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Restricted multidimensional scaling models [Bentler & Weeks, 1978] allowing constraints on 
parameters, are extended to the case of asymmetric data. Separate functions are used to model the 
symmetric and antisymmetric parts of the data. The approach is also extended to the case in which 
data are presumed to be linearly related to squared distances. Examples of several models are 
provided, using journal citation data. Possible extensions of the models are considered. 
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Restricted Multidimensional Scaling Models  
for  Asymmetric Proximities 

Data  that are both asymmetric and distance-like occur in several situations. Examples 
are confusions of one stimulus for another, migration rates, frequencies of journal citations, 
and initiation of contact. The magnitude of an observation h o is plausibly related to the 
similarity of or distance between entities i and j, but in general h o # hj~. A number of 
multidimensional scaling (MDS) methods have been used to analyze such data. The sim- 
plest method is to ignore the asymmetry (e.g., by averaging responses h o and hj~ if a 
symmetric matrix is required) and then use any traditional MDS method. The problem here 
is that the asymmetry may embody important  information. Models which at tempt to 
represent the asymmetry include those of Chino [Note  1], Cunningham [1978], Constan- 
tine and Gower  [1978], Gower  [1977], Bishop, Fienberg, and Holland [1975, Chapter  8], 
Harshman [Note  2], Ho lman  [1979], Hutchinson [Note  3], Tobler [1976, 1979], and 
Young [Note  4]. 

Any square nonsymmetric matrix can be additively decomposed into a symmetric and 
a skew-symmetric matrix, P = Q + R, where Q is symmetric, qij = qj~ = (pij + p~i)/2, and R 
is skew-symmetric, R = P - Q, r~j = - r ~ .  The model proposed here attempts to represent 
the symmetric and skew-symmetric parts of  the data matrix with two separate functions: 

h~ = bdi~ + k + ci - c I + e~ (1) 

where h~ is an observation, d~j is a euclidean distance, b and k are the parameters of a linear 
equation (b is particularly useful in the case of similarity data when it can be set to - 1; k is 
the traditional additive constant), ci, c i represent the skew-symmetric component  of the 
data, and eii is a random error component. In matrix terms, (1) may be written as 
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H = bD + k( l l '  - I) + e l '  - lc '  + E. The distances are specified as 

d,j = [ ( a ~ -  a j )S(a , -  ai)'] 1t2 (2) 

where ai is a (1 x t) row vector of the projections of object i on t dimensions, and S is a 
(t x t) symmetric matrix representing the covariances of the (possibly oblique) dimensions. 
The parameters of the model consist of b, k, and each a~p, c~, spq. Any parameter ® is 
subject to constraints of the forms 

®u = constant 

wu ®~ = wv Or. (3) 

The model defined by (1)-(3) is equivalent to that of Bentler and Weeks [1978] except 
for the asymmetry induced by the ci terms. It should also be noted that the f o r m c t -  c l (in 
the unrestricted case) is equivalent to the one-dimensional case of Gower's [1977] de- 
composition of skew-symmetric matrices. One could also consider (1) as a particular metric 
form of Holman's [1979] model with the appropriate choice of symmetric, row, and column 
functions (d o, c~, - c j  respectively) which were specified by Holman as arbitrary monotonic 
functions. In some cases it may be more reasonable to assume the symmetric component of 
the data are more like squared distances than distances (e.g., Takane, Young, & de Leeuw, 
[1977]). In such cases (1) may be written as 

hi.i = bd~ + k + ci - cy +e i i .  (4) 

Identification and Estimation 

Some constraints must be imposed in order for the model to be identified. Since 
distances are invariant with respect to translation and rotation, t(t + 1)/2 constraints can be 
placed in the projection matrix A. For  example, all elements of A on or above the diagonal 
can be constrained to equal zero. This requirement holds in the case of S = I. If elements of 
S are free, additional constraints in A would be required. If, for example, only the upper 
triangle of A is constrained, A could be multiplied by some constant u and the parameter b 
could be divided by u [u 2 for (4)]. Thus either b or an additional element of A must be 
constrained. One constraint must also be placed on c. In matrix form, the skew-symmetric 
component of the model is given by e l '  - lc '  where 1 is a column vector of ones. Let 
e* = c + ul, where u is a scalar. Then e*l '  - le*'  = cl  + u l l '  - lc '  = u l l '  = e l '  - lc'. 
One constraint, e.g., cl = 0, requires u = 0. 

We have employed the Gauss-Newton algorithm (sometimes preceded by several 
steepest descent steps) to obtain least-squares estimates of the parameters. A step in the 
Gauss-Newton algorithm is defined by 

Ok + 1 = Ok + ak(F~Fk, ) - lFk  Vcc(H -- lq[ ~) 

where the superscript indicates the iteration number, F k = 0 H / O O ,  the derivatives of the 
model, with respect to the parameters ® evaluated at the current parameter estimates; 
rows of F are indexed by parameters, columns are indexed by elements of H. i:i = bD + 
k( l l '  - I) + e l '  - lc '  for the distance model, and I~1 = bD ~2~ + k( l l '  - I) + e l '  - lc '  for the 
squared distance model (the exponent in parentheses denotes an elementwise operation). A 
stepsize parameter, 0 < ~ < 1, is included to ensure a nonincreasing error function 
[tr(H - 101) 2] at each iteration. 
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The necessary derivatives for the distance model (1) are given by 

c~b - do  

~h~: _ (at,, - a ~ )  
~ ' q - b  ~ d, i 

ofi,j 
- 1  

~k 

dst,~ 

Oh~j 
dc~ 

For the squared distance model (4) the derivatives are given by 

(5) 

= b(a,v - a jr,) (a,a - aj~) 
2d 0 

- 1, ~hji = _ 1. 

