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The partial credit model, developed by Masters (1982), is a unidimensional latent trait 
model for responses scored in two or more ordered categories. In the present paper some 
extensions of the model are presented. First, a marginal maximum likelihood estimation pro- 
cedure is developed which allows for incomplete data and linear restrictions on both the item 
and the population parameters. Secondly, two statistical tests for evaluating model fit are 
presented: the former test has power against violation of the assumption about the ability 
distribution, the latter test offers the possibility of identifying specific items that do not fit the 
model. 
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1. Introduction 

The partial credit model is developed for a test situation in which the respondent  
has the opportunity to complete an item at different performance levels. The respon- 
dent receives a credit equal to the level of  performance at which the item was com- 
pleted. If  only two categories are present,  for instance " r igh t"  and " w r o n g " ,  the model 
is equivalent with the Rasch model for dichotomous items. Desirable properties of  the 
dichotomous model, such as separation of  person and item parameters and the exist- 
ence of  sufficient statistics for both sets of parameters,  are preserved in the partial 
credit model. For  a detailed derivation of the model, one is referred to Masters (1982); 
only essentials will be given here. 

Consider the response of  a person, indexed n, to an item, indexed i, which has 
m i + 1 response categories which will be indexed j  = 0, I . . . . .  m i. Person n produces 
a mi-dimensional response vector  Xni with elements 

1 if person n scores in category j on item i, 
xno = if this is not the case, 

f o r j  = 1 . . . .  , m i. So if the respondent  scores in ca t egory j  = 0, Xni -- 0. In the partial 
credit model it is assumed that the probability of  a person scoring in category j rather  
than scoring in category j - 1 is a logistic function of  a person parameter  0 n and a 
parameter  60 associated with category j of  the item i. Thus i f j  > 0 

exp (On - ~ij) 
Pr (Xnij = l lXnij  = 1 or Xni j -  1 = 1, On, fi~/) = 1 + exp (agn -- ~/)" (1) 

The probability of  a person with parameter  On scoring in ca tegory j ,  j = 1 . . . . .  m i ,  on 
an item with parameter  8 i, 8~ = (~i l  . . . . .  ~0" . . . .  , ~im,),  is given by 
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i ] /~(On) d= Pr (xm7 = lion, B~) = 

and it can be shown that 

exp 

1 + ~ exp ( O n -  6ih) 
k = l  h = l  

(2) 

1~  (xni = OlOn, 8i) = ( ) mi k 

1+ Z exp Z ( O . - - 6 i h )  
k = l  h~- I  

(3) 

Although the properties of the model are desirable. Molenaar (1983) has pointed 
out that interpretation of the parameters should be made carefully. From (1) it follows 
that the model is linear in the log of the odds of scoring in category j and scoring in 
category j - 1: 

_- 
I n  k Pr (Xn~i- I = l ion ,  8i)J On -- 60". (4) 

SO 6ij cannot be interpreted as the difficulty parameter of category j alone, since the 
probability of completing the item in category j - I must also be taken into account. 
However, the advantages of having a model with parameter separation will, in most 
instances, prevail over the complicated interpretation of the parameters. 

In the sequel it will prove convenient to introduce a reparametrization of the 
model. Consider the reparametrization 770' = X~=16ih. Then (2) can be rewritten as 

exp (j'On - "OU) 
~Oo{On) = Pr (xno = lion, ~li) = , (5) 

mi 

1 + ~ exp (kOn - rjik) 
k = l  

w i t h  ~1~ = (7 / i l  . . . . .  "rlij . . . . .  1"lira,) a n d  

exp (q~(Xni)On - x;,i'tli) 
Pr (xnilOn, ~i) = 

mi 

1 + ~ exp (kOn - rlik) 
k = l  

(6) 

with 9(Xni) = j i fxnij  = I for somej,  j = 1 . . . . .  mi,  and 9(Xni) = 0 i f x n i  = 0. 
Andersen (1977) has derived a general formulation for the class of latent trait 

models for polytomous items that allows for separate sets of minimal sufficient statistics 
for item and person parameters. From the inspection of (6) the reader may verify that 
the partial credit model is a special case of the general model presented by Andersen. 
The results in the present paper are more easily presented in the parametrization 
defined by (5) and (6). The translation of the results into the original parametrization 
proposed by Masters (1982) will be treated in the section on estimating linear functions 
of the parameters. 
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2. Estimation 

The objective of  the present  paper is to develop an estimation and testing proce- 
dure for the partial credit model in a situation where the data matrix is incomplete. This 
incompleteness may be either accidental or intended by the test administrator. In the 
latter case it may be more precise to speak of  an incomplete design. One may think of  
the calibration of  a test battery or an item bank where it is impractical to confront  all 
testees with all items. 

For  the estimation of  the parameters in a complete design, i.e. a design where all 
persons take all items, two methods have been proposed: a so-called conditional (CML) 
and a so-called unconditional maximum likelihood (UML) estimation method. The 
UML estimation method (Masters, I982; Wright & Masters, 1982) maximizes the like- 
lihood of  the data over  item and person parameters simultaneously. This estimation 
procedure has the drawback that the person parameters act as so-called incidental 
parameters,  which cause the estimates to be inconsistent (Andersen, 1973), and, as a 
consequence,  asymptotic  confidence intervals and the asymptotic distribution of  like- 
lihood ratio tests are hard to derive. In the case of  a complete design, the bias in the 
estimation of  the item parameters seems to be removed if they are multiplied by (I - 
1)/I,  where I is the number of  items in the test (Wright & Masters). In an incomplete 
design however,  an equivalent correction is not readily defined, because different 
groups of  persons respond to different numbers of  items. Because of  the untractable 
bias of the estimators the author refrains from generalizing the U ML method to the 
situation of  incomplete data. 

Masters (1982) has shown that conditioning on sufficient statistics for the person 
parameters results in a likelihood function that only depends on the item parameters.  
This makes it possible to compute CML estimates of  the item parameters (see, for  
instance, Masters,  1985), which are known to be consistent (Andersen, 1973). A CML 
estimation procedure for the dichotomous Rasch model with incomplete data has been 
described by Fischer (1981) and this procedure could well be extended to the partial 
credit model with incomplete data. The present paper, however,  does not pursue this 
approach, but deals with the problem of  obtaining consistent estimates by using mar- 
ginal maximum likelihood estimation methods (MML), as already developed for other  
latent trait models (Bock & Aitkin, 1981; Rigdon & Tsutakawa, 1983; Thissen, 1982). 

To describe the estimation procedure,  the following definitions are needed. Con- 
sider T tests indexed t = 1 . . . . .  T and I items indexed i = 1 . . . . .  I. The composition 
of  a test t is defined by a design vector  d '  t = (d t l  . . . . .  dti  . . . . .  d a ) ,  where dti  = 1 if 
item i figures in test t and dti = 0 if this is not the case. It will be assumed that every  
item figures at least in one test, so for i = 1 . . . . .  I ,  dt i  = 1 for some t = 1 . . . . .  T. 

For  the time being it will also be assumed that the tests are linked via common 
items. This means that for every  two tests indexed t and t ' ,  there exists a sequence of  
indices Zl, z 2 . . . . .  z h such that d~dzl > 0, d~dz2 > 0 . . . . .  d~hd ~, > 0. In the sequel 
it will be shown that in some instances this restriction may be dropped. Le t  {n}t  be the 
index set of  the persons taking test t and let 0 t be a Nt-dimensional vector  of the 
parameters On with n E {n}t. So test t is given to N t persons. Every  person produces 

f ? ! P a response vector  x n = (xnl . . . . . . .  Xni, . , Xnl) .  If d t i  = 1, Xni is the response vector  
for item i as defined in section 1, and i f d t i  = 0, Xni = (c, c, . . . , c), with c an arbitrary 
constant. 

