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In this paper, hierarchical and non-hierarchical tree structures are 
ip)roposed as models of similarity data. Trees are viewed as intermediate 

etween multidimensional scaling and simple clustering. Procedures are 
discussed for fitting both types of trees to data. The concept of multiple 
tree structures shows great promise for analyzing more complex data. Hybrid 
models in which multiple trees and other discrete structures are combined 
with continuous dimensions are discussed. Examples of the use of multiple 
tree structures and hybrid models are given. Extensions to the analysis of 
individual differences are suggested. 
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Roger Shepard's presidential address [Shepard, 1974] was a somewhat 
retrospective overview of multidimensional scaling; last year Kruskal [1976t 
emphasized ongoing research in the area. This address, although involving 
past, present, and future, wilt be somewhat more speculative, emphasizing 
possible future trends. 

Spatial models of two-way multidimensional scaling are very well known. 
They assume that  measures of similarity, dissimilarity, or to use Shepard's 
more general term, of proximity, relate in some simple way (e.g., linearly 
or monotonically) to distance in a postulated underlying metric space. This 
model has been extended to what has come to be called three-way or "in- 

dividual differences" multidimensional scaling, in which parameters de- 
scribing different individuals (or other data sources) are added to the param- 
eters defining the multidimensional spatial representation of stimuli. The 
weighted Euclidean model that  Jih-Jie Chang and I have called the I N D S C A L  
model [Horan, 1968; Carroll & Chang, 1970], Tucker 's [1972] three-mode 
scaling model, and Harshman's  [Note 3] PARAFAC-2 model are three of 
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the principal examples of such three-way MDS models. Of course there are 
many others, both actual and potential. 

Nonspatial models are familiar in the guise of clustering, either simple 
or hierarchical. When we apply a clustering procedure to a matrix of prox- 
imities we are fitting a kind of nonspatial model. This can be either a set- 
theoretic model in the case of "simple" clustering, or a graph-theoretic model 
as in the tree structures of hierarchical clustering. In the set-theoretic models 
of simple clustering the underlying psychological model can be stated in 
terms of discrete attributes, rather than the more continuous or '  'dimensional" 
attributes usually associated with MDS. 

Of course, as Torgerson [1965] pointed out, in a spatial model there is 
really no need to assume that all points in the space can correspond to actual 
stimuli. It  would be perfectly consistent to postulate a spatial model, for 
example, in which each of the dimensions takes on only two, three, or some 
other finite or denumerably infinite number of values, so that the space, 
rather than being truly continuous, has "holes" that cannot be filled by 
actual stimulus objects. 

In the final analysis, the choice of a model probably depends on 
parsimony. If the number of possible values for each dimension is large, 
or denumerably infinite, and the number of dimensions relatively small, a 
continuous spatial model should provide a quite satisfactory approximation. 
If, on the other hand, the number of possible values for each dimension is 
small (say two or three) and the number of dimensions large, a more discrete, 
nonspatial model may provide a more parsimonious representation. 

In the model implicitly assumed by simple clustering, each stimulus 
is postulated to have one and only one of a number of such discrete attributes. 
These attributes are jointly exhaustive and mutually exclusive. In hierarchical 
clustering, this restriction is relaxed somewhat by allowing attributes that 
define overlapping sets. However, these sets define a strictly nested structure 
such that every pair of sets is either disjoint or else one of the two is a proper 
subset of the other. This may provide a good model of many linguistic situa- 
tions, for example, where there are indeed nested sets of superordinate and 
subordinate concepts (e.g., living things, animal, dog, cocker spaniel, my 
cocker spaniel named "Sport", etc.). 

John Hartigan [1967] was the first to suggest treating the problem of 
hierarchical clustering as one of fitting a certain geometric model---namely 
a rooted tree structure on which an ultrametric is defined--using combina- 
torial optimization techniques. Hartigan proposed an explicit algorithm 
aimed at optimizing a least squares criterion of fit between data "distances" 
and distances calculated from an ultrametric tree structure. 

A few years later Jih-Jie Chang and I devised a procedure that generalized 
Hartigan's approach in two different ways [Carroll & Chang, 1973]. First, 
our procedure allowed some or all of the interior, or nonterminal, nodes of 
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the tree to correspond to objects or stimuli, whereas Hartigan's procedure 
(and, indeed, most other hierarchical clustering procedures) restricted the 
objects or stimuli to terminal nodes. Second, we allowed a more flexible 
definition of the metric on the tree. In addition to the ultrametric, which 
amounts to associating what Johnson [1967] has called a "height" with each 
nonterminal node, and defining the distance between any two nodes as the 
height of their "lowest common ancestor" node (the lowest node on the 
[inverted] rooted tree at  which the two paths upward from those two nodes 
meet), two other kinds of metrics were allowed. The first of these is a path 
length metric, in which lengths are associated with branches, or links, in 
the tree, and distance is simply the length of the (unique) path joining those 
two nodes of the tree. The second is a mixed case, in which "heights" are 
associated with nonterminal nodes and lengths with branches, while distance 
is defined as a sum of the path length and height of the lowest common 
ancestor node. (It might be noted that  this last "mixed" metric can be mean- 
ingfully distinguished from the simpler path length metric only in the case 
in which some of the objects are at nonterminal nodes. In the more usual 
case in which all objects are at terminal nodes, with the interior nodes all 
being dummy or "invisible" nodes, both the ultrametric and this "mixed" 
metric are special cases of the path length metric. When some objects are at  
interior nodes the three models are all meaningfully different, although of 
course both the "unmixed" cases are special cases of the "mixed" one.) 

We called these three types of metrics "nodes only" (corresponding 
to the ultrametric case), "branches only" (path length) and "nodes and 
branches" (mixed metric), because the first has parameters (heights) assoc- 
iated with (nonterminal) nodes only, the second has parameters (lengths) 
for branches (or links) only, and the third has parameters associated with 
both nodes and branches. 

