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Coefficient ~ is generally defined in terms of procedures of computation rather than in terms 
of a population. Here a population definition is proposed. On this basis, the interpretation of K as 
a measure of diagnostic reliability in characterizing an individual, and the effect of reliability, as 
measured by ~, on estimation bias, precision, and test power are examined. Factors influencing the 
magnitude of ~ are identified. Strategies to improve reliability are proposed, including that of 
combining multiple unreliable diagnoses. 
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Unreliability of  observations is a matter of  import both in clinical contexts, in which 
an observation is to be used to assess and make decisions about an individual subject, and 
in a research context, in which observations are to be used to assess and make decisions 
about populations. The classical coefficient of reliability for quantitative data, the intra- 
class correlation coefficient, p, is defined on the basis of a population model of  an observa- 
tion as an additive function of information and independent error [e.g., Cronbach, 1972]. 
On the basis of this model, p is interpretable as a measure of agreement between multiple 
observations of  a single subject, and as a measure of  the quality of  an observation in char- 
acterizing a subject. As such, it is a reflection of the clinical value of such an observation. 
At the same time, the effect of unreliability on the precision of estimators of  population 
parameters or on power of statistical test procedures can be explicitly and quantitatively 
related to p. Thus p is readily used as a basis of research design considerations. 

Because p is explicitly defined in terms of certain population parameters, it is possible 
to identify factors which influence its magnitude. On this basis, strategies to increase relia- 
bility of a single measurement may be evolved. Finally, it is possible to compute the relia- 
bility of  the average of  multiple independent observations per subject from the reliability 
of  a single such measurement [Spearman, 1910; Brown, 1910|. If  the reliability of  a single 
measurement is not sufficient for clinical and research applications, one may base on such 
considerations a decision to use multiple observations effectively. 

The coefficient kappa, K, [Cohen, 1960; Everitt, 1968; Fleiss, 1973; Fleiss, et. al., 1969; 
Light, 1971; Hubert, 1977] is proposed for categorical response data where such response 
is the assignment of  the subject to one of  k mutually exclusive and exhaustive categories. 
In contrast to p, it is generally defined not in terms of  a population model, but in terms of  
the procedures used to compute the statistic, as that parameter of  which the statistic is a 
consistent estimator [Fleiss, 1975]. By its definition, it is readily interpretable as a measure 
of  agreement between multiple observations of  a single subject. Its value as a measure of 
the quality of  an observation in clinical or research contexts is not clear. Furthermore, it is 
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difficult to evolve specific strategies to improve the reliability of  measurement without a 
definition of  the population charactelSstic x represents. 

A population model for r will be proposed analogous to that for O but appropriate to 
categorical response measures. On the basis of  this model, it will be demonstrated that r, 
like p, is interpretable as a measure of  the quality of  individual response, and therefore a 
measure of  the clinical value of  such an observation. A few common research designs will 
be examined as an illustration of  procedures for evaluating the effects of  unreliability as 
measured by x on the precision o f  estimators and the power o f  tests. Kappa, like p, di- 
rectly indicates the loss of  precision or power of  statistical procedures associated with ob- 
servation error. 

Finally the problem of  improving reliability of  a single observation or improving reli- 
ability by use of  multiple observations is considered. 

Population Models 

In the classical model for reliability of  interval data [Walker & Lev, 1953; Cronbach, 
1972], an observation x, is described as: 

x , =  ~,+ E, 

where ~i is Subject i 's characteristic response, with 

g(~,) = tt, var(~,) = o{, 

and e,, the error of  measurement, assumed to be independent of  ~,. If  multiple independ- 
ent observations are drawn for Subject i from the population which a single observation is 
meant to represent (multiple simultaneous observations by different observers, or multiple 
test forms of  instruments of  measurement, or multiple observations over a span of  time by 
one observer, etc.), errors are assumed to be independent with g(~,) --- 0 and var(~,) = o~. 
The reliability of  the observations is defined as 

P= d + d  

In contrast to this theoretical approach to the definition of  p, ~ is generally defined in 
terms of  the computation procedure used for its estimation. If  one draws two or more in- 
dependent observations per subject from the population of  observations to which a single 
observation is meant to generalize, then 

Po - Pc 
K ~ - - -  - -  

l - p c  

where Po is a measure of  observed agreement and Pc is a measure of  the agreement ex- 
pected by chance [Cohen, 1960; Fleiss, 1973; Fleiss, et al., 1969; Light, 1971; Hubert, 
1977]. It is clear that x is defined to be a measure of  agreement between multiple observa- 
tions per subject, as is P. 