The data matrix X t produced by the respondents given test t has rows x '  n,  n E {n} t .  
Finally the full data matrix is defined by X' = [X~ . . . . .  X~ . . . . .  X~r] and the test 
administration design is represented by the matrix D -- [d! . . . . .  dt . . . . .  dT]. Let  r n 

be the sum score of  a person n taking test t, so r n = Y'i d t i ~ ( X n i )  • 
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The probability o f X  t a s  a function of the item parameters rt' = (~q~,. • • , ~1~ . . . .  , 
I1~) and the person parameters Ot is given by 

Pr (gtldt, "q, Or) = H Pr (xnldt, ~1, On) 
n ~ {n}, 

with 

Pt0(On) = 1 + exp ( k O n -  rtik) (8) 
k = l  

In the marginal approach it is assumed that the items are a fixed factor and that the 
parameters of the persons taking test t are randomly sampled from a normal distribution 
with expectat ion/z t and variance cr 2. Let  g(OnltZ t, o't) be the density function of the 
ability parameter of a person taking test t. Then the log of the likelihood of (X, O), with 
O' -- (O] . . . . .  O~ . . . . .  O~-) can be written as 

In L(klX, D, O) = ~ In Lt(~lXt, dt, Or) 
t 

= ~'~ ~] {ln Pr (xnldt, ~1, O.) + In g(Onlt~t, or/)} (9) 
t n E {n}t 

with k'  = 01', /xl . . . . .  tXT, or 1 . . . . .  crT). Notice that Zt (k lg t ,  dt, Ot) does not 
depend on all parameters in k and Pr ( x t l d  t ,  ~q, 0 n) does not depend on all parameters 
in "q, but this notation will prove convenient in the sequel. Because O cannot be 
observed, the joint likelihood of X and O will be integrated over the range of O to obtain 
the so-called marginal likelihood 

L(m)(x~X,D)=f...fL(XlX, D,O)O0. (10) 

It is possible to maximize (10) directly by a Newton-Raphson procedure, but this leads 
to rather laborious computations. Therefore an "incomplete da ta"  approach (Mislevy, 
1984), where O is considered the incomplete data, is chosen and a version of the EM 
algorithm (Dempster, Laird & Rubin, 1977) can be used. Let  2~* be some estimate of / t .  
This estimate can be improved by maximizing 

~] E(In Lt(2klXt, dr ,  Ot)iXt, d / ,  k * )  (11)  

t 

with respect to ~. Setting/~* equal to this estimate, this can be repeated until some 
convergence criterium is met. Applying the result of Dempster et al. to this particular 
problem, it can be shown that this procedure converges to the maximum of (10). Rigdon 
and Tsutakawa (1983) have worked out in detail the method for the dichotomous Rasch 
model. Since the procedure described here can be viewed as an extension of the one for 
the dichotomous model, only the major features of the method are given here. The 
quantity (11) can be written as 
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with 

~ ~, (f lner(x.~d,,~,O)f(,9.~x.,d,,X*)O0. 
t hE{n}, 

+ f ln d,, X*)O0.) (12) 

Pr (xnldt, lq*, On)g(Onllx*, crt~ 
f(OnlXn, tit, ~,*) (13) 

f Pr (xnldt, "q*, O.)g(O.IIz*, o't*)O0. 

Applying (7) and (8) to (13) results in 

exp (rnOn)Pto(On)g(Onll~t, crt) 
f(O.Ix. ,  d,, X*) = (14) 

f exp (rnOn)Pto(On)g(Onltxt, err)dOn 

Since the right hand side of (I 4) only depends upon response pattern Xn via the total 
number of correct responses rn, the posterior densityf(On Ix n, d t, )~.*) is equivalent with 
the density of 0 given a sum score r, which will be denoted byf(Olr ,  d t, )k*). Let  rttr be 
the number of respondents achieving a sum score r, r = 0 . . . . .  J(t) with J(t) the 
maximum score that can be obtained on  test t. Further s U is defined as the number of 
persons responding to item i in category j ,  f o r j  = 1 . . . . .  mi, that is, s o = ~ t  dtiY'n~_{n}, 
Xnij. 

Taking first order derivatives of (12) with respect to ~ and setting these equal to 
zero results in the estimation equations 

su= ~t dti~/ntr f ~Oij(O)f(Otr, dt, k*)OO, i = 1 . . . . .  I a n d j  = 1 . . . . .  mi, (15) 

l z t  = ntr ~ f ( O l r ,  dr, It*)O0, t = I . . . . .  T, (16) 

J tr 2 = ntr 02f(dlr,  dt, X*)aO - / x t  2, t = 1 . . . . .  T. (17) 

It must be noted that the model with a parametrization where k is completely free, is 
not identified. Some restriction must be imposed like/~t = 0 for some t o r  ~i , j 'Oi j  = O. 
For the existence of  a finite solution to the estimation equations, it is also necessary that 
s/j ¢ 0 and sij ~ gt dtiNt • This can be verified by noticing that 0 < f~b(i(O)f(OIr, d t, 
k*)00 < I. 

Evaluation of  (14), (15), (16) and (17) can be done by using Gauss-Hermite quadra- 
ture. One can take advantage of the fact that the weight functions in the integrals, that 
is, the part of  the integrand absorbed in the weights of the linear functional used for the 
approximation, are identical. This is in fact the essence of the computational short cut 
proposed by Thissen (1982) for the dichotomous model. 
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3. Asymptotic Confidence Intervals 

In order to obtain an estimate of standard errors, the observed information matrix 
(see Efron & Hinkley, 1978) which is given by 

a 2 In L(m)(XlX, D) 
z(x, x) = (18) 

must be computed. Louis (1982) has derived a procedure for extracting the observed 
information matrix when the EM algorithm is used. 

This procedure will be applied to the present problem. Let b(m)(k) -- a In L(m)(klX, 
D)IOX, b(k) = d In L(klX, D, O)/Ok and 

8(x, x)= 
02 In L(klX, D, O) 

OkOk' 

Louis (I982) has shown that 

I(k, k) = -E(B(k, k)IX, D, k) - E(b(k)b(k)'IX, D, k) + b(m)(k)b(m)(k) ' (19) 

If ~ is the maximum likelihood estimate of k then b(m)(k) = 0. A detailed derivation of 
the information matrix is given in appendix A. Since the model is not identified without 
some restriction on k in the sequel it will be assumed that the model is identified by 
putting one of the item parameters or one mean of an ability distribution equal to zero. 
The relation between the resulting parametrization, which will be denoted by ~, and the 
original parametrization k can be written as the linear transformation k = F~ and so the 
observed information matrix for the model parameterized by ~ is given by 

_[ aX]'[a 2 In L(")(XIX, D)ir o~ 1 
La '] L axax' 

(20) 

and the asymptotic covariance matrix of the maximum likelihood estimate of ~ is given 
by (F'I(~. ~.)F)-I. 

4. Estimating Linear Functions of the Parameters 

In many instances, the interest is not so much in the partial credit model as such, 
but in some more restricted case of the model. Masters and Wright (1984) have iden- 
tified several models that can be derived from the partial credit model, by imposing 
linear restrictions on the item parameters. 

It can also be useful to impose restrictions on the population parameters, In an 
incomplete design one may, for instance, formulate the hypothesis that all subgroups 
are a random sample from the same normal distribution by imposing the restrictions 
/z t = /x and or t = O', for t = 1 . . . . .  T. In this case it is no longer necessary that the 
test administration design is linked, for the common distribution now serves as a link 
between the different sets of item parameters. 

In many instances it may also be useful to reparameterize the version of the model 
as defined by (6) to the original version as it was presented by Masters (1982). The 
reparameterization r/~/ = X~=l 8ih, j = 1 . . . . .  mi, introduced in the introduction of 
this paper can be written, for example, for m i = 4 as 
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and so 

[i°°] 
"qi = 1 1 8i, 

1 1  

, 0 001 ] - 1  1 000 
8 i  = 0 - 1  1 "lli" 

0 0 - 1  

The transformation to the original parametrization is particularly useful because special 
cases of  the model are in most instances defined in relation to the original parametri- 
zation. A good example is the rating scale model proposed by Masters (1982), that can 
be formulated by imposing the linear restrictions ~ij = oti + "rj, for i = 1, . . . , I and 
j = 1 . . . . .  m i. All these examples can be viewed as special cases of  the linear mapping 

= GI3, (21) 

with dimension (13) -< dimension (~) and G of full column rank. 
The estimatioff equations for these models can easily be derived by observing that 

0 lnL(m'(AIX, D ) = a  lnL(m)(klX, D) (_~7~,'~(0.~,'~ = G,F,b(m)(k) ' 

/\ 13 / 
and in the same manner 0 In L(klX, D, ~t)/0i3' = G 'F 'b(k) .  In matrix notation the 
generalized EM algorithm boils down to finding a maximum of  

E(ln L(klX, D, O)IX, D, k*) (22) 

with respect  to k, where k* is some initial estimate, setting k* equal to this maximum 
and repeating the process until convergence is obtained. So the procedure for estimat- 
ing 13 is found by premultiplying (22) by G'F' and the asymptotic covariance matrix of  
13 is given by (G'F'I(k, k)FG)-I. 