We applied this procedure to some data that  Miller collected by use of a 
subjective sorting task [see Miller, 1969] on dissimilarities of names of body 
parts. Miller had intentionally selected these names to define a fairly clear- 
cut hierarchy based on inclusion relations. The best solution (by a modified 
least squares criterion utilizing a criterion of fit based on a pseudo F-statistic 
which takes number of parameters fit into account in a systematic way), is 
shown in Fig. 1. Ironically, after our effort at generalizing to the other two 
metrics, the ultrametric proved to provide the best fit to these data. The 
height values are shown in the boxes associated with nonterminal nodes. 
This was counter to our expectation that  one of the other models would 
provide a better fit. This result may be due to the fact tha t  the data  were 
collected by a sorting task (the measure of dissimilarity being the number 
of people who sorted the two words into different categories). I t  is possible 
that  the sorting task may lead to dissimilarities more or less satisfying the 
ultrametric inequality. 
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FmvaE 1 
Hierarchical tree structure for Miller's "body parts" data. Numbers in boxes repre- 

senting nonterminal nodes are estimated "heights" in "nodes only" or ultrametric model. 

1 
Except for Miller's body parts data, which was a deliberately designed 

illustration, we were not able to find another convincing case that  requires 
stimulus objects to be placed at nonterminal nodes. (Cunningham has dis- 
cussed a possible example, however, which will be mentioned later.) As a 
result, it seems wiser to fit a more general tree structure that  puts all objects 
at terminal nodes, and if appropriate to infer tha t  some of these objects 
should be at nonterminal nodes from special pat terns of parameter  values 
(e.g., certain branch lengths very close to zero). Furthermore,  the combina- 
torial optimization approach turns out  to be quite slow and cumbersome, 
highly subject to the discrete analogue of merely local optima, and generally 
rather  inefficient. For these reasons we have turned to procedures based on 
mathematical programming concepts, in which the discrete optimization 
problem is translated into one of continuous optimization with certain in- 
equality constraints. This almost always leads to trees of the more general 
type in which all objects are at  terminal nodes. However, the procedures 
prove to be much more efficient and effective in general. They  also lend 
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themselves quite nicely to models involving multiple tree structures, and 
hybrid models involving mixtures of tree structures and continuous spatial 
structure, which will be discussed subsequently. First, though, I will mention 
some other developments involving nonspatial models. 

ADCLUS, and Fitting o] Single "Free Trees" to Dissimilarities Data 

Roger Shepard [1974] has discussed the Shepard-Arabie [Note 6] 
ADCLUS procedure for extracting overlapping but not necessarily hierarch- 
ically organized clusters from proximities data. Basically the ADCLUS 
(for ADditive CLUSters) procedure attempts to approximate a similarity 
matrix by a positive linear combination of outer products of binary vectors. 
In English this means that each stimulus object either has or does not have 
each of a number of attributes (but these attributes need not be mutually 
exclusive). The similarity of two objects gets a positive increment (the amount 
defined by the weight associated with that particular attributes) if both of 
them have tile attribute, but no increment if either one fails to have it. 
(Tversky, Note 7, has formulated a general theory that includes this and other 
discrete models, such as tree structures, as special cases). The procedure 
Shepard and Arable have implemented approximates a least squares solution 
to the problem of simultaneously defining the optimal set of attributes and 
the optimal weights for the attributes so defined. Subsequently I wilt discuss 
a planned generalization of ADCLUS to a hybrid model of a certain type 
as well as its extension to three-way or individual differences data. 

What I have been calling a tree with path length metric, or simply a 
path length tree, is sometimes called a "free tree" because, unlike an ultra- 
metric tree, it has no natural "root" node. Since a path length tree has no 
root, it is not necessary to think of it as being vertically organized into a 
hierarchy; or, put differently, one can associate as many different hierarchies 
with a free tree as it has nodes (including both terminal and nonterminal 
nodes)--since every node can be the root node. Both Cunningham [Note 2] 
and Sattath and Tversky [Note 5] have devised algorithms for fitting free 
trees to data. Sattath and Tversky's method is a kind of natural generaliza- 
tion of the "pair group" method (e.g., single, average and complete linkage, 
also known to psychologists as the connectedness, average, and diameter 
methods, respectively) often used to generate hierarchical clustering solutions. 
Cunningham's method is somewhat closer in spirit to our own approach, 
as he attempts to approximate a least squares solution. 

Cunningham's solution rests on a certain four-point condition [see, e.g., 
Buneman, 1971; Patrinos & Hakimi, 1972; or Dobson, 1974] that must be 
satisfied by path length distances. This condition is: 

if d,i +dl~t >_ dik + d n  _ dn + d .  

(1) then d,i + d~z = d~k + d~.~ ; 
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i.e., the two largest sums of pairs of distances involving the subscripts i, j, k, 
and 1 must be equal. Cunningham's approach in effect assumes that the order 
of these sums of distances for the data will match (at least weakly) the order 
of the same sums in the optimal solution. This is a rather dubious assumption, 
unless the error variances are very small indeed. 

Thus if 6 ,  represents the data value (dissimilarity for the pair (i, j)), 
Cunningham imposes the linear constraint that 

dli + dkz = d~k + d~-z , 

(2) if 5,+ + ~kz >__ ~,,~ + ~st >-- ~n + ~+~. 

One such linear constraint on the distances is defined for each tetrad of 
points. He then seeks the d's yielding a best least squares fit to the ~'s, but 
subject to these linear constraints. This problem has a straightforward 
analytic solution, although such anomalies as negative distances can oceur. 

Cunningham's procedure works well for small data sets with relatively 
low rates of error. For larger data sets it quickly becomes unwieldy, since it 

requires inverting an ( ; )  X (2) matrix. More critically, it begins to break 

down once the ratio of error variance to "true" variance exceeds about 10%. 
This is apparently because the constraints seemingly implied by the data 
are then not necessarily the constraints that hold for the optimal solution. 
In such cases the solution Cunningham's method obtains is frequently the 
rather uninteresting tree of the form shown in Fig. 2, with all branch lengths 
equal (so that all distances are equal to the same constant). A tree of this 
form is sometimes called a "star" by graph theorists. 

