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MAXIMUM LIKELIHOOD ESTIMATION OF THE POLYCHORIC
CORRELATION COEFFICIENT

ULF OLSSON

UNIVERSITY OF UPPSALA

The polychoric correlation is discussed as a generalization of the tetrachoric correlation coef-
ficient to more than two classes. Two estimation methods are discussed: Maximum likelihood esti-
mation, and what may be called “two-step maximum likelihood” estimation. For the latter
method, the thresholds are estimated in the first step. For both methods, asymptotic covariance
matrices for estimates are derived, and the methods are illustrated and compared with artificial
and real data.
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1. Introduction

Especially in the behavioral sciences, data are often recorded as ordinal variables
with only a few scale steps. Examples of such variables are attitude items, rating scales,
Likert items and the like. Typical cases are when a subject is asked to report some attitude
on scales like

(a) approve don’t know disapprove or
(b) approve approve don’t disapprove  disapprove
strongly know strongly.

When analyzing this kind of data, a common approach is to assign integer values to each
category [for example 1, 2 and 3 in Example (a) and 1 through 5 in Example (b)] and pro-
ceed in the analysis as if the data had been measured on an interval scale with desired
distributional properties. To quote Wainer and Thissen [1976], in such cases “a quick and
easy approach is to assume normality and be on your merry way”,

Although many statistical methods seem to be fairly robust against this kind of de-
viation from the distributional assumptions—at least in not-so-extreme cases—there are
instances when this approach may lead to erroneous results,

For example, Olsson [