5. Testing the Model with a Focus on the Items 

For  the construction of  a model test one can make use of  the well-established 
framework of  the multinomial model. Let  {x} t stand for the set of  all possible response 
patterns x on test t and let n t be the associated vector  of f requency counts. So n t has 
elements nix, where rttx is the number of  persons taking test t and producing response 
pattern x ~ {X}r It is easy to see that n t has a multinomial distribution with parameters  
N t and ~t .  The vector  of  theoretical probabilities ,It t has elements qrtx defined by 

= Pr (x ld t ,  k )  = ~ Pr (x ld t ,  ~ ,  O)g(Oltxt, o't)O0, (23) 7Ttx 

where Pr (xldt, ~q, O) is the probability of response pattern x as a function of  O and 
g(Oltxt, o-t) is the normal probability density function. To keep things general, k sat- 
isfies linear constraints of  the form k - F~ or k = FG[3. In general it will be assumed 
that s parameters  have to be estimated. 

Testing the assumed model against a general multinomial alternative can by done 
by applying Pearsons '  X 2 test 
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X2 = Z Z (ntx -- N t T r t x )  z 

t {x}, Nt l r t x  
(24) 

It can be shown (see, for instance Bishop, Fienberg & Holland, 1975) that X 2 has an 
asymptotic X 2 distribution with v - s - 1 degrees of freedom, where v is the number  
of  possible response patterns and s is the number of parameters  to be estimated. 

This approach however ,  suffers from serious drawbacks.  Even  for a relatively 
small number  of items, the number of  possible response patterns is very large, so the 
vector  of  f requency counts  n t will have a large number of  very small and zero elements,  
which will damage the asymptotic  properties of  the test. A second drawback of  the 
approach sketched above is the fact that the identification of  the sources of  misfit is 
very  difficult. Therefore  statistical testing procedures will be presented,  that are based 
on a higher aggregation level of  the data, which give information with respect  to specific 
model violations. In the present  paper two sources of  model violations will be consid- 
ered: model violations caused by an improper assumption about  the ability distribution 
and model violations caused by specific items that do not fit the model. In actual data 
analysis, checking the appropriateness of  the assumption concerning the ability distri- 
bution must be carried out first, for there is little sense in searching for misfitting items, 
if the model is violated at such an essential level. For  didactical reasons however ,  the 
subject of  item fit will be treated first. So the objective of the present section is to derive 
a test of  model fit, where the contribution of specific items to the outcome of  the test 
can be identified. The test will be based on a comparison of  predicted and observed item 
characteristic curves (ICC). The test is motivated by the following considerations. 

Equations (2) and (6) give the probability of  a person n scoring in ca tegory j  on item 
i, ~Jij(On), with O n a fixed person parameter,  for respectively the parametrizations 
and ~1. If O is varied across the range ( - %  ~), ~ i j (O)  is called an ICC. Since the 
f requency distribution of sum scores is a sufficient statistic for the ability distribution, 
it can be assumed that persons who obtain the same sum score, form homogeneous  
subgroups on the latent continuum. Therefore  the probability of  scoring in ca t ego ry j  of  
item i as a function of the sum score can be viewed as an approximation of  the ICC. 
Thus,  the difference between the observed and expected number of persons obtaining 
a certain sum score and responding to an item in a certain response category can be 
used to evaluate model fit. 

To  formalize these notions, let I ( t )  be the number of  items and let {i} t be the set of  
indices of  the items in test t. Further  J(t) stands for the maximum score that can be 
attained and ntr U stands for the number  of  persons taking test t who obtain a sum score 
r = I . . . . .  J ( t )  - 1 and score in category j ,  (j  = 1 . . . . .  m i )  on an item i E {i}t. 

The scores of  r = 0 and r = J ( t )  are excluded,  because they are special in the sense 
that there exists only one response pattern to obtain them. The ca tegor ies j  = 0 are not 
considered,  because the information they yield for every  item i, is completely contained 
in the frequencies ntrij, f o r j  = 1 . . . .  , m i .  Notice that if r < j ,  ntrij = 0,  because it is 
not possible to respond in ca t ego ry j  and obtain a sum score r < j .  In the same manner  
it is also not possible to respond in category j and obtain a sum score r > J ( t )  - m i + 
j .  To  evaluate the expectat ion E(Ntrijldt, ~) of  ntrij, a n  elementary symmetric function 

, . , ' e)), where e i has elements ei j  F r ( E ,  d t )  of  the parameters  e '  = (el  . . e i . . . . .  = 

exp ( -~? i j ) ,  is defined by 

F~(e, dr) ~ 1-I a.xo = e U . (25) 
{X},r i,j 
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Here  {x}t r stands for the set of  all possible response patterns x associated with score r. 
The following example may clarify (25). For  a test of  three items, m~ = 2, for  i = 
1 . . . . .  3 and d' = ( l ,  I, 1, 0, 0, 0 . . . .  ) the elementary symmetric functions are given 
by: 

F0(e, dr) = 1, 

F l ( e ,  d t ) =  e l l  + e21 + e31, 

F2(E, dr) = e l l e21  + e l l e31  + e21e31 + el2 + e22 + e32, 

I~3(t~, dt) = e11e21631 + e12e21 + e l l e22  + e12e31 + e l l e 3 2  + e22e31 + e21e32, 

F4(e ,  dt) = 612621631 + 812e22 + 612632 + el le22631 + 611621632 + 622632, 

l"5(E , d t )  = e12e22e31 + e12e21e32 + e l le22e32 ,  

F6(I~, dr) = e lZe22e32 . 

The computation of  elementary functions of the kind defined by (25) has been described 
by Andersen (1972) and Fischer (1974). 

By summing (23) over  the set of all possible response patterns leading to a sum 
score r and with Xto. = 1, it can be shown that for j -> 1 

f ^  t-(i) t e dt) ( rO)Pto(O)g(Ol t z t ,  crt)O0, E(Ntr i j l d t ,  k )  = N t  e i j X r - j ~  , exp (26) 

where Fr(~j(e, dt) stands for an elementary symmetric function of  order  r - j as defined 
by (25), of the parameters (e l ,  . . . , e~-l, e~+l . . . . .  e)). 

The difference between the predicted and the observed ICC for item i and category 
j ,  as it appears in test t, can be evaluated by inspecting the sequence of  deviates n ~ ( / -  
E(Ntr i j ld t ,  ~t), for r = j . . . . .  J ( t )  -- m i + j ,  o r  by inspecting the scaled deviate ztrij  = 
(ntr O" -- E ( N t r i j l d t ,  ~.))/var (N t r ( i ld t ,  ~)1/2. The sign of  Zt°r(/indicates whether  the predicted 
ICC is higher or lower at a certain score level than should be expected. The interpre- 
tation of  the magnitude of  zt°u may be helped by the fact that if only one item, one 
category, and one score level are considered, and no parameters have to be estimated, 
z°u is a standardized biniomial variable. Squaring and summing zOo • over  the appropri- 
ate range of  sum scores yields an index of  item fit that is approximately X 2 distributed 
if the assumptions given should hold. They do, of  course, not hold, but for the identi- 
fication of  the items that least fit the model, the index of  item fit serves its purpose.  

What is also needed in conjunction with the item fit indices, however,  is a more 
formal model test. The test that will be presented below is a generalization of  the model 
test for the marginal Rasch model presented by Glas (1988). 

For  t = 1 . . . . .  T and r = 1 . . . . .  J ( t )  - 1, let Ztr be a vector  with elements ztrij 
= N - I / 2 ( n  defined by ZtrO" t trO" -- E ( N t r i j l d t ,  ~)) for i E {i}t and j = max (1, r + m i 

J ( t ) )  . . . . .  min ( m i ,  r).  Let  err stand for the dimension ofztr ,  so etr  = min ( m i ,  r) - max 
(1, r + m i - J ( t ) )  + I. The vectors Ztr will be combined into a quadratic form using the 
inverse of  etr  × err matrices Wtr .  Let  ztr(/be the k-th element of  ztr, z m j ,  is the k ' - th  
element (j' ~ j) and Ztri,j,, is the k"-th element (i' ~ 0 of  Ztr. The elements Wtr (k  , k), 

Wtr(k ,  k ' )  and Wtr(k  , k") o f  Wtr  are defined by: 
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Wtr(k , k) -~- f ^  .r(i).{E dt )  exp (rO)Pto(O)g(Oltxt, o't)O0, 

W t r ( k ,  k')  = O, and  (27) 

f (i,i') Wit(k, ld') = eO'ei , j ,Fr- j - j , (e ,  dt) exp (rO)Pto(O)g(Oltxt, ot/)aO, 

with  r,(i , i ' )  ~,~ Xr_j-j , ,~,  dt) an elementary symmetric function of order  r - j - f '  as defined by 
(25), where the parameters  e i and e i, have been removed from e, 

To be able to derive the distribution of the model test, the number of persons 
obtaining a perfect  score on test t, denoted by ntJ(t ), and the number of persons who 
obtain a zero score, denoted 'by  nt0, must also be taken into consideration. Let  Zto = 
Nt-- 1/2(nt0 - E ( N t o  Idt, 2k)), z tJ( t  ) = N;-  l /2(ntJ( t  ) --  E ( N t J ( t  ) Id t, 2~)), 7rt0 is the probability 
of  a zero response pattern and 7rtl is the probability of a perfect  response pattern. As 
before,  ~ may be subject to linear restrictions, so let s be the number of  parameters  that 
have to be estimated. In section 8 it will be shown that 

R1 -- z,o + Z;rfVi;rlZ,r + 
t [ .  ~rto r=,  ~rt, . j  (28) 

has an asymptotic X 2 distribution. The degrees of  f reedom are equal to the number  of  
• ~ T~, J ( t ) -  1 deviates on which the test is based, which is ~.t ~r=~ etr + 2T, minus the number  of  

parameters that have to be estimated, which is s, minus one degree of  f reedom for every  
z ~  T ~  J ( t ) -  1 one of  the T multinomial distributions in the model. So Rl has tz~ t Z~r= 1 etr) + T - s 

degrees of freedom. 
In section 7 of  this paper, some examples of application of  the technique will be 

presented,  but first the evaluation of the fit of  the ability distribution will be discussed. 