It would appear that for such "noisy" data, a different approach is 
needed. Let us turn to a somewhat different approach to tree fitting which 
is better suited to such "noisy" situations. 

Fitting o] a Single Ultrametric Tree by Mathematical Programming Techniques 

As pointed out by Johnson [1967], Hartigan [1967] and others, there is a 
homomorphism between distance matrices satisfying the ultrametric ine- 
quality and rooted trees. The ultrametric inequality simply states that 

(3) d,k ~_ max (d,  , d~), for all i, j, lc. 

This is, of course, a much stronger condition than the more general triangle 
inequality, which states that 

(4) d+k _~ d~i + d+~, for all i, j, k. 

The ultrametric inequality is stronger in part because the extent to which 
it is satisfied is invariant under strictly increasing monotonic function of the 
distances, whereas the triangle inequality can always be satisfied by applying 
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FIGURE 2 
A degenerate tree, sometimes called a "s tar  graph".  If branch lengths are all equal 

all distances are constant;  if unequal then distances are "addit ively decomposable". 

the trivial monotonic function that  adds a sufficiently large constant to all 
distances, or violated by subtracting a sufficiently large constant. Given a set 
of distances satisfying the ultrametric inequality (u.i.), the associated tree can 
easily be constructed (and height values defined). Given a tree, an infinite 
family of ultrametrics is defined; if the height values are specified, the partic- 
ular ultrametric is uniquely specified. 

I t  is easy to see that  an equivalent statement of the u.i. is tha t  all triangles 
are isosceles, with the two longest sides equal. This can be stated as 

(5) d ,  >_ d~ > d~k (= ) d,k = dik , for all i , j , k .  

Pruzansky and I have devised an approach, based on mathematical 
programming techniques, to solve for ultrametric distances that  provide 
a best fit, in a least squares sense, to a given matrix of dissimilarities. Details 
of this algorithm are contained in a recent paper by Carroll and Pruzansky 
[Note 1]. I t  is based on a "penalty function" approach, in which a penalty 
is added to the usual least squares loss function. This penalty is directly 
proportional to a quantitative measure of the degree to which the u.i. is 
violated. The weight attached to this penalty function, relative to tha t  
attached to the loss function itself, is gradually increased until the u.i. is 
essentially perfectly satisfied, but  in such a way that  the loss function is at  
least at  a constrained local optimum. More importantly, it might be stated 
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that our current method is the best we have developed so far. We expect 
further numerical experimentation to improve this procedure quite radically. 

Fitting o/Multiple Tree Structures Via Alternating Least Squares 

There are many sets of proximities data that are not well represented 
by either simple or hierarchical clusterings, as has already been noted. One 
alternative model that has already been mentioned is the ADCLUS model 
and method of Shepard and Arable, in which proximities data are assumed 
to arise from discrete attributes that define overlapping but nonhierarchically 
organized sets. However, in such a case it may be possible to organize the 
attributes into two or more separate hierarchies. Each of these separate 
hierarchies could represent, for example, an organized family of subordinate 
and superordinate concepts of the kind we have already discussed. For 
example, in the case of animal names one might imagine one hierarchical 
conceptual schema based on the phylogenetic scale, and another based on 
function or relationship to man (e.g., tame vs. wild, with tame animals 
further broken down into pets, work animals, and animals raised for food, 
pets further broken down into house pets vs. outdoor pets, and so on). Two 
such conceptual hierarchical structures would obviously be far from inde- 
pendent of one another--whether or not an animal is a pet, for example, 
is hardly independent of the phylogenetic classification of the animal-but 
they could be sufficiently distinct that an appropriate technique could pull 
them apart. Such multiple hierarchies in data may often be obscured in 
standard clustering analyses, because of the possibly high degree of correla- 
tion among separate structures. ([ hasten to say that we have not yet applied 
the technique to be described here to data on animal names, so we do not 
really know if the results would in fact come out the way suggested in this 
hypothetical example.) 

Apparently a method is needed in this case for describing data by a 
model entailing multiple tree structures--a multidimensional generalization 
of the single tree structure, as it were. I have whimsically suggested calling this 
approach "multiarboreal scaling", but multiple tree structures will probably 
have to  do. 

One plausible way for multiple tree structures to arise from data amal- 
gamated over subjects (which is the nature of much two-way proximities 
data) is to assume that each subject uses only a single tree, but different 
subjects choose from some relatively small number of different trees. In this 
case the relative saliences of the trees could be thought to relate to the propor- 
tion of subjects using each. 

One might ask rhetorically, however, if is it plausible to assume genuine 
multiple tree structures underlying proximities data for a single subject. 
I, for one, would answer that question affirmatively. After all, most of us 
accept the idea quite readily that a single subject's similarities judgments, 
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for example, can be based on more than one dimension. Why then, couldn't 
they as readily be based on more than one tree structure--or, perhaps more 
properly, on internal processes or structures that are isomorphic to structures 
of this kind? One can easily imagine, for example, hierarchically organized 
list structures in memory that could be isomorphic to multiple tree structures 
of this type. 

Pruzansky and I have generalized the approach to tree fitting described 
earlier to include fitting of multiple tree structures to dissimilarities data. 
We use a numerical strategy that has come to be called alternating least 
squares, a name suggested by de Leeuw [see, e.g., de Leeuw, Young & Takane, 
1976]. This general approach, which was originally called NIPALS (Non- 
linear Iterative PArtial Least Squares) by Wold [1966], attempts to partition 
the total parameter set into subsets of parameters such that, if one fixes 
all but one of these subjects, there is an exact least squares solution for the 
remaining set. This is what might be called the conditional least squares 
problem. The NIPALS or ALS (for Alternating Least Squares) strategy 
was used by Chang and I in devising the CANDECOMP procedure that 
provides the numerical basis for analysis in terms of the INDSCAL model. 