Let us propose the following population model. The entire population of  possible ob- 
servations for subject i which a single observation is meant to represent is described by a 
vector if,. = (H,,, Ha, "", 1-I,k) where H,, is the proportion of  observations classifying sub- 
ject fs  response in category j, j = l, 2, ..., k, ~.~II,j = I. Multiple observations drawn with 
replacement from this population have a multinomial distribution. I f  one draws a random 
observation from this hypothetical population, the probability that subject i is classified in 
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categoryj  is H,j. Let 

Pj = ~ r k ) ,  (e; = l - e ) ,  

= variance (13o), 

where expectations are taken over the population of subjects. Then let 

~J= P d'~ ' 

the kappa-coefficient for category of response j, and overall kappa be defined by: 

E ~  
J 

E ep; 
J 

The definition is in accord with usual definitions of r. For example, the probability of 
agreement between two independent observations for subject i is 

E r ~  
J 

and hence the overall probability of  agreement is 

and the agreement expected by chance is 

J 

Thus 

K = ~ ~  ~ _ _ . L . ~ _ .  J ....... 

l - E P~ E PP; E t,p; 
f J 

Overall • then is a weighted sum of  individual d-coefficients obtained for one re- 
sponse category at a time, having value zero (or one) if and only if  each individual Kj has 
value zero (or one). Interpretation of the overall K depends on interpretation of  the mean- 
ing of individual d-coefficients. Hence, hereafter, we will consider the problem of inter- 
preting an individual d-coefficient only, i.e., we consider a dichotomous response where l-I, 
is the risk of subject i being given a positive "diagnosis" (D+), 

~H, )  = P; vat(13,) = o2; 3 ( H , -  P y  = fl; r = ~-fi- 

In general, the nature of the distribution of H; is not known. However, interpretation 
and applications of K do not require any identification of the specific distribution, beyond 
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the requirement that the first three moments  exist and that P P '  exceeds zero. Consid- 
eration of  tactics to identify sources of  unreliability and therefore to improve reliability 
are facilitated by closer study of  a few specific and important  special cases. 

Case 1: True Dichotomy 

Suppose the population were a true dichotomy. A proportion P* of  subjects are in a 
subpopulation having I-l, = p; a proportion P* '  = 1 - P* having II,  = q '  = 1 - q. The 
parameters  P*, p and q are closely related to the parameters  prevalence, sensitivity, and 
specificity as used in assessing the quality of  dichotomous medical diagnostic procedures 
[Galen & Gambino,  1975]. In this case P = P*p + P* 'q ;  i.e., observed prevalence P is 
generally a biased estimator of  true prevalence P*. Also, 

g(H~  = P*p~ + p,,q,Z 

and hence 

a n d  

var(II,) = p .p2  + p,,q.2 _ ( p . p  + p.,q,)2, 

= p . p . , p 2  + p . p . , q , 2  _ 2P*P*'pq' ,  

=P*P* ' (p  + q - 1) 2, 

p , p * ,  
x =  p p ,  (p + q - l )  2 . 

It is clear that r -- 1 if  and only i fp ,  q = 1, i.e., if  there are no misclassification errors. 
Otherwise, r reflects both  prevalence (P*) and classification errors. At P* -- O, r is O, in- 
creasing thereafter to a max imum value of  

Kma~ = {(pq),/2 _ (p,q,)l/2} 2 

when P* = Oq/(Oq + or), where e~ = p(1 - p), ~ = q(1 - q). Thereafter r decreases to 0 at 
P* = 1. 