6. Testing the Model With a Focus on the Ability Distribution 

In the present  section a model test will be defined that has power  against improper  
modeling of  the ability distribution. 

Since a respondent ' s  sum score is a sufficient statistic for his/her ability parameter ,  
the test  will focus on clusters of  response patterns leading to the same sum score. As 
in the previous sections, ntr stands for the number of  respondents who obtain a sum 
score r on test t. By summing (23) over  the set of  all possible response patterns leading 
to a sum score r, it can be verified that 

F 
E(Ntrldt, •) = Nt  I Fr(e, dt) exp (rO)Pto(O)g(Oltzt, crt)O0. (29) 

. /  

As in the previous section, the deviates ntr --  E ( N t r l d t ,  ~) can be transformed into 
scaled deviates with an approximate standard normal distribution, and inspecting the 
magnitude and the sign of  these scaled deviates will yield information with respect  to 
the appropriateness of  the assumption about the ability distribution. 

Combining the scaled deviates into a X 2 distributed quadratic form is, however ,  
somewhat  more complicated than in the previous section. In the present section only 
the main result is presented,  the details are given in section 8. 

Le t  z be a vector  defined z' = (z] . . . . .  z~ . . . . .  z~-, z]r+0, where,  for  t = 1 . . . . .  
T, z t is an Nt-dimensional vector  with elements Nt l /2 (n t r  - E(Ntrl~)) and ZT+ 1 is a 
(J  - 1)-dimensional vector  with elements 
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(~t dtigtl]2)(sij-~t Ntdli f fflij'(O)g(O'~-£1, o't)O0), 
for i = 1 . . . . .  I and j = 1 . . . . .  m i, where one element,  say the element  associated 
with i = j = 1 is omitted. Then it can be shown that R 0 = z ' W - l z  has an asymptot ic  X 2 
distribution with (2ZtJ(t)) - s - T degrees of  f reedom, for some matrix W, which will 
be defined in section 8. In section 8 it is also argued that at ~, the elements  of  z~r+l are 
all equal to zero. Thus the influence of specific items on the outcome of  the R 0 test  
cannot  traced. In section 8 it will be shown that the vector  z~r+l must  be added to 
account  for the loss of  degrees of  f reedom caused by the est imation of the i tem param- 
eters and the outcome of  the R 0 test is influenced by the presence  of  ZT+ 1 via the 
elements  of  W associated with Z~+l. 

As the Rasch model  for dichotomous items is a special case of  the partial credit 
model,  the test  presented here can, of  course,  also be used to evaluate the appropri-  
ateness of  the assumption about  the ability distribution for the marginal Rasch model 
for dichotomous items. 

7. Some Examples  

To illustrate the possibilities of  the techniques described in the previous sections, 
a number  of  simulated examples  will be presented.  The first set of  examples  focusses 
on the effects of  a non-normal ability distribution on the paramete r  est imates and the 
possibility to detect  these model violations using the statistical testing procedure  pre- 
sented in the sections 5 and 6. The second set of  examples  will focus on selecting items 
that fit the partial credit model.  For  the clarity of  the presentat ion,  the simulation 
studies were  carried out using one test of three items with five categories,  so rn = 
m i = 4 for i = 1 . . . . .  3. The data were generated using the following algorithm: 

Step 1. Choose a set of  item parameters  ~1. 

Step 2. Draw N person parameters  O n f rom a distribution 19. 

Step 3. Compute  qJij(On) for i = 1 . . . . .  3 , j  = 1 . . . . .  4 and n = 1 . . . .  , N,  using 
(5) and let q~iO(On) = 1 - E~qqJO.(On). 

S tep  4. Draw Vni(i = 1 . . . . .  3 and n = 1 . . . . .  N) f rom the uniform distribution 
on [0, 1]. 

Step  5. A data matrix X with entries Xni j is generated using 

I i  j -  1 j 
if Vni > ~ ~ih(On) and Vni < ~ ~ih(On). XnO'= h=0 h=0 
in other instances. 

The artificial data were generated under three conditions: in the first condition 19 
was normally distributed with a mean equal to zero and a variance equal to one, in the 
second condition ® was distributed uniformly on ( - 2 ,  2) and in the third condition ® 
hhd a X2 distribution with one degree of f reedom, which was shifted such that its 
expectat ion equaled zero. 

Table 1 gives the result of  the parameter  estimation for a typical simulation run 
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TABLE i 

Parameter Estimation For Data Confirming 
The Partial Credit Model 

item c a t e g o r y  ~ij ~ij SE(~ij ) Sij 

I -I 000 I 
2 
3 
4 
I 
2 
3 
4 
I 
2 
3 
4 

- 0 5 0 0  
0 0 0 0  
0 5 0 0  

-1 500 
-1 000 
- 0 5 0 0  

0 000 
0 000 
0 .500  
1.000 
1.500 

-0.966 0.047 1208 
-0.426 0.062 627 
-0.046 0.073 551 
0.525 0.078 763 
-1.447 0.049 1352 
-0.905 0.063 667 
-0.499 0.074 576 
0.037 0.078 776 
-0.013 0.044 862 
0.423 0.052 556 
0,958 0.055 500 
1.473 0.055 709 

a=l.O00, ~=0.991, SE(~)=0.0187, ~=0.000 (fixed) 

with data generated in the first condition, that is, data conforming the partial credit 
model. The parameter estimation was carried out on a sample of N = 4000 response 
patterns, the third column of Table 1 gives the true values of the item parameters, the 
fourth column gives the estimated values. The last two columns give the standard errors 
computed using the method given in section 3 and the values of the sufficient statistics 
for the item parameters. Next, the statistical testing procedure presented in section 6 
was carried out, Table 2 gives the results. The column marked "deviate" gives the 
difference between the observed and expected frequency of the score levels, the col- 
umn marked "scaled deviate" gives the deviate divided by its standard deviation. 

The value of the R0 statistic defined in section 6 is given at the bottom of the Table. 
Since the 5% critical value of a X 2 distributed variable with 10 degrees of freedom is 
18.3 the hypothesis that the data fit the partial credit model can, as expected, not be 
rejected. To get some idea of ~the robustness of the estimation procedure, data were 
generated under the two other conditions: the uniform ability distribution condition and 
the shifted X 2 ability distribution condition. In both instances a sample size N = 4000 
was used. 

Table 3 gives the results of the parameter estimation for both conditions, the 
results are averaged over ten replications. Inspection of Table 3 shows that for the 
uniform distribution condition the magnitude of the bias in the estimates is relatively 
small. The shifted X 2 condition however yields a considerable bias. One of the main 
reasons for this phenomenon is the'fact that the uniform distribution is symmetric with 
respect to its first moment, whereas the X 2 distribution is not symmetric. For every 
replication in every condition, the model test R0 was computed, and in all instances the 
model had to be rejected. So even though the bias in the estimates is small in the 
uniform distribution condition, it is serious enough to cause a rejection of the model. 

The examples presented so far concern the appropriateness of the assumptions 
about the ability distribution. Lack of model fit, however, can also be caused by items 
that do not fit the model. Therefore in section 5 a statistical test was proposed that has 
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TABLE 2 

Evaluation Of Model Fit For data Conforming 
The Partial Credit Model 
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score observed expected deviate scaled 
frequency frequency deviate 

0 188 194.43 -6. 
i 437 429.91 7 
2 509 505.07 3 
3 429 439.93 -i0 
4 382 373.83 8 
5 345 333.69 Ii 
6 296 299.73 -3 
7 266 271.19 5 
8 251 256.23 -5 
9 251 245.38 5 

i0 210 227.59 -17 
ii 237 225.18 II 
12 199 197.62 i 

44 
08 
93 
93 
17 
31 
73 
19 
23 
62 
59 
81 
37 

-046 
0 34 
019 
-0 56 
0 59 
0 65 
0 22 
-0 33 
-0 34 
0.37 
-1.20 
0.79 
0 . 0 9 8  

R 0 = 9.3826 df = I0 

power  against differences between the observed empirical ICC's  and the ones predicted 
by the model. First it will be shown what kind of information is produced by the 
statistical testing procedure.  