In the case of multiple tree structure the model can be stated as 

(6) A ~ D ,  + D~ + . . .  + D , . ,  

where 5 is a matrix of dissimilarities and each D~ is a distance matrix satisfy- 
ing the ultrametric inequality. The symbol ~ can be taken as meaning 
"equals, except for (unspecified) error terrms", or ambiguously, as implying 
that, given the fixed term on the left side, we seek least squares estimates 
of the parameters specified on the right. 

The conditional least squares problem that must be solved in the present 
case can easily be defined by noting that 

(7) At*~'~ 5 - -  ~ D i  -- De 

This means that we may solve the conditional least squares problem by 
applying our mathematical programming algorithm for least squares fitting 
of a single ultrametric tree to the a~* matrix. The ALS procedure, then, 
consists of successively reestimating each of the D~ matrices iteratively 
in this fashion until convergence occurs, as indicated by no further change 
in the D, matrices, or in the (least squares) measure of fit. 

Earlier I suggested that methods of analyzing data in terms of some of 
these models were still in the realm of future development. In the case of 
multiple tree models, however, I believe that we have seen the future, and 
it works--pretty well anyhow (although there still are some problems of slow 
convergence and local minima). In some cases we had to try many different 
starting configurations and use quite a lot, of computer time to get what 
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seem to be reasonably good solutions. We do feel, however, that we are on the 
threshold of solving a number of the numerical problems associated with 
this method, and thus getting to the point where we can routinely expect to 
attain quite good solutions without expenditure of undue computer time 
and money. A large part of the solution appears to be in how we define the 
starting values for the mathematical programming component of the overall 
algorithm. We have recently made some fortunate discoveries that hopefully 
will yield more effective ways of doing this. 

Some Applications o] Multiple (UItrametric )Tree Structure Fitting to Proxi- 
mities Data 

The procedure has been applied to the Miller-Nicely data on confusions 
of consonant phonemes [Carroll & Pruzansky, Note 1]. We found that two 
trees fit these data very well, accounting for about 99% of the variance in 
the data. The first tree corresponded essentially to the structure derived 
by use of standard hierarchical clustering techniques, and could be inter- 
preted in terms of voicing and nasality. (It might also be mentioned that 
the single tree derived in a one-tree solution also corresponded essentially 
to this first tree, and accounted by itself for 940-/0 of the variance. I stress, 
however, that it is not generally the case that the single tree from a one-tree 
solution will be one of the trees in a two-tree solution. If, as suggested earlier, 
there were two highly correlated tree structures that were about equally 
salient in the subjects' judgments, the best single tree would generally rep- 
resent some kind of compromise between the two. A two-tree solution would, 
of course, pull the two apart, so to speak. Similar statements could be made 
for two versus three tree solutions, and so on.) 

The second tree, which of course does not emerge at all in a clustering 
solution, seemed to relate to place of articulation. One interesting point 
that is consistent with the earlier suggestion about the possible relationship 
between ADCLUS and multiple tree structures is that almost every cluster 
found by Shepard and Arable in their ADCLUS solution for the same data is 
represented as a node in one of the two trees. 

Another multiple tree analysis, not previously reported in print, was of 
some data collected by Wish, Kaplan and Deutsch [1973] on various kinds 
of dyadic relationships. Wish et al. asked subjects to judge, on a 9-point 
rating scale, the similarity among each pair of dyadic relationships. (A 
typical judgment would involve rating the similarity of the relationship 
between, say, "mother-in-law and son-in-law" and that between "personal 
enemies.") Wish [in press] did many analyses, including an INDSCAL 
analysis of the three-way array of data for all subjects. The results of this 
analysis are shown in Figs. 3 and 4, which display the (unrotated) 1--2 and 
3-4 planes of the INDSCAL stimulus space, respectively. As can be seen, 
Wish et al. interpreted Dimension 1 as "cooperation and harmony vs. corn- 
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petition and conflict", Dimension 2 as "equality vs. inequality", Dimension 3 
as "personal and informal vs. impersonal and formal" and Dimension 4 
as "intense vs. superficial". These interpretations were supported by evidence 
based on rating-scale judgments. 

Our two-tree solution for this same data (averaged, in this case, over 
subjects) resulted in structures that seemed to conform remarkably well 
with these INDSCAL results. In fact, there seems to be a direct relation 
between each of the trees and one of the two planes of the four dimensional 
stimulus space from INDSCAL. The m~jor branch of the first tree (see 
Fig. 5), appears to divide the cooperative or only mildly competitive from 
the highly competitive relations ("mother-in-law and son-in-taw", "second 
cousins" and "casual acquaintances" not quite fitting into this scheme). There 
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appears to be a mild anomaly in the location of "guard and prisoner", which 
is in the less competitive branch. However, looking at, the first INDSCAL 
dimension suggests that this is in fact consistent with that solution--"guard 
and prisoner" is at almost exactly the same position on this dimension as 
is "parent and teenager". (In fact, "parent and teenager" and "guard and 
prisoner" are almost identically positioned on three of four of the INDSCAL 
dimensions, the exception being Dimension 3 "personal and informal" versus 
"impersonal and formal", on which they differ radically, being at opposite 
extremes. Perhaps this is telling us something important about intergenera- 
tional relationships !) 
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Within the cooperative or less competitive branch, we see a further 
division between the more-or-less symmetric or equal relations (e.g., "close 
friends," "husband and wife," "teammates") and the non-symmetric or 
unequal ones (e.g., "professor and graduate student", "nurse and invalid" 
and "interviewer and job applicant"). There is no comparable division among 
the highly competitive relations, but this is not surprising. An inspection 
of the particular relations that are high in the competitive dimension re- 
veals that they are all more or less equal or symmetric, as evidenced by the 
fact that they are grouped very close together on Dimension 2. Perhaps 
this is a matter of stimulus selection, or perhaps highly competitive relations 
are by nature symmetric or equal. To put it differently, unequals cannot 
compete, for the ascendancy of the dominant one of the pair makes competi- 
tion impossible. (Perhaps this also partly explains the seemingly anomalous 
position of "guard and prisoner".) Perhaps a better way to characterize 
this first tree is to say that it exhibits three main branches, corresponding to 
"equal and cooperative", "equal and competitive", and "unequal". 