63hij ---- d 2 
ab ~J 

= 2b ~ sqp(aip - ajp) 
~aiq p 

ah~j 
= 1 (6) 

Ok 

ah~j 
Ospq = b(a~p - ajp)(a~q - a~q) 

~fii: = 1, ~hJi = - 1. 
~c~ dc~ 

Note that in (5), derivatives with respect to elements of A and S are discontinuous at 
d~ = 0, but in (6) they are continuous. In some cases this implies a distinct computational 
advantage for the squared distance model. The parameter vector ® refers to only free, 
nonredundant parameters--some subset of the possible parameters b, a~q, k, s~, and c~. 
Computation of derivatives allowing for constraints is identical to the procedure in Bentler 
and Weeks 1-1978, pp. 141-142,1. 

E x a m p l e s  

Data are the number of citations of ten psychological journals to each other in 1960 
[Coombs, 1964, p. 464-1, for eight of these journals in 1964 [Coombs, Dawes, & Tversky, 
1969, p. 73,1, and citations between 12 journals in 1979. An observation h~j represents the 
number of citations in journal i to journal j. The journals represented are listed in Table 1, 
along with abbreviations to be used subsequently. The 1979 data are presented in Table 2. 
These data have the advantage of being familiar to most people involved with MDS, yet 
with the inclusion of the 1979 data, offer the potential of something new as well. 

Prior to the analysis, data were converted to proportions of citations given. This 
served to eliminate any effects due to differences in number of pages or number of articles 
per year. The first step was to determine the appropriate dimensionality for each data set 
independently. Solutions in one, two, and three dimensions were obtained. These solutions 
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Table i 

Journals Represented in Citation Data Sets 

JOURNAL ABBREVIATIONS YEARS 

American Journal of Psychology AJP 

Journal of Abnormal and Social Psychology JASP 

Journal of Abnormal Psychology JABN 

Journal of Personality and Social Psychology JPSP 

Journal of Applied Psychology JAPPL 

Journal of Comparative and Physiological Psychology JCPP 

60 

60 

60 

60 

60 Journal of Consulting Psychology JCP 

Journal of Consulting and Clinical Psychology JCCP 

Journal of Educational Psychology JEDP 60 

Journal of Experimental Psychology JEP 60 

Psychometrika PKA 60 

Psychological Bulletin PB 60 

Psychological Review PR 60 

Multivariate Behavioral Research MBR 

64 79 

64 

79 

79 

64 79 

64 79 

64 

79 

64 79 

64 79 a 

64 79 

79 

79 

79 

ajEP: General in 1979. 

were obtained using the squared distance model (4), with constraints b = - 1 (because the 
data are similarity-like), S = I, one element ofe  set to zero, and an upper triangle of A set to 
zero to fix the origin and orientation. These constraints were necessary for identification of 
the mode l  The fit as indexed by the correlation of model to data, for each year and one to 
three dimensions is shown in Table 3. These values suggest a reasonably good fit, but they 
do not clearly indicate a best choice for dimensionality. However, the third dimension in 
the three-dimensional solution had no obvious interpretation, and for that reason a two- 
dimensional solution was chosen as best for the present purpose. 

Results for the 1960 data are plotted in Figure 1. There seems to be a hard-soft or 
clinical-experimental dimension roughly parallel to the line between JCPP and JCP. A 
dimension orthogonal to that serves to separate PKA from the rest. Such might reasonably 
be considered a quantitative or psychometric dimension. 

The goodness of the fit or of the interpretability of the dimensional solution, of course, 
says nothing about the skew-symmetric component of the model. A model equivalent to the 
two-dimensional model, but with e set to zero, was fit to each of the three data sets. Fit for 
these models are also given in Table 3. The correlations are much lower, clearly indicating 
that the vector e plays an important role in accounting for these data. The values of e are 
plotted in Figure 2. In this particular application a high value of e indicates a journal that 
receives proportionately fewer citations than it gives. So for all three years, JEDP, JAPPL, 
and AJP are in this position. In the two earlier years, JEP was the most "over-cited" 
journal, but it did not hold this position in 1979. The most likely reason for this change is 
the change in the definition of the journal-- in  1979, only JEP-General was counted. An- 



1979 Citation Data. 

received. 