Using the same device and the same item parameters as above,  several model 
conform data sets were generated. Table 4 gives the results for a typical simulation run 
with N = 4000. The results presented concern the second item, so the true value of  the 
item parameter  is I1~ = ( -1 .50 ,  -1 .00 ,  -0 .50 ,  0.00). Estimation resulted in ¢1~ = 
( -  1.48, -0 .99 .  -0 .55 ,  -0 .09) .  Notice that for the first category the range of  scores only 
extends to 9, because larger scores cannot be obtained while scoring in the first cate- 
gory on some item. In the same manner it is for instance also not possible to score in 
the fourth category and obtain a score less than 4. Inspection of  the column marked 
"expec ted  f r equency"  reveals what the ICC's for the different categories look like: 
unimodal for the first three categories and monotone increasing for the last category. 
The magnitude of  the column marked "scaled devia te"  can be interpreted by assuming 
that every entry is a standardized normal variable. 

The sensitivity of  the "scaled deviates"  to model violations caused by items can be 
illustrated by generating responses to items with ICC's  which do not conform the 
partial credit model. This can be achieved by introducing a set of  so-called discrimi- 
nation parameters a 0", for i = 1 . . . . .  3 and j = 1 . . . . .  4, into the equations for the 
ICC's,  that is, @ij(O)  is redefined as 

exp ( a i j ( j O  - ~lo)) 
@0(O) - (30) 

m i  

1 + ~'~ exp (otik(k'O - n ik ) )  
k = l  
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TABLE 3 

Parameter Estimation For Data Generated Using A 
Non-Normal A b i l i t y  D i s t r i b u t i o n  

uniform ability distribution 

item category ~ij ~ij SE(~ij ) 

i i -I 
2 -0 
3 0 
4 0 

2 I -i 
2 -I 
3 -0 
4 0 

3 i 0 
2 0 
3 I 
4 I 

000 -0.998 0.048 
500 0.523 0.067 
000 -0.072 0.079 
500 0.488 0.082 
500 -1.448 0.050 
000 -0.995 0.066 
500 -0.721 0.053 
000 - 0 . 0 5 0  0 . 0 8 2  
000 0.044 0.048 
500 0.665 0.054 
000 0.956 0.066 
500 1.329 0.056 

a=l.000, ~=0.993, SE(~)=0.0182, ~=0.000 (fixed) 

shifted chi-square distribution 

item category ~ij ~'" 13 SE(~ij) 

I I -I 
2 -0 
3 0 
4 0 
i -I 
2 -i 
3 -0 
4 0 
I 0 
2 0 
3 i 
4 i 

000 
500 
000 
500 
500 
000 
500 
000 
000 
500 
000 
500 

-0 884 
-0 066 
0 652 
1 287 

-i 654 
-0 682 
0 255 
0 710 
0 290 
1 182 
2 066 
2 590 

0.044 
0.057 
0.077 
0.085 
0.069 
0.061 
0.089 
0.078 
0.041 
0.052 
0.067 
0 . 0 6 8  

a=1.4142, ~=i.0610, SE(~)=0.0211, ~=0.000 (fixed) 

Using the algorithm described above, with the new definition of ~#ij(O), a number of 
data sets were generated, with a22 = 0.50, a23 -- 2.00 and all other discrimination 
parameters equal to one. The item parameters were not altered. 

Table 5 gives the results for item 2, for a randomly chosen replication. It can be 
seen that, compared with Table 5, the number of significant deviates increases consid- 
erably, especially for the categories two, three and four. The introduction of discrim- 
ination parameters resulted in a considerable bias in the estimation of the parameter of 
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TABLE 4 

Evaluation Of Model Fit in A Data Set 
Conforming The Partial Credit Model 
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category score observed expected scaled 
frequency frequency deviate 

i i 226 235. 
2 346 337. 
3 231 247. 
4 175 167. 
5 126 125. 
6 85 89. 
7 61 56. 
8 45 37. 
9 23 23 

2 2 58 57 
3 132 113 
4 95 108 
5 93 93 
6 97 86 
7 86 74 
8 52 57. 
9 39 47. 

I0 25 36. 
3 3 23 20. 

4 41 52 
5 52 63 
6 54 66 
7 80 76 
8 I01 79 
9 70 75 

i0 87 76 
II 80 75 

4 4 I0 9 
5 35 29 
6 47 44 
7 51 57 
8 74 79 
9 108 i01 

I0 143 119 
ii 139 156 
12 199 207. 

90 
94 
73 
20 
84 
23 
62 
81 
22 
87 
61 
87 
II 
81 
97 
72 
27 
24 
27 
03 
18 
93 
02 
65 
19 
90 
58 
08 
55 
45 
36 
03 
55 
71 
93 
13 

-0 66 
0 46 
-I 09 
0 62 
0 01 

-0 45 
0 59 
1 17 

-0 05 
0.02 
1.75 

-1.35 
-0.01 
I.I0 
1.29 

-0.76 
-1.21 
-1 88 
0 61 
-i 54 
-i 42 
-i 59 
0 46 
2 42 

-0 60 
1 16 
0.51 
0 .30  
1.00 
0 .38  

- 0 . 8 5  
- 0 . 5 7  

0 .65  
2 .16  

- 1 . 4 6  
- 0 . 5 8  

the second item, for instance ~1~ = ( -  1.567, -0.679. -0.682, -0.237) for the replication 
under consideration. Computation of the test defined by (28) resulted in a rejection of 
the model for all ten replications: the average value over ten replications of the test was 
275.05 with 22 degrees of freedom. 

The artificial examples presented here, of course, far from exhaust all possible 
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TABLE 5 

Evaluation Of Model Fit in A Data Set 
Not Conforming The Partial Credit Model 

category score observed expected sealed 
frequency frequency deviate 

i I 219 
2 370 
3 279 
4 180 
5 145 
6 102 
7 75 
8 36 
9 25 

2 2 80 
3 126 
4 91 
5 57 
6 32 
7 46 
8 38 
9 15 

I0 i0 
3 3 17 

4 60 
5 89 
6 63 
7 94 
8 97 
9 126 

I0 64 
ii 43 

4 4 7 
5 35 
6 35 
7 72 
8 91 
9 149 

I0 250 
ii 99 
12 106 

245.94 
370.67 
281.32 
205.27 
141.54 
93 54 
57 91 
28 73 
15 75 
42 92 
87 20 
85 67 
78 67 
66 90 
53 82 
40 48 
24 57 
16 69 
24 62 
64.76 
80.08 
9 0 . 6 8  
9 3 . 8 8  
9 1 . 7 7  
8 4 . 4 3  
6 3 . 4 7  
54.58 
11.68 
38.66 
5 8 . 9 5  
81.27 

102.23 
122.22 
139.30 
132.56 
149.79 

-1.77 
-0.04 
-0.14 
-1.81 
O. 30 
0.89 
2.26 
1.36 
2.08 
5.69 
4.20 
0 . 5 8  

-2.47 
-4.30 
-1.07 
-0.39 
-1.94 
-1.64 
-0.60 
-0.60 
-1.01 
-2.94 
O.01 
0.55 
4.57 
0.07 
-1.58 
-I. 38 
- 0 . 5 9  
- 3 . 1 4  
-I. 04 
-1.13 
2.46 
9.55 

-2.96 
-3.65 

forms and combinations of model violations; they only serve to illustrate the tech- 
niques. A final remark must be made with respect to the application of the techniques 
presented here. In practical situations, the amount of information that is produced by 
the statistical testing procedures may become quite overwhelming, especially if the 
number of response categories becomes large. Therefore it seems most convenient to 
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work bottom-up, starting with a relatively small subset of  items that constitute a scale 
and adding items as long as the model holds. In many instances it is unrealistic to 
assume that one scale holds for all items, and one has to be content  with a number  of  
subscales. Also the computation of  the statistical tests has its limitations, which are 
mainly caused by the computation of  elementary symmetric functions and the inversion 
of  matrices. In the computer  program written by the author,  a test length of  96 score 
points was chosen as an upper bound for the application of  the model tests. Pushing this 
upper bound further will result in numerical problems that may be hard to overcome.  
For  most applications, however ,  a maximum test length of  96 score points is not 
unreasonable.  When analyzing several tests in an incomplete design simultaneously, 
the total number  of  parameters  that can be estimated can be much larger than 96, since 
it is only the length of  the separate tests that limits the applicability of  the techniques 
presented.  In the next section the mathematical f ramework for the development  of  the 
statistical testing procedures  will be described. 