The tree structure also includes some things that are not so obviously 
present in the dimensional representation. The existence of nodes specific 
to the relations, "teacher and young pupil" and "professor and graduate 
student" for example, or to the two relations "business rivals" and "political 
opponents" (just to pick two of a number that could be mentioned) suggest 



45~ PSYCHO.~IETRIKA 

attributes unique to these relations which would be very  difficult to capture 
in a small dimensional spatial model, but  are easily incorporated into a tree 
structure representation. 

In an analogous way, the second tree, shown in Fig. 6, captures much 
of the structure in Dimensions 3 and 4. In this case the main branch seems 
to be correlated with Dimension 3. The left branch contains the personal 
and informal relations, while the right branch contains those tha t  are more 
impersonal and formal. Each of these then can be seen to split into intense 
vs. superficial. Of the personal and informal relations, "h u sb a n d  and wife" 
and "fiance and fiancee" are examples of intense relations, while "casual 
acquaintances" and "second cousins" are more superficial ones. Of the imper- 
sonal and formal relations, "guard and prisoner" and "political opponents"  
are examples of intense relations, while "interviewer and job applicant" 
and "salesman and regular customer" are more superficial. Again, there is a 
structure in the tree that  is hard to represent spatially, and, of course, there 
are ways in which the tree is inconsistent with the configuration in that  plane. 
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FIGURE 6 
Second tree structure from Wish et al. interpersonal relations dat~ (averaged over 

subjects). 
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Another way to see the relation between these two trees and the two planes 
of the I N D S C A L  space is to t ry  to "map  ou t"  the contours for clusters defined 
by each of the two trees on the plane we have identified as corresponding 
to tha t  tree. Figs. 7 and 8 show tha t  we can do this reasonably well, al though 
not as well as we might  like. But  if these contour maps are not satisfying, 
consider trying to map contours from Tree 2 on the 1-2 plane and from 
Tree 1 on the 3-4 plane. I tried this, as an exercise, and quickly discovered 
it  to be all exercise in complete futility ! As a result of these and other analyses, 
I have formulated a crude conjecture: roughly speaking, a single tree is 
worth two dimensions. This means, informally, tha t  a tree contains about  
the same amount  of information, generally speaking, as a two-dimensional 
space or plane. Obviously there are exceptions to this. For example, a linear 
ordering is a special case of a tree, but  corresponds to a perfectly one-dimen- 
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sional structure. Also, as I have suggested, a tree can capture information 
that  would require very many more dimensions in a spatial representation, 
although each such dimension or attribute may serve only to distinguish one 
or two stimuli from the others. Probably the right way to put it is that  a 
general tree contains about the same amount of information as a two-dimen- 
sional structure, but  it will generally be somewhat different information. 

One bit of evidence in favor of my conjecture is tha t  a general tree with 
path length metric (or a "free tree") has about the same number of inde- 
pendent parameters (branch lengths) as does a two-dimensional spatial 
configuration. The number is about 2(n - 1) in each case. (One could argue 
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that  this figure should be 2n - 3 for the Euclidean case, but  then it would 
be 2(n - 1) = 2n - 2 for a non-Euclidean two space.) Of course, this assumes 
a fixed tree, whereas in the case of fitting tree structures the topology of the 
tree is optimized as well as the set of parameter  values. 

Another reason for my conjecture is the frequency with which it is 
possible to map cluster contours from a hierarchical clustering onto two- 
dimensional MDS configurations, even when there is clear evidence tha t  more 
than two dimensions are necessary to account for the data. This fact  would 
be explained if we simply assume that  a single hierarchical tree extracted 
by clustering methods is in fact accounting for about the same information 
in the data. as a two-dimensional MDS solution. 

Holman [19721 has presented a theoretical objection to my conjecture 
by showing that  distances from a general ultrametric tree on n objects cannot  
be accounted for perfectly by a Euclidean space of less than n - 1 dimensions. 
However, it seems to me tha t  this theorem of Holman 's  is really saying 
something comparable to the fact tha t  distances derived, say, from an r- 
dimensional city block space (or a space with any non-Euclidean metric) 
cannot be perfectly accounted for in an r-dimensional Euclidean space (nor, 
indeed, in any Euclidean space, no mat te r  how large the dimensionality). 
While this is true, the Euclidean approximation may account for very nearly 
all the variance in the distances, and extract practically the same informa- 
tion as is contained in the city block configuration, although with some 
slight distortions. Of course, the real situation is probably one in which 
neither model is perfectly accurate, but  each is accounting for about  the 
same amount of structure, although each will favor certain kinds of structure 
over others. I am increasingly inclined to think of tree structures and spatial 
structures not so much as competing models as complementary ones, each 
of which captures certain aspects of a reality which is probably in fact much 
more complex than either model alone. For many  purposes, of course, it 
may be justifiable to deliberately simplify reality in order to gain greater  
insight into major features of the data. This notion would probably appeal 
more, of course, to psychometricians. Mathemat ica l  psychologists may  be 
more inclined to think in terms of critical experiments for distinguishing 
between discrete and continuous structure underlying judgmental  behavior. 
Such experimental criteria would be extremely valuable, if available, to 
psychometricians as well. 

Single and Multiple Tree Structures with Path Length Metric 

Without  going into detail, we may  note tha t  a very simple device allows 
us, in effect, to assume a model entailing single or multiple tree structures 
with path length metric (i.e., "free trees")  rather  than single or multiple 
ultrametric trees. This amounts to adding to the multiple ultrametric tree 
structure model an additional component  which can be described as a sym- 
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metric matrix whose off diagonal entries are perfectly additively decom- 
posable. That  is, a matrix 

where 

(s) 

and 

c '  - l l c , , l l ,  

c,i  = ci~ = a,  + a~ , fora l l  i r e  j,  

c ,  = O, for all i. 