Case 2: Dichotomization o f  a Continuum 

In Case 1 a dichotomous observation is used for a population o f  subjects which is in- 
deed a dichotomy. However, it often happens that such an observation is used when the 
population is not, in fact, a dichotomy. For  example, a diagnosis o f  hypertension indicates 
that blood pressure (an interval response) exceeds a criterion value: a positive diagnosis is 
attributed to patient i if  

x~ _> # + hox, 

where we will assume that x, satisfies the assumptions underlying p. Therefore, 

P = Pr {x, _ # + hox} = 1 - O(h), 

where • is the cumulative distribution function of  the standard normal  distribution. The 
relationship between ~: for the diagnosis and p of  the underlying measure is [Kirk, 1973]: 

1 " 1 
r - -  2~-PP'fo ( 1 -  x2)'/2 exp  ( ~ + x l  dx" 

When 0 < p < 1, 
2 

O <  x _ - a r c s i n p  < O, 
qr 
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with equality only if h = 0, P = 0.5. The divergence between x and p increases as P ap- 
proaches 0 to 1. 

Case 3: Confounded Population and Error Characteristics 

In both Cases 1 and 2 a distinction is made between characteristics of the population 
(prevalence P in Case 1, ~ in Case 2) and decision-making errors (p, q in Case 1, ~ in 
Case 2). More generally, population characteristics and decision-making errors may be 
confounded. For  example, the distribution of  H, in the population may be described by a 
distribution of  the beta type: 

I I ' - ' ( 1  - H )  m-~ 
0_< H _< l, o o > l , m > 0 .  

B(I, m)  " 

Then 

l 
e ~ b  

l + m '  

l + m +  1 

In this case, x cannot actually achieve the values of 1 or 0, and it is not possible to differ- 
entiate population characteristics from error characteristics. 

Theoretically one may identify the appropriate model by obtaining a large number 
of  independent observations per subject and examining the distribution of  fI,, the ob- 
served proportion of  positive diagnoses for each subject. In Case 1, the distribution will be 
bimodal with modes centered at p and q'; in Case 3, it will be approximately of  the beta 
type. In Case 2, 

1 - l*I,~pQ, t - ¢. -k hox) 

and hence 4- ' (1  - r[,) is approximately normally distributed with mean hax and variance 
e , .  

In practice however, it may be difficult to obtain a large enough number of  independ- 
ent assessments per subject to distinguish between, for example, Case 2 and Case 3 with I 
and m each exceeding 1, or between Case 1 and Case 3 with / or m < 1. As noted above, 
this does not comprise the interpretation of  the population kappa as it affects clinical deci- 
sion making or research design considerations. Except as these special cases are used to 
illustrate certain points, the principles which follow are valid whatever the nature of  the 
distribution, provided only the first three moments exist and P P '  > O. 

The Clinical Significance o f  x 

For  an interval response satisfying the model underlying p, 

~(~,Ix3 = (1 - p)# + px,, 

var(~,lx3 = (1 - p)~.  

The difference in characteristic response (~i - O between two subjects can be predicted 
from the observed response difference x, - xj to an extent reflected by p: 

- x , )  = p ( x ,  - x , ) ,  

var(~, - ~jlx,, xj) = 2(1 - p)~.  
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Similarly for a dichotomous response under the model proposed for r, 

~ ( r I , I D + )  = g'(II '~) - °~ + p2 = P(l  - x) + x, 
g~(H;) P 

and 

g ' ( n , I D - )  = g l r I , ( l  - n , ) ]  
~(1 - -  1-I,~ = P ( 1  - r ) .  

The difference in expected value of  the risk of  positive diagnosis between a subject 
classified D +  and one classified D -  is x. Also 

~ ( I I ~ I D + )  = g ' ( I I ,~  = /3 - 3 P o  2 + p3 
P p, , 

~ ' ( I - I ~  I n - )  = 
~ [ y i 2 ( 1  _ 1-[31 o 2 + p 2 p , _  f l  _ 3Po 2 

p ,  p ,  , 

and hence 

var(H,lD+ ) = P P ' x  - P ' 2 x 2  + fl-- p ,  

var( i i , lD_ ) = p p , r  _ p2~2 _ f t .  p,  

Unlike p, the precision of  a single observation as an estimate of  characteristic response 
(i.e., risk II,) depends on what that observation is. I f  ~ = 1, both variances are equal to 
zero; if  r = O, (since fl = O) once again both variances are zero. 

Thus, in general, both p and K are measures of  the sensitivity of  the system of  observa- 
tion to existing intersubject differences in the population. Either insensitivity of  the system 
of  observation or nonexistent differences result in a lack of  reliability. 