8. The Construction of  Asymptotically X 2 Dis t r ibu ted  Quadratic Forms 

Consider a k-dimensional response vector  x, x' -- (x 1 . . . . .  x i . . . . .  xk ) .  To keep 
the theory presented in this section as general as possible, it will be assumed that for 
i = l . . . . .  k ,  x i  assumes values in the set {0, 1 . . . . .  vi},  with vi > O. 

Let  N observations x be sampled and let the vector  of  observed proportions p, 
P' = (Pl . . . . .  Pv)  have a multinomial distribution with parameters N and ,rt, o '  = 
(Trl(~b) . . . . .  ~'v(~b)) and d~ a s-dimensional vector  of  parameters,  v = IIik=lvi and s < 
"O - -  1.  

Let  y be defined by y = N 1/2 (p - ~t), where ~t stands for the maximum likelihood 
estimate of  o .  It is a well known result of  asymptotic theory (see for instance Rao, 1973, 
p. 392; or Bishop, Fienberg, & Holland, 1975, p. 517) that under a number of  regularity 
conditions defined by Birch (1964), which are assumed to be fulfilled in the sequel, the 
distribution of  y converges to a multivariate normal distribution with expectat ion 0 and 
a covariance matrix given by 

I/2 ~ - 1 t 1/2 "Z = D ,  - ~ '  - D~r A ( A  A )  A D ~  , 

with D~r a v x v diagonal matrix of  the elements 7ri(~b), i = 1 . . . . .  v and A a v x s 
matrix defined by A = D~r 1/2(0~/0~ '). The parametrization of  the model must be such 
that A is of  full column rank. 

From this result, it can be derived that y , / ) ~ l y  has an asymptotic X 2 d i s t r ibu t ion  
with v - s - 1 degrees of  freedom (Rao, 1973; Bishop et al., 1975). The objective of  the 
present  paper  is to alter the aggregation level of  the model test, in such a way that the 
model violations under  consideration may show. This is accomplished by defining the 
transformation z = Xy, where X is a u x v matrix of  rank u and z is a u-dimensional 
vec tor  of  so-called deviates. It easily follows that z coverges in distribution to a u- 
variate normal distribution with expectation 0 and covariance matrix X ~ , X ' .  The model 
tests considered in the next sections will all have the basic form 

R = z 'W- lz ,  (31) 

with W = X D ~ r X '  and/)~r equal to D~ evaluated using the m.1. estimates of  the model 
parameters.  

The objective of the present section is to derive conditions which are sufficient for  
the asymptotic  X 2 distribution of  R. 

Using Rao (1973, p. 186) R has an asymptotic X 2 distribution if B = 
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W-I/2X~,X'(W')-1/2 is idempotent  and the degrees of  f reedom are given by trace (B). 
B can be written as B = I u - B 1 - B2, with Iu an identity matrix of  order  u, 

- 1 / 2  112 r - 1  t I /2  ~ p . B1 = W - I / 2 X ~ r ~ ' X ' ( W ' ) - I ~  and Bz = W X D ~  A ( A  A)  A D ~  X ( W  )-l/Z 

Since B 2 = I u - B 1 - B2 - B1 + B~ + B1B2 - B2 + BzB1 + B~,  it is sufficient t o  show 
that B 1 and B 2 are idempotent  and B I B  2 = O. 

Consider  the matrix T = D I/2X' W - 1 X D  ~/2. Since T is idempotent ,  it is a project ion 
and its manifold is given by M(D1/2X ') (see for instance Rao,  1973, sec. IC). Le t  I v be 
a v-dimensional vector  with all e lements  equal to one and let e be a u-dimensional 
vector  o f  constants.  It  will be proved  that R has an asymptot ic  X 2 distribution if the 
following two conditions are fulfilled: 

Condi t ion  1. 

The columns of  A belong to M(D~/zX') .  (32) 

Condi t ion  2. 

There  exist a vector  of  constants  e such that X ' e  = I v. (33) 

Using the two conditions, the following three l emma ' s  can be proved.  

L e m m a  1. B 2 = B 1 and trace (Bt) = 1. 

Proof .  Since X can be multiplied with a vector  of  constants  e such that X 'e  = 
lv it follows that D~/2X'e  = ~1/2 and so ~l / z  ~ M(D~/2X,) .  But B1 z = 
W - 1 / 2 X ~ '  I/2T~rl/2~r'X'(W') -1/2 = W - 1 / 2 X ~ ' - I / 2 ~ I / 2 ~ ' X ' ( W ' )  -~/2 = B1 and trace 
(B 1) = t race ( ~ r ' X ' W - 1 X r t )  = trace (~r' t/2T~1/2) = t race ( ~ '  1 / 2 ~ 1 / 2 )  = 1. [ ]  

L e m m a  2. B~ = B 2 and t race (B 2) = s. 

Proof .  B 2 = W - ~ / 2 X D ~ / Z A ( A ' A ) - I A ' T A ( A ' A ) - I A ' D ~ / 2 X ' ( W ' )  - v 2  = B2 by Con- 
dition 1 and trace (B2) = trace ( T A ( A ' A ) - I A  ') = trace ( ( A ' A ) - I A ' A )  = s. []  

L e m m a  3. B1B 2 = O. 

Proof. B IB  2 , , , -  1 /2  *-- , 1 / 2  . . . . . . .  - 1 - - ,  r~  1/2  = w . a ~  l .~ttt  ,'l) i t  ~ r  = 0, by using condition 1 and 
~r' 1/2 A = O. [] 

From the three l e m m a ' s  given, it follows that (Xy) ' (XD,~X' ) - I (Xy)  has an asymp-  
totic X 2 distribution since B 2 = B, and the degrees of  f reedom are equal to t race  (B) = 
t race (I u - B 1 - B2) = u - 1 - s. F rom the well known fact  that y'DTr ly converges  in 
distribution to y ' D g l y  (see for instance Bishop et al., 1975, p. 515) it follows that 
R = (Xy)'(XD ~X')  -1 (Xy) converges  in distribution to (Xy)'(XD ~X ' )  -1 (Xy). The result  
is summar ized  in the following theorem. 

Theorem.  Let  N p  have a multinomial distribution with parameters  N and ,n, let 
be parameter ized  by ~ such that 0~/0~b' is of  full column rank and the conditions of  
Birch are fulfilled. Then R = z'  W - l z  has an asymptot ic  X 2 distribution with u - s - 1 
degrees of  f reedom,  if the Conditions 1 and 2 are valid. 

Not ice  that the number  of  degrees of  f reedom is equal to the number  of  deviates  on 
which the test  is based,  minus the number  of  paramers  that have to be est imated,  minus 
one. The theorem can be applied to the R 1 test in the following way.  To  keep things 
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relatively simple, it will be first assumed that the design consists o f  only one test,  the 
generalization to more  than one test will be treated later. 

Le t  the theoretical probabili ty of  response pattern x is given by 

f 
= J exp  (r(x)O) exp ( - x " q ) P o ( O ) g ( O l o ) O 0 ,  (34) 7r x 

with r(x) the sum score associated with x, Po(O)  = II/=l (1 + k:--'l exp ( kO - rt~i)) - l  , 
"q a vec tor  o f  i tem parameters  with elements  r/U (i = 1 . . . .  , I a n d j  = 1 . . . . .  mi) and 
g(OIo-) the normal density function with t~ = 0. Le t  Xr be a J x v(r) matrix with as 
columns all v(r) possible response  patterns leading to a sum score r, and let ~ r  and Pr 
be the vec tor  of, respect ively,  the theoretical and the empirical  probabilities of  the 
response  pat terns leading to a sum score r, for r = 1 . . . .  , J - 1, where J stands for  
the max imum score that can be obtained on the test. I t  is assumed that the orderings of  
the response  pat terns used to define Xr,  "nr and Pr are identical. Consider  the expres-  
sion Zr = N1/ZX~(Pr - ~rr). It  can easily be verified that Zr has elements  ZrU(i = 1 . . . . .  
I a n d j  = 1 . . . . .  mi) defined by Zrij = N1/ZY' ( . )Px  - 7rx, where the summation runs 
over  the set {xLr(x) = r and xij = 1}. Since E(,)  exp (-x'~q) = eijF~rOj(e) an e lementary  
symmetr ic  function as defined in section 5, of  the parameters  ekh = exp (--'Okh), for 
k = 1 . . . . .  I and h = 1 . . . . .  m k ,  ZrO can also be given by 

Zrij: N-l/2(rlr(i- N f eur'O-j(e) exp (rO)Po( O)g(  O , c r ) O 0 ) ,  (35) 

where n~ij stands for the number  of  respondents  who obtain a sum score r and complete  
i tem i in category j .  

