example contains errors of observation similar to those in Table 4 
(there are fewer observation categories than population values), but  the 
range constraints are such that  the population values constitute a perfect 
solution. Note that  this example is quite strong in tha t  all rows and columns 
of the population matrix are connected. 

The parameter estimates obtained by the ADDALS analysis of these 
data are plotted against the population values in Figure 4. We observe that  
the estimates of the four row parameters a~ are, essentially, a perfect linear 
transformation of their population values. We also observe that  the estimates 
of the six column parameters Bi are related by the same linear transformation 
to their population values, but  that  this latter relationship is not perfect. 
(Of course, when we plot the dependent variable we see the same linear, 
imperfect relationship.) In particular, we note tha t  the fourth largest column 
estimate is relatively imprecise. We are unsure why this is the case, but  we 
do note that  convergence is very slow for this example (38 iterations b e f o r e  
the convergence criterion of .00005 was met), and that  the solution, at this 
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Table 5a 

Population Values 

Bj 
i 7 ii 14 16 17 

1 2 8 12 15 17 18 
2 3 9 13 16 18 19 
4 5 ii 15 18 20 21 
8 9 15 19 22 24 25 

499 

Table 5b 

Observations 

j ± 
i 2 3 4 5 6 

i A A B C C D 
2 A A B C D D 
3 A B C D D E 
4 B C D E E E 

Constraints 

2 < A < 9 < B < 13 < C < 17 < D < 20 < E < 25 

point, does not yet fit perfectly (~ = .0050). Perhaps if we had let ADDALS 
run for more iterations an improved solution would be obtained. We do feel, 
however, that this example indicates that  with continuous numerical data 
ADDALS can behave in a relatively efficacious manner. 

5. Conclusions 

We conclude that  the ADDALS approach enables one to quantify 
qualitative data via the application of the additive model (subject to condi- 
tions discussed in the previous section). Furthermore, we conclude that  the 
associated algorithm is simple and efficient, in terms of both speed and size. 
We note that  ADDALS includes, as special cases, the procedure first proposed 
by Fisher [1938] to analyze discrete-nominal data and the procedure first 
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proposed by Kruskal [1965] to analyze both discrete or continuous-ordinal 
data. ADDALS can also be used to analyze 'ordinary' discrete-numerical 
data, and it includes a generalization of the procedure proposed by Yates 
[1933] for continuous-numerical data. ADDALS has the ability to apply the 
additive model to continuous-nominal data, to analyze data with an additive 
model which is subject to ordinal constraints on its parameters, and to 
analyze data when the experimental design is unbalanced. We know of no 
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previous proposals which cover any of these last developments. Thus, we 
conclude that  ADDALS is a procedure which is much more general and 
flexible than previous proposals. 

Finally, it is fairly simple to generalize the approach to models other 
than the simple additive model. Research recently completed suggests tha t  
the alternating least squares approach can be generalized in a straight- 
forward manner to other linear models. We have already developed robust 
(and rapid) ALS procedures to apply the multiple and canonical correlation 
models to nominal and ordinal variables [Young, de Leeuw & Takane, 1976]. 
Special cases of this procedure include Procrustean rotation, external un- 
folding, vector projection, additive models with interaction terms, non- 
orthogonal models, ADDALS, etc. An ALS procedure has also been developed 
and evaluated for the bilinear model which includes nonmetric (and, of course, 
nominal) factor analysis, components analysis, etc., as special cases. At 
the time of this writing, this development appears to yield a robust and 
rapid method. Finally, we have extended the ALS methodology to the bi- 
quadratic models (the Euclidian and weighted Euclidian models) commonly 
used in multidimensional scaling [Takane, Young, and de Leeuw, in press]. 
Although this is considerably more complex than those just mentioned, it 
does appear to provide a promising alternative to the commonly used proce- 
dures. Thus, we find ALS methodology encouraging not only because of its 
ability to quantify qualitative data  via application of the additive model, 
but  also because of its promise to quantify qualitative data via application 
of a variety of other models. 
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