Details of this are given in Carroll & Pruzansky [Note 1] where it is shown 
that  a distance matrix from a path length tree can always be decomposed 
into the sum of a distance matrix from an ultrametric tree plus a matrix C 
of the form defined above. (This result was based in part  on an unpublished 
theorem due to S. J. Farris.) One practical consequence of this is that  it may be 
difficult to distinguish between ultrametrie trees and path length or free trees, 
particularly when one realizes that  the C matrix mentioned above is itself 
the distance matrix resulting from a "free t ree"  of a very special type, namely 
one that  has exactly one interior node, with all terminal nodes (corresponding 
to stimulus objects) having branches to that  single node. A tree of this kind 
is illustrated in Fig. 2, which was referred to earlier as a "star" ,  except tha t  
in this case the branch lengths are not necessarily all equal. In fact, some of 
the branch lengths may be negative, so that  this additive part  may not 
correspond at all to a "real"  tree with positive branch lengths. However, 
since there is more than one way to decompose a path length tree into an 
ultrametric tree plus an additively decomposable part  (there are, in fact, 
as many ways as the tree has nodes), it may be that  one way will correspond 
to an additive part  that  is all positive. Sat ta th  and Tversky [Note 5] discuss 
conditions for this to be the case. There is a quite plausible error theory 
that  would give rise to a matrix C of this additively decomposable form, and 
thus have the effect of making the two resulting statistical models--one based 
on ultrametric trees and the other on free trees--completely indistinguishable. 

H y b r i d  Models  

Degerman [1970] proposed the first formal hybrid model combining 
elements of continuous dimensional structure and of discrete class-like struc- 
ture. Degerman described a scheme for rotating a high dimensional MDS 
solution to find subspaces in which there was class-like rather  than continuous 
variation. Since then, much has been said about such mixed or hybrid models. 
but  little has been done about them. 

One possible hybrid model can be formulated by further generalizing 
the multiple tree structure model we have proposed to include a continuous 
spatial component in addition to the tree structure components. To go back 
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to our animal name example, we might postulate, in addition to the two 
hierarchical ,structures already mentioned, continuous dimensions of the 
kind best captured in spatial models. Obvious examples in the ease of animals 
would be such dimensions as size, ferocity, color (which itself is multidimen- 
sional) and so on. 

The multiple tree structure model has been generalized in precisely 
this direction. The model, formally, can be expressed as 

(9) 2x ~ D1 + D2 + . . .  + D,,, + DE),  

where D, through D,. are distance matrices arising from tree structures 
(either ultrametrie trees of free trees) and DEr 2 is a matrix of squared dis- 
tances arising from an r-dimensional Euclidean space. (The reason for adding 
squared rather than first power Euclidean distances is a technical one having 
to do largely with mathematical tractability, and it will not be dealt with 
here.) In effect, to estimate this additional continuous eomponent we simply 
add an extra phase to our alternating least squares algorithm that derives 
conditional least squares estimates of these components. Again, technical 
details are in the Carroll and Pruzansky [Note 1] paper. 

An illustration comes from a study by Rosenberg and Kim [1975], who 
obtained data based on subjective sortings of kinship terms. Rosenberg and 
Kim were quite perplexed by the fact that standard hierarchical clustering, 
when applied to these data, resulted in a structure that made a great deal 
of sense but failed to be sensitive to a very critical dimension they knew was 
in the data, namely sex. While a majority of subjects in effect ignored sex 
in making their sortings (for example, always sorting "mother" and "father" 
t()gether, and "son" and "daughter" together), a minority of the subjects 
clearly used that dimension as the basis for sorting, which could be seen from 
simple inspection of the raw data. Somehow the structure used by the majority 
of the subjects completely dominated and masked that used by this minority. 
MDS analysis had also shown clearly the presence of the sex dimension. We 
first, thought a two-tree structure model would be appropriate, and indeed 
it did capture the essential features of the data quite nicety. The first tree, 
shown in Fig. 9, corresponds very well to a standard anthropological model-- 
the Romney-D'Andrade model [Romney & D'Andrade, 1964J--for kinship 
terms. The major branch distinguishes between the "direct" relatives-- 
lineats (who are in the same line of descent) and siblings--and the "collaterals" 
-- the eolineals (e.g., uncle, aunt, nephew, niece) and ablineals (cousins). 
Within each branch there is a further breakdown based on what might be 
called "absolute generation" (i.e., generational distance from "ego", or 
oneself). Within the "directs", for example, we have a node representing 
siblings who are of the same generation as ego; then a node representing 
children (daughter, son) or parents (father, mother), i.e., lineals one generation 
removed from ego; and then a node representing those lineals two generations 
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FIGURE 9 
First tree from a "two tree" solutiotl for Rosenberg and Kim kinship data (amal- 

gamated over subjects). 

removed from ego (grandchildren and grandparents). The collateral branch 
splits into those one generation above ego (aunt, uncle) those one generation 
below ego (nephew, niece) with the term at  the same generational level 
(cousin) in some sense "between"  those two nodes. Sex is nowhere in evidence 
as a basis for this tree. The analogous kinterms of opposite sex are always 
together at  the same node. 

The second tree, seen in Fig. 10, has its main division based on sex--all  
the male terms at one node and all the female at another, with cousin, the 
only genderless term, in the middle. The structure within each of these 
branches seems to have something to do with generation, but  it is difficult 
to decipher. 