D A V I D  G. WEEKS A N D  P. M. BENTLER 205 

Table 2 

Rows represent journals giving citation; columns represent citations 

AJP JABN JPSP JAPPL JCPP JEDP JCCP JEP PKA PB PR MBR 

i. AJP 31 i0 i0 i 36 4 1 119 2 14 36 0 

2. JABN 7 235 55 0 13 4 65 25 3 50 31 0 

3. JPSP 16 54 969 28 15 21 89 62 16 149 141 16 

4. JAPPL 3 2 30 310 0 8 5 7 6 71 14 0 

5. JCPP 4 0 2 0 386 0 2 13 1 22 35 1 

6. JEDP a I 7 61 I0 2 i00 6 5 4 18 9 2 

7. JCCP 0 105 55 7 3 10 331 3 19 89 22 S 

8. JEP 9 20 16 0 32 6 i 120 2 18 46 0 

9. PKA 2 0 0 0 0 6 0 6 152 31 7 i0 

i0. PB 23 46 124 117 138 7 86 84 62 186 90 7 

ii. PR 9 2 21 6 3 0 0 51 30 32 104 2 

12. MBR 0 7 14 4 0 0 24 3 95 46 2 56 

aNumbers i-3 only. 

other possibility is that within the journals represented, JEP no longer holds the same 
position of dominance or centrality that it once did. 

The third step was to conduct a longitudinal restricted analysis. It was hypothesized 
that those journals represented in the two later data sets as well as in 1960 would not move 
from their 1960 positions, but that the relative size of the dimensions would vary. Examin- 
ation of the values of e for the three years indicated that stability over time was not to be 
expected. The specific constraints for this model were: for 1964, the location of all eight 
journals was set equal to their locations in 1960, (all of A fixed) but the diagonal of S was 
free. As before, b and one element of c were fixed, and k was free. This specification was 
repeated for the 1979 data, except that the locations of those journals not present in 1960 
were left free. Fit of these models is also shown in Table 3. These numbers should be 

Table 3 

Correlations of Predicted Data to Data for Various Models 

MODEL DIMENSIONS 60 64 79 

Unconstrained 1 .6504 .6546 .5292 

2 .7408 .7498 .6521 

3 .8123 .8387 .7363 

No c 2 .5651 .5567 .5397 

Constrained 2 .7126 .6396 
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FIGURE 1 
Location of journals in two dimensions. Dot indicates journals in 1960 and 1964. Triangle indicates journals 

included only in 1979. 
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FIGURE 2 
Values of ¢ for journals for all three years. 
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compared to the correlations for the unconstrained model in two dimensions. As can be 
seen, the decline in fit due to the restrictions is very slight. It can be concluded that the 
constrained models are almost as good as the unconstrained models. The constrained 
models are much more parsimonious, using 10 and 22 parameters for 1964 and 1979 
respectively, as opposed to 21 and 33 parameters for the unconstrained models. The values 
of the diagonal elements of S were .86 and .92 for the 1964 data, and .84 and 1.10 for 1979. 
The journals unique to the 1979 data set are also plotted in Figure 1. Their locations appear 
reasonable--JCCP, JPSP, and JABN appear near the clinical-social cluster of previous 
years; MBR appears near PKA but offset a bit towards JAPPL. 

Discussion 

The model proposed here represents one simple way to conceptualize and evaluate the 
process of data generation for asymmetric proximities. In the completely unconstrained 
case, the model can be conceived as one that provides a formal mathematical basis for the 
common procedure of symmetrizing asymmetric data prior to multidimensional scaling. In 
fact, it can be shown that the parameter estimates for the asymmetric and symmetric 
components of the model are separable in this case, and the skew-symmetric scale values 
can be estimated by the differences between the row and column sums of the proximities. In 
more complicated constrained models, however, where functional relations between pa- 
rameters of the model are specified, this simple estimation method is not generally avail- 
able, and a formal estimation process such as the one proposed here must be adopted. 

The analyses were presented primarily for the purpose of illustrating possible uses of 
the model. Even still, the analyses have revealed more of the structure of the journal citation 
data. Something like the hard-soft dimension found by Holman [1979] was found here, but 
in the present analyses, Psychometrika appears at the hard end, rather than the soft end. 
This seems a more reasonable placement. Holman also reported that the results were very 
similar for both the two older data sets. Our analyses allow a more precise statement: 
except for a scale factor, the location of journals on the dimension are virtually identical for 
all three years; the ordering on the skew-symmetric scale (e) is only moderately consistent 
from year to year. 

There are several fairly straightforward generalizations of the models (1) and (4) which 
might be worthwhile to investigate. Following Gower [1977], one could decompose the 
skew-symmetric part of the data into several components. Several generalizations to indi- 
vidual differences models [cf. Bloxom, 1978] are possible. For example, 

hljy : br[(a, - a~)Sy(ai --  aj) ']  r/2 -t- ky --[- c l y -  cjy -t- e~iy 

assumes all subjects (y) share a common euclidean space, but the space may differ across 
individuals in the scale of dimensions and their degree of obliqueness (Sy, kr); and the 
skew-symmetric component may be different for each subject (ciy, cjy). Or a slightly more 
constrained version would write the skew-symmetric component as b*(c~ - ci), a common 
scale but with individual weights. 
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