In section 6 it was argued that Zrij = 0 automatically,  for certain combinat ions of  
i, j and r. Therefore  these uninformative elements  are removed  from the statistical 
testing procedure  by introducing a matrix X'r, which can be derived f rom X r by re- 
moving all rows which which are associated with a combinat ions of  indices (i, j )  such 

* E i min (mi, that r < j  or  r > J(t)  - m i + j. So i f  X r had Y.imi r o w s ,  X r will have e r = 
r) - max (1, J - m i + j )  + 1 rows. Let  X be defined by 

X =  

-I 
xT 

0 

x~  o 
x,* 

Xy_ j 
1 

(36) 

~ J - l e *  I f  v stands for  the number  of  possible response patterns,  X has u = 2 + r=1 r rows 
and v columns.  

I f  z = N1/2X(p - ~t) and W = X D ~ t X ' ,  with D~r a diagonal matrix of  the e lements  
of  ¢r, the model test  defined by (28) can now be given as R 1 = z ' W - l z .  The theoretical  
probabilit ies are evaluated using m.l. est imates of  the parameters  ~ with 6' = (rt ' ,  or), 
or 13 with ~ = G13, whatever  the case may be. The following l emma concerns the first 
condition. 

L e m m a  4. The columns of  A belong to M(D~/2X ' ) .  

Proo f .  T has a block diagonal form diag (1, T 1 . . . . .  Tr . . . . .  T j _ ] ,  1), where  
lr~ l / 2 v * t c v * r ~  v * t ' ~  - 1 v * n  1/2 

T r  = JJTr(r) "x r ~...x rlJrt(r)A r ) z~ rL,~r(r), with D~(r) a diagonal matrix of  the elements  of  
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~r r. I t  can be verified that a~r/a~q' = D~(r)X'r - errS'r, with ot r a vector  with e lements  exp 
( -x '~ l )  for  all x with r(x) = r, and ~r a vector  with elements  f $ u ( O )  exp 
(rO)Po(O)Po(O)g(Olo')aO for i = 1 . . . . .  I a n d j  = 1 . . . . .  m i. It  can also be verified 

- 1 / 2  that a~rr/aO- = Otrtr-3 f O  2 exp (rO)Po(O)g(OIo')O0 - or- l~r  . Define A r = D~r(r ) (a~r/  
a~')(a~/ofY). Then TrAr = Ar ,  since n 1 / 2 ~ t , , .  r ~  1 / 2  A.  r ~  1 / 2  _ £ ~ ¢ r ( r ) r t  , ,  L ~ l r ( r ) O t  r and ~ , ~ r ( r ) ' , ,  r are all e lements  of  
M( Tr). [] 

The second condition is dealt  with in the next lemma.  

L e m m a  5. There  exist a vector  o f  constants  c such that X ' e  = I v. 

Proof.  Consider  the J-dimensional  vector  a which is defined by (1, 2 . . . . .  
ml . . . . .  1, 2 . . . . .  m i . . . . .  1, 2 . . . . .  rnt). Since every  response  pat tern in Xr leads 
to a sum score r, Xra  = rlv(r), with Iv(r)  a v(r)-dimensional vec tor  with all e lements  
equal to one. Le t  er be  equivalent to a with the elements  associated with the r emoved  
rows form Xr also removed ,  such that the product  g*r'er is well defined. Then  if e is a 
u-dimensional vector  defined by  c '  = (1 . . . . .  (1/r)e r . . . . .  1), it follows that  X ' e  = Iv.  

[ ]  

So in the case of  a test  design with one test  and one population only, the model  test  
defined by (28) has u - s - I degrees of  f reedom,  since both the conditions specified 
by (32) and (33) are valid. 

The  theory presented so far, concerns  situations where the sampling model has a 
multinomial  form. In the case of  a design with more than one test  however ,  the sam- 
pling model  is a product  of  multinomial models,  because  within every  test  the theoret-  
ical probabilit ies o f  the response  pat terns sums to one. Birch (1963) and H a b e r m a n  
(1974) have shown that the asymptot ic  theory on m.l. est imation procedures  and sta- 
tistical testing procedures  for parameter ized product  multinomial models can be trans- 
lated into equivalent procedures  for multinomial models.  This can also be applied to the 
present  problem.  

Fo r  t = 1 . . . . .  T, let N t be the size o f  a sample and ~t  be  the vec tor  of  theoretical  
probabili t ies.  Fur ther  N stands for the total sample size. Assume  that the s tochast ic  
variables N t ,  t = I , . . .  , T, have  a multinomial distribution with theoretical  probabil-  
ities tot, for  t = 1 . . . . .  T. Not ice  that  tb t = N t / N .  Using this definition it can easily be  
seen that  the e lements  of  the amalgated vector  of  probabilit ies (tolCr~ . . . . .  
t o t ~  . . . . .  toT--'r) sum to one. So by adding T - I " d u m m y "  parameters  a product-  
multinomial  model is t ransformed into a multinomial one. With this re-definition of  the 
model ,  the theory developed for  the multinomial model  directly applies and the 
quadratic form R = z'  # - l z  defined above has an asymptot ic  X 2 distribution with u - 
s - T degrees of  f reedom. The derivation of  the R 0 test  proceeds  as follows. 

Assume that only one test  is considered and that ~ is not subject to linear restric- 
tions. Consider  a matrix of  contrasts  X* defined by 

X • 

0 Xl 
1 0 '  
0 1"(~) 
0 0 '  
0 0 '  
0 0 '  
0 0 '  

X2 Xr 
O' O' 
O' O" 

1,~(2) O' 
O' l~(r) 
O' O' 
O' O' 

X j - l l  
0 '  0 
0'  0 
0 '  0 
0 '  0 

l~(j- 1) 0 
0' 1 

(37) 
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where X r is a J x v(r) matrix with as columns all response pat terns leading to a sum 
score r and lv(r) stands for a v(r)-dimensional vector  with all e lements  equal to one. The 
definition of the other  elements  in X* is now obvious.  Not ice  that X* has 2 J  + 1 rows 
and v columns.  The construct ion of  X* can be mot ivated in the following manner.  

Consider  the vector  X*~.  The elements lrw r are given by lr'tr r = fFr(e)  exp 
(rO)Po(O)g(Olg, o-)00, so these elements  are proport ional  to the expecta t ion of  the 
number  of  persons  obtaining a sum score r. The other elements  of  X*xr are given by 
X~Tet = [0, X1, X2 . . . . .  Xr . . . . .  X j_  t , 1]'n, so X n ~  has elements  

J 

eeFr_j(e) exp (rO)Po(O)g(OIcr)O0 = O0(O)g(OIo')O0. 
r = l  

(38) 

In the sequel it will become  clear, that these elements  must  be added,  to account  for the 
degrees of  f reedom associated with the estimation of  i tem parameters .  The  matrix X,7 
contains the sufficient statistics for the item parameters ,  which also motivates  its sub- 
script. Le t  Y be a matrix such that X' = [X' n, Y']. The theory presented above  cannot  
be applied to X*, because  this matrix is not of  full row rank: a v-dimensional zero vector  
can be constructed by summing all rows in Xn and subtracting J t imes the J- th  row in 
Y. Therefore  a matrix of  contrasts  X will be constructed by removing the first row of  X*. 

Lemma 6. The columns of  A belong to M(D~/2X'). 

Proof. Inspect ion of  L e m m a  4 reveals that 0~r/O~l' can be writ ten as Ocr/0~l' = 
D~X'~ - frt(O)~(O)'g(Oltr)OOX'~, with ~r(O) a vector  of  the probabilities of  all re- 
sponse pat terns  as a function of O. So it easily follows that D~rl/Eo~/O~q' is an element  
of  M(D1/Ex'~). In the same manner  it can be shown that DTrVEdrdatr ~ M(D~/EY'). 