We then decided to t ry  our hybrid model, thinking that  perhaps a single 
tree structure plus one dimension (presumably "sex") would provide a more 
parsimonious account of these data. As it  happens, however, the data  sug- 
gested two dimensions, in addition to the tree. The second dimension, while 
accounting for only a very small proportion of variance, did appear to be 
very regular, and also appears to be relatively interpretable. The single 
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FIGURE ]0 
Second tree from a "two tree" so|ution for Rosenberg and Kim kinship dat~ (,~mal- 

garnered over subjects). 

tree, in this case, was essentially identical to the first tree of our two-tree 
solution, and so will not be discussed. The two-dimensional spatial component 
is shown in the next figure. Clearly the first dimension is sex-- the  male terms 
on the left, female terms on the right, and the genderless cousin in the middle. 
The second dimension appears in this case to be a kind of "folded" generation 
dimension, but  different from the absolute generation dimension (which 
amounts to folding the generation dimension around ego--or  the same genera- 
tion as itself). This dimension appears to be the generation dimension folded 
somewhere between one generation earlier (e.g., father) and two generations 
earlier (e.g., grandfather).  While this would far from perfectly account for 
this second dimension, it does give a reasonably good account of it. Wish 
has suggested "dominance" as a reasonable interpretation of this dimension. 
Presumably, in western cultures at least, parents tend to be more dominant 
than grandparents, for example. Pruzansky and Kaplan suggested "depend- 
ence" as possibly a bet ter  name, since grandparents are certainly more likely 
to be dependent, economically and otherwise, than are parents, although 
they may not be any less dominant. Skeptics, of course, may suggest tha t  



460 PSYCHOMETRIKA 

DIM. Z 

GRANDSON 
'SON 

BROTHER 

NEPHEW 
COUSII~ 

GRANDFATHER 

FATHER 

UNCLE 

GRANDAUGHTER 

DAUGHTER • 

NI ECE 

, SISTER 

DIM. 1 

GRANDMOTHER 

MOTHER 
I 

AUNT 

FIGURE I I 
Two dimensional Euclideau spatial  component from an analysis of Rosenberg-Kim 

kinship da ta  in terms of a hybr id  model assuming a simgle tree s t ructure  plus two dimen- 
sions. Tree s t ructure  component  was essentially identical with first tree from "two t ree"  
solution, shown ia Figure 9. 

this merely proves how adept psychologists can be at interpreting almost 
anything! In contrast with these "psychological" interpretations, Romney 
is firmly convinced that this dimension is what he and D'Andrade (who are 
both anthropologists) called "reciprocity", with the "juniors" above, the 
"seniors" below, and those at ego's generation level in the middle. Thus 
the dimension has at least four interpretations! Seriously, these are four 
different ways of describing the same thing--from four somewhat different 
perspectives (that might be called formal analytical, social psychological, 
sociological-economic, and formal linguistic-anthropological.) The four 
interpretations are not necessarily in conflict; rather, they should probably 
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be viewed as complementary. To put it differently, one may plausibly and 
without logical contradiction assert that  all four are correct t* 

Our work on hybrid models is just getting underway, but the initial 
results justify continued effort. 

Other Models for the Future 

The kind of "hybrid"  model discussed above treats the discrete com- 
ponents and their continuous spatial components as completely independent. 
The dimensions cut across all subgroups or clusters defined by different 
nodes of the tree or trees. Another kind of hybrid model would assume that  
these are not at  all independent, but  rather that  some dimensions are relevant 
only to objects within a particular group or class and not to objects in other 
classes. A typical example would be the dimension of size, which may be 
relevant to such classes of objects as animals, furniture and buildings, but  
not to entities such as ideas or emotions. Similarly, the color of an electron 
or the weight of an argument are undefined (except in some vague meta- 
phoric way). Arable and I are now jointly working on a generalization of 
the ADCLUS procedure (using a different algorithm based on mathematical 
programming and alternating least squares approaches) that  will allow for such 
a definition of dimensions that  are relevant only to objects in the same class or 
group. Of course, one might also include in such a hybrid model some dimen- 
sions that "cut across" all classes. The exciting prospect is that  current 
development of both computer hardware and numerical optimization software 
enable us to implement programs that  permit fitting such highly complex 
models. The only limiting factor, ultimately, may be our own imaginations. 

Another direction of future exploration which seems potentially fruitful 

*As a final note on interpretation of this somewhat anomalous second dimension, I 
followed a suggestion of Rosenberg's to "look at the data", which he then kindly provided 
me. I looked, and found, indeed, that there were three subjects (out of 85) whose sortings 
were perfectly accounted for by this dimension, in the sense that one could divide that 
dimension into contiguous segments, with each segment corresponding to a grouping of 
the kinship terms formed by that subject. For example, one subject simply sorted the 
terms into only two groups--one containing "granddaughter," "grandson,' "daughter, 
"son" and "niece" (??), and the other containing all the other terms. Splitting Dimension 
2 between "niece" and "nephew" would give precisely this partition of the terms (this 
in fact may account for "niece" and "nephew" having slightly different positions on that 
dimension). The second subject partitioned the terms into three groups, and the third 
into five which could be defined by splitting Dimension 2 into three or five segments re- 
spectively. Thus there is no question that this dimension is systematically related to the 
data of these three subjects, although it may still not be obvious exactly what it "means". 
(All three of these sortings could )ust as well be accounted for by an unfolded generation 
dimension, incidentally, but with "niece" and "nephew" in slightly different positions to 
account for the first subject mentioned above. This fits well with the "reciprocity" notion, 
except that "reciprocity" would be binary, or possibly ternary, rather than continuous. 
The fact that this particular "folding" of the generation dimension in fact emerged pre- 
sumbly may have to do with small but systematic trends in the data of other subjects; 
for example, a slight tendency to sort grandparents somewhat more frequently than parents 
with younger generation terms, which fits with the "dominance" or "dependence" hypo- 
thesis. ) 
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is the inclusion of individual differences in some of the nonspatial and hybrid 
models I have discussed here. Arabic and I are planning to extend ADCLUS 
to individual differences, with individual subject weights for the discrete 
attributes providing, in many ways, a discrete analogue to the INDSCAL 
model. In the ease of tree structures and multiple tree structures, the obvious 
generalization to individual differences would involve assuming that  dif- 
ferent individuals base their judgments on the same family of trees, but 
with different sets of parameters (node "heights" and/or  branch lengths) 
for different individuals. In the hybrid ease, individual subject weights, 
/t ta INDSCAL, can also be introduced. Pruzansky and I already have form- 
ulated algorithm for such extensions. 