The  Research  Signif icance o f  x 

Unreliability of  observation attenuates the precision of  estimators, and reduces the 
power of  statistical tests of  hypotheses [Cochran, 1968]. The correlation coefficient, for ex- 
ample, between two unreliable observations, each satisfying the assumptions underlying p 
and having coefficients of  reliability p. and p~ (both greater than zero) is, let us say, To. 
This correlation coefficient is related to that between the two true subject characteristics, 
z, by the relationship 

To = "r[(p,p2)'/2]. 

This is the phenomenon known as attenuation of  correlation, i.e., one always under- 
estimates the magnitude of  the true correlation [Walker & Lev, 1953]. I f  a test of  the null 
hypothesis ~- = 0 is based on such unreliable data, the significance level of  the test is cor- 
rect since ~" is zero if and only if Zo is zero. The power of  this test depends approximately 
on the value of  (N)~/2"r[(p,pz)~/a ]. Thus to achieve the power of  test obtainable with reliable 
observations and N subjects, one would require approximately N / p , p 2  subjects with unre- 
liable observations [Kraemer, 1975]. Similar situations pertain when tests are based on 
unreliable categorizations. 
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TABLE i 

Calculation of Diagnostic Probabilities Given True Probabilities and 
Sensitivity (pl,P2) and Specificity (ql,q2) of the Two Diagnoses 

467 

Response True State 
Diagnosis i Diagnosis 2 Probability Observation Probability 

Positive Positive P++ 

Positive Negative P+_ 

Negative Positive P .-4- 

Negative Negative P 

Q++ = P++PlP2 + P+-Plq2 + P-+qlP2 + P--qlq2 

Q+- = P++PlP2 + P+-Plq2 + P-+qlP2 + P--qlq2 

Q-+ = P++P~P2 + P ' ' + + P--qlq2 +_Plq2 P_+qlP2 

t t 

Q__ = e4q_p~p~ + P+_plq2 + P_+qlP2 + P _qlq2 

The x2-test: 

If, for example, the population could be described as a true double dichotomy (Case 
1) with response probabilities as in Table 1, the power of the x2-test of independence with 
one degree of freedom depends on the non-centrality parameter of the XLstatistic approx- 
imately: 

h = N(P++P__ - p+_e_+)2 

where P, is true prevalence of  the first diagnosis and/ '2 the true prevalence of the second. 
When the misclassification probabilities of the first diagnosis are (p;, q~) of the second di- 
agnosis are (p~, q~) what one observes is determined by the true response pair of  the sub- 
ject and the misclassification probabilities (Table 1). The non-centrality parameter of  this 
X2-test is approximately: 

Ao = N(Q++Q__ - Q+_Q_+)2 
Q,Q'IQ~Q'2 

where QI and Q2 are observed prevalences of positive diagnoses. It may be computed that: 

where xt and ~2 are the reliability coefficients of  the two diagnostic decisions. Once again, 
as in the case of the correlation coefficient between unreliable measures, to achieve the 
power obtainable with N subjects and a totally reliable classification system, one would 
need approximately N/~,x2 subjects with systems of observation having reliability coeffi- 
cients x, and x2. 

t- Test: 

If  one used an unreliable diagnostic procedure to identify two subgroups of subjects 
(e.g., schizophrenic vs. non-schizophrenic patients) in order to compare the groups as to a 
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certain quantitative response (e.g., neuroendocrine level) using a t-test procedure, the 
power of the test would be attenuated both by the unreliability of the diagnosis (x) and 
that of  the response measure (p). 

Let us suppose that a subject's characteristic response (~,) is linearly related to his risk 
of  positive diagnosis (II3: 

~, = a + AII ,  + ~/~, 

where ~/, measures the prediction error and 

~(*/3 = 0, var(O = ~. 