/ ' )  I / 2 y , ,  / ' )  1/2 j( ,  Observing that - - , r - -  and _ ~  ._ have the same linear manifold concludes the 
proof.  [ ]  

Since the rows of  Y sum to lv,  both the Conditions (32) and (33) are fulfilled and 
if z = N1/EX(p - ~t) and W = XD~X',  R0 = z' l~ ' - lz  has an asymptot ic  X 2 distribution 
with J - 2 degrees  of  f reedom. With respect  to the computat ion of  the model  test, the 
following remarks  are in order.  Le t  X~ be equal to Xn with the first row removed.  Le t  
z be defined by z'  = (z], z~) with z 1 = NY(p - ~t) and z 2 = NXn(p - ~r) and let W be 
parti t ioned as 

[ roar' rD xr] 
(39) 

By carrying out the summations  over  the probabilities of  response  pat terns  defined by  
X ~  and Y, it can be verified that Wz2 is a (J  - 1) x (J - I) matrix with diagonal e lements  

k 

~_~ f euF~i)_j~e) exp (rO)Po(O)g(OIoQO0, 
r=O 

(40) 

for i = I . . . . .  I a n d j  = I . . . . .  mi, without the element  i = j  = 1. W22 has off-diagonal 
e lements  

k 

Z f ("") e ije i , j , , r r_ j_ j (E)  exp (rO )Po(g( Oltr)O0, 
r=O 

(41) 
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if i # i' and off-diagonal elements equal to zero if i = i'. W21 is a (J - 1) x J matrix with 
F (i) E elements feij r2j( ) exp (rO)Po(O)g(Olo)OO, for all relevant combinations of i and j 

and r = 0 , . . . ,  J and Wll is a diagonal matrix of the elements f Fr(e) exp 
(rO)Po(O)g(OIo')O0. So all matrices are functions of elementary symmetric functions 
and can be computed. In actual data analysis, both with real and artificial data, it turns 
out that at ~sij = Nf~o'(O)g(~lr")O0, with s U the number of responses in category j on 
item i. But 

J 

f~iJ(O)g(Olcr)O0 . of '" = eijFr_j(e) exp (rO)Po(O)g(OIo')O0 

and so it follows that Xnp = Xn¢r and the elements of g 2 are equal to zero. 
Although the conjecture that z2 = 0 at ~ is never rejected in the data analysis 

carried out by the author, a proof of the conjecture can, as yet, not be given. Assuming 
that the conjecture is correct, R can also be given by R 0 = z](Wll - WI2Wzz 1W21)-lzl. 

With respect to the proof, the consequences of linear restrictions of the form ~ = 
G[3 can be handled by redefining A as A = D~ I /2(0 ' iT/O~') (0~/0~ ' )  = D~r 1/2(O~r/O~')G and 
lemma 6 still holds. However, at [~ the identity X,Tp = X,7 7r no longer holds, so the test 
statistic will also contain information with respect to the degrees in which the sufficient 
statistics of the original item parameters and their expected values have been matched 
under the restricted model. 

9. Discussion 

The partial credit model has several appealing properties which compare favour- 
ably with the properties of other latent trait models for polytomous data (Molenaar, 
1983). Sufficient statistics for the item parameters exist and the scoring rule used to 
assess the ability of a subject corresponds with common practice in education and 
research. The existence of sufficient statistics for the item parameters and the person 
parameters makes it possible to obtain consistent estimates of one set of parameters, 
not depending on the parameters in the other set. One way to obtain these estimates is 
maximizing a likelihood function which is conditional upon sufficient statistics for one 
set of parameters. Although this approach has several theoretical and practical advan- 
tages, and is definitely worth pursuing, the present paper deals with the problem of 
obtaining consistent estimates of one set of the parameters, the item parameters, by 
assuming that the other set of parameters, the ability parameters, is a random sample 
from a normal distribution. The most important reason for developing this procedure as 
an alternative option to the conditional approach, is the fact that the so-called marginal 
approach can handle a more general class of test administration designs. 

The present paper shows that adopting the marginal approach leads to a compre- 
hensive framework for parameter estimation, the derivation of asymptotic confidence 
intervals and the derivation of statistical testing procedures, both for the partial credit 
model applied to data sampled in an incomplete design and for models that can be 
derived from the partial credit model by imposing linear restrictions on the parameters. 

In the last section of the present paper it is shown that an incorrect assumption 
about the ability distribution causes serious bias in the parameter estimates. The in- 
correct assumption is however easily detected by the proposed statistical testing pro- 
cedure. Besides a model test that has power against an incorrect specification of the 
ability distribution, a model test is presented that makes it possible to identify misfitting 
items. As a final remark, it must be noted that the present paper gives some conditions 
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which are necessary for the existence of a unique solution of the likelihood equations, 
but it fails to identify sufficient conditions. In practical situations parameter estimation 
does not encounter any serious trouble, but from a theoretical point of view both 
necessary and sufficient conditions for the existence of a unique solution to the likeli- 
hood equations would be very welcome. 

Appendix A: The Derivation of the Information Matrix for the Marginal Partial 
Credit Model 

When using the EM algorithm, the observed information matrix evaluated at the 
maximum likelihood estimate of the parameters k, is given by 

l (k ,  ~t) = - E ( B ( k ,  k)lX, D,/~) - E(b(/~), b(k)'lX, D,/~), (AI) 

where b(k) stands for the vector of first order derivatives of In L(klX, D, O) with respect 
to k and B(k, k) stands for the matrix of second order derivatives of In L(k lS ,  D, 0).  
First, the general result will be given, then some examples of the derivation of the 
elements will be given. The derivation of the remaining elements can be easily recon- 
structed by applying the same principles as used in the examples. The information 
matrix has the following no-zero elements: 

l(flij, flti) = ~ d t i ~ n r { E ( 6 i j ( O ) ( 1  - q,U(O))Ir, dt, ~.) - var ( ~ i j ( O ) l r ,  dr, ~.)}, 
t r 

(A2) 

1(66, flit) = Zdt iEnr{-E(~i j(O)~i l( 'O)lr ,  t i t , /~)-cov (Osij(O), ~il(O)lr, dr, ~.)}, (j # 1), 
t r 

/(flU, flkl) = - ~ d t i d t ~ n r  coy (t~6(O), t~k/(O)lr, dt, 2k), (i # k), 
t r 

(A3) 

(A4) 

I(fl O, 6"t) = - d t i d ' t 2 ~ n r  coy (~ij(O), OIr, dt, k), 
r 

(AS) 

I(12t, fzt) = crt4~nr(E(OIr,  at, k) - / x , )  2, 
r 

(A6) 

I(6"t, drt) = 2Nt/6"zt - O' t6Znr  var (.021r, tit, 2~), 
r 

(A7) 

l ( t 2 t ,  6"t) = - & t 5 E n r  coy (,0, ,t921r, dr, ~), 
r 

(A8) 

where i = 1, . . . , I, k = 1 . . . . .  l , j  = 1 . . . . .  m i, l = 1 . . . . .  m i and t = 1 . . . . .  T. 
First, the diagonal elements for the item parameters will be derived. 

~)}. 
L e m m a  A1.  I( flij, flij) = ~'tdti~'rnr{E(@j( O)( 1 - ~U(O))tr, dr, ~.) - var (~O(OLr, dr, 

Proof. Using b(rlij) = -s i j  + EtYnE{n},qqj(On) and 
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B ( n o ,  ~o)  = Ob(no) /O~O " = 
t 

E(B(CTij, ¢lo)lX, D, it) = 

~_~ ~t~j(On)(l -- O~j(On) ) r e s u l t s  in 

n E {hi, 

- ~, dti ~ nrE(@j(O)(1 - @j(O))lr, dr, ~) 
t r 

Also E(b({Io)zlX, D, }t) = E((-sij + ~ ~] 
t n E {n}, 

so = Z dti E E(4,o(O.)Ix, D, 
t n e {n) 

for i = I . . . . .  I and j = 1 . . . . .  mi. (9) 

~ij(On))21X, D, k), but due to (15), 

so E(b(¢qO)21X, D, ~) = ~ dti ~ nr var (@j(O)lr, dr, k). 
t 

Combination of  (A9) and (A10) gives the desired diagonal element.  

(AIO) 

[] 

The elements (A3) and (A4) can be derived in the same manner.  

Lemrna A2. I(f~ t, f~t) = ~rt4Zrnr(E( OIr, dt, k) - /~t) z- 

Proof. The summations below only concern n E {n}t and m E {n} t. F o r / ~ t  the 
information matrix has an element 

-E(B(~zt, fit)IX, D, ~.) - E(b(fi,,)21X, D, ~.) 

= ( - ~ 2 ~ -  ° ' t g ( E ( ~ n  ( ~ n - ~ t ) 2  E E ( ~ n - -  ~t)(~m--  ~t)lX' O' ' ) }  n m 

~O't / ~t -- ~'t4 E((O n - ].1,t)]X, O, ~) + °'t4Z(E(Onn - l~tIX' D, ~))2 
The fact that the first two terms cancel and the third term is equal to zero due to 
estimation equation (16) gives the result. [ ]  

The elements (A5), (A7) and (A8) can be derived in the same manner.  
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