But  we must walk before we run. There are still many unsolved numerical 
problems in tile two-way (non-individual differences ease). It, would seem 
that  these must be solved before we extend these tree structure and hybrid 
models to the three-way ease. 

In summary, my perception--or  apperception--of  the future of multi- 
dimensional scaling sees it extending to include many new and different 
models of all shapes and kinds; spatial, non-spatial and hybrid, in two-way, 
three-way and perhaps even multi-way versions. I think sophisticated use 
of the full power of the high speed digital computer will eventually free us 
almost totally from having to restrict ourselves to models tha t  are mathe- 
matically simple and tractable, and allow us to pursue instead those models 
tha t  most effectively mimic what is going on inside the head. Since what 
is going on inside the head is likely to be complex, and is equally likely to 
have both discrete and continuous aspects, I believe the models we pursue 
must also be complex, and have both discrete and continuous components. 
We have begun moving in that direction, but  there's still a long way to go. 

REFERENCE NOTES 

1. Carroll, J. D., and Pruzansky, S. Fitting of hierarchical tree structure (HTS) models, 
mixtures of HTS models, and hybrid models, via mathematicM programming and 
alternating least squares. Presented at the U.S.-Japan Seminar on Theory, Methods, 
and Applications of Multidimensional Scaling and related techniques, San Diego, 
Aug. 1975. Paper in informally published Proceedings of U. S.-Japan Seminar, available 
on request. 

2. Cunningham, J. P. On finding an optimal tree reMization of a proximity matrix. Paper 
presented at the Mathematical Psychology meeting, Ann Arbor, Michigan, August 29, 
1974. 

3. ttarshman, R. A. PARAFAC2: Mathematical and technical notes (Working Papers 
in Phonetics No. 22). Los Angeles: University of California, March, 1972. 

4. Kruskal, Joseph B. Some advances in parametric mapping. Psychometric Society Presi- 
dentiM Address, presented at ioint meeting of Psychometric Society and Classification 
Society~ Iowa City, Iowa, April, 1975. 

5. Sattath, S. and Tversky, A. Ad~titive similarity trees. Unpublished manuscript, Hebrew 
University, 1976. 

6. Shepard, R. N. and Arable, P. Additive cluster analysis of similarity data. Paper 



J. DOUGLAS CARROLL 463 

presented at the U.S.-Japan Seminar on Theory, Methods, and Applications of 
Multidimensional Scaling and Related Techniques, San Diego, 1975. Paper in infor- 
mally published Proceedings of U.S.-Japan Seminar. 

7. Tversky, A. Features of similarity. Unpublished manuscript, Hebrew University, 
Jerusalem, Israel, 1976. 

REFERENCES 

Buneman, P. The recovery of trees from measures of dissimilarity. In F. R. Hodson' 
D. G. Kendall and P. Tautu (Eds.), Mathematics in the archaeological and histroica l 
sciences. Edinburgh: Edinburgh University Press, 1971, 387-395. 

Carroll, J. D., and Chang, J. J. Analysis of individual differences in multidimensional scaling 
via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 
35, 283-319. 

Carroll, J. D. and Chang, J. J. A method for fitting a cla~s of hierarchical tree structure 
models to dissimilarities data and its application to some "body parts" data of Miller's. 
Proceedings of the 81st Annual Convention of the American Psychological Association, 
1973, 8, 1097-1098. 

1)egerman, R. Multidimensional analysis of complex structure: Mixtures of class and 
quantitative variation. Psychometrika, 1970~ 35, 475-491. 

de Leeuw, J., Young, F. W. and Takane, Y. Additive structure in qualitative data: An 
alternating least squares method with optimal scaliug features. Psychometrika, 1976, 
000-4)00. 

1)obson, J. Unrooted trees for numerical taxonomy. Journal of Applied Probability, 1974, 
11~ 32-42. 

Hartigan, J. A. Representation of similarity matrices by trees. Journal of the American 
Statistical Association, 1967, 62, 1140-1t58. 

Holman, E. W. The relation between hierarchical and Euclidean models for psychological 
distances. Psychometrika, 1972, 37, 417-423. 

Horan, C. B. Multidimensional scaling: Combining observations when individuals have 
different perceptual structures. Psychametrika, 1960, 3~, 139-165. 

Johnson, S. C. Hierarchical clustering schemes. Psychometrika, 1967, 32, 241-254. 
Millet', G. A. A psychological method to investigate verbal concepts. Journal of Mathe- 

matical Psychology, 1969, 6, 169-t91. 
Patrinos, A. N. and Hakimi, S. L. The distance matrix of a graph and its tree realization. 

Quarterly of Applied Mathematics, 1972, 30, 255-269. 
Romaey, A. K. and D'Andrade, R. G. Cognitive aspects of English kin terms. American 

Anthropologist, 1964, 66, No. 3, part 2 (special publication), 146-170. 
Rosenberg, S. and Kim, M. P. The method of sorting as a data-gathering procedure in 

multivariate research. Multivariate Behavioral Research, 1975, 10, 489-502. 
Shepard, R. N. Representation of structure in similarity data: Problems and prospects. 

Psychometrika, 1974, 39, 373-421. 
Torgerson, W. S. Multidimensional scaling of similarity. Psychomctrika, 1965, 30, 379-393. 
Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis. 

Psychometrika, 1972, 37, 3-27. 
Wish, M., Kaplan, S. J. and Deutsch, M. Dimensions of interpersonal l~elations: Prelim- 

inary results. Proceedings q¢ the 81st Annual Convention of the American Psychological 
Association, 1973, 8, 179-180. 

Wish, M. Comparisons among multidimensional structures of interpersonal relations. 
Multivariate Behavioral Research, in press. 

Wold, H. Estimation of principal components and related models by iterative least squares. 
In P. R. Krishnaiah tEd.), Multivariate Analysis. New York: Academic Press, 1966. 