If  one had a totally reliable diagnostic procedure, schizophrenic patients would have l-I, = 
1, others I-I, = 0, and the true response differential would be A, the within group variance 
of  characteristic responses, ~ .  The power of  the t-test would depend on degrees of  free- 
dom (2(N - 1)) and on the noncentrality parameter of  the t-distribution: 

N A 
X = ~-- ~ where 8 = - - .  

e, 

In the real situation, however, one cannot observe either ~, or 11~, but observes x, = ~ 
+ ~, in the positive (D+) and negative ( D - )  diagnosis groups. Then: 

~(x,IO+) -- a + Ag~(P,ID+), 

~ ( x , l D -  ) = t~ + A ~ ( p , I D -  ). 

Thus the observed response differential is 

Ao -- AK, 

i.e., the unreliability of  the diagnosis attenuates response differential between groups. Also 

~(x,~lD+) - g '((a + Ap, + ~/, + E,)2ID+) 

-- a ~ + 2aAg'(p, lD+) + A ~ var(P, ID+) - A=g'~(P, ID+) + ~ + 

and thus 

Similarly 

var(x,ID+) - A 2 var(pdD+) + ~ + ~,  

= a2 var(p,ID+) + ~----~. 
P 

var(x,ID-) = A 2 var(p,ID-) + ~ + ~ ,  

= A2 var(P, ID-)  + ~---~" 
P 

The only effect of  unreliability of  the measure is to increase intragroup variance. The 
effect of  unreliability of  the diagnosis, however, is (i) to attenuate observed response dif- 
ferential, (ii) to increase intragroup variance even further, and (iii) to induce inequality of  
variance in the two groups. The latter effect might comprise the validity of  the t-test pro- 
cedure if  group sizes were unequal [Scheffr, 1959]. The power would depend on the de- 
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grees of freedom [2(N - 1) as before] and the non-centrality parameter 
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A/¢ 

l 
= x ~[(p),,2] 

where var = .5[var(p,]D+) + var(P,ID-)]. Thus with reliable diagnosis and measure, Xo = X 
as before; with reliable diagnosis (x --- 1) and unreliable measure Xo = (p)'/2X; with unre- 
liable diagnosis and reliable measure (p = 1) 

Xx 
~o = (g2 ~ + l ) , ~  

Once again, to achieve the power attainable with a reliable measure and a reliable 
diagnosis with N subjects, one would need a much larger sample with an unreliable mea- 
sure and /or  diagnosis, and the increase would be directly determined by the degrees of  
unreliability. 

Factors Affecting Reliability 

Reliability As It Reflects Errors Of Observation 

Coefficient O is 1.0 if and only if a, = 0; similarly, coefficient r is 1.0 if and only if 
each p, is either I or 0. In both cases perfect reliability (p, x = 1) occurs only if dis- 
agreement is impossible. 

At the other extreme, a p or x near zero may indicate deficiencies in the instrument of  
measurement or in the training of  observers, i.e., error of  measurement (~  ~ 00). Thus 
the obvious first strategy to improve reliability is to standardize conditions of  observation, 
to select the best available instruments of  measurement (whether this be a scale, assay 
procedure, or pencil-and-paper test), to clarify and specify criteria, to select and train ob- 
servers. 

Reliability As It Reflects Population Characteristics 

A low magnitude of  p will also result if intersubject variability (~,  o 2) is small. Fur- 
thermore, when the error incorporates inconsistency of  subjects' responses over time, as in 
test-retest reliability (as opposed to split-half or simultaneous observer reliability), the 
achievable lower bound of  ~ ,  i.e., that which exists when all error of  observation is re- 
moved, may exceed zero. Hence a low value of  p or x may be close to optimal achievable 
reliability given the nature of  the population in terms of  intersubject variance and /or  in- 
consistency of  subjects' responses. For example, in Case 1, i f p  and q = .95, when P* = 
.05, x --- .448. It is difficult to identify any medical diagnostic procedure with sensitivity 
specificity exceeding these levels [Galen & Gambino, 1975]. What would be regarded as 
"poor"  reliability (.448) using suggested standards [Landis & Koch, 1977] would here re- 
fleet, not error, but low prevalence, and may be near optimal for such a population. 

Thus poor  reliability may reflect the nature of  the population, not of  the observation 
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procedure. In such cases one would need to compensate for unreliability by increasing 
sample size in research applications or by using multiple observations per subject in re- 
search or clinical applications. 

Reliability As It Reflects the Choice t f  Measure 

Finally, if the system of  measurement does not reflect the true nature of  the popu- 
lation, this too will result in a poor reliability. For  example, in Case 2, when p = .70, 
which is usually considered acceptable test-retest reliability for a quantitative response 
measure, the maximal attainable value of x is .494 (when there is a median split of  the 
population). In this case the apparent poor reliability results not because of  error or low 
prevalence, but because a dichotomous response measure is applied to a population not in 
fact a dichotomy. The resulting low coefficient of  reliability reflects a loss of information. 

Similarly if a truly dichotomous population is described by more than two response 
categories or by a quantitative measure, the reliability of  the resulting system of  observa- 
tion will be diminished. 

Exploration of  possible alternative methods of  describing observations may therefore 
be necessary to identify the most appropriate system of  observations. 

Use of Multiple Independent Observations 

If  no single observation can be identified with satisfactory reliability, it may yet be 
possible to utilize multiple independent observations per subject to yield one highly re- 
liable observation for clinical or research use. 

For example, if one were to use the average of  r independent observations for Subject 
i, ~,, each satisfying the model underlying p(p # 0), the coefficient of  reliability of  ~, is 
[Spearman, 1910; Brown, 1910] 

rp 
P ' = l + ( r - l ) p "  

Thus if p = .400, the average of  3 such observations has reliability p3 = .667, and 5 
has p5 = .769. How reliable an observation one can produce under this strategy is limited 
only by the practical consideration of  how many independent observations per subject are 
feasible. 

Similarly, one could use r independent dichotomous observations for subject i, using 
as the subject's response measure the proportion of  positive diagnoses, fl,. Then for sub- 
ject i, g(fI3 = H, and var(fI,) = II,(l - H,)/r. This represents an interval response mea- 
sure, but not one satisfying assumptions for p. However, let x, = 2arcsin (1"I,) 1/2. It is 
known that [Walker & Lev, 1953] x, (for large r) is approximately normally distributed 
with mean ~i = 2arcsin (II,.) '/2 and variance 1/r. This interval measure satisfies underlying 
assumptions o fp  and has reliability coefficient 

Kr = r ~  
r ~ +  1 

However 

i.e., 

- -  v a r  = 

r/¢ 
K ~  

1 + r K '  
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or for large r 

r~ 

1 + ( r - -  l)x 

Thus the Spearman-Brown formula holds approximately for categorical responses as well. 
Again, how reliable a measure one can base on multiple use of  a single measure of  low 
but nonzero reliability, is limited only by practical feasibility. 

In the case of  multiple (k) categories, 1"I, is a k-dimensional vector with elements 
equal to the proportion of the r observations classifying subject i into each of  the k re- 
sponse categories• The covariance matrix of  the vector 1"I, is inversely proportional to r, 
the number of  independent assessments per subject• While the Spearman-Brown formula 
has not, to our knowledge, been extended to multivariate responses of any kind, what is 
clear is that use of  multiple observations per subject, whatever the nature of  the response, 
will reduce unreliability by reducing the error in characterizing each subject• Therefore 
the principle of  the Spearman-Brown approach extends even if  the precise mathematical 
formula may not. 

Summary 
The coefficients of reliability p and x are measures of  the sensitivity of the system of 

observations to existing differences in the population• As such, both are useful as in- 
dicators of  the clinical and research value of  an observation. In the research context par- 
ticularly, these measures of reliability can be used to indicate explicitly and quantitatively 
the degree of  loss of precision or power of  statistical procedures. However, in evaluating 
the magnitude of p or x, one notes that the maximum magnitude of  p or x achievable by 
efforts to improve instrumentation or training of observers is determined by the nature of  
the subject population in terms of  its homogeneity and intrinsic instability, and by the 
level of  measurement selected• 

However, other strategies to overcome the effects of  low reliability are available. In 
research applications one may increase sample sizes to compensate for the effects of  unre- 
liability. In both clinical and research contexts, one can use the strategy of combining 
multiple observations per subject of  low but nonzero reliability to yield one highly re- 
liable observation. 

Such evaluations and strategies depend on a conceptualization of  the role x plays in 
the population, since the concern is with applying the information which may be gained 
in a reliability study on one sample to consideration of  use of  the system of observations 
for future evaluations of  patients or future uses in research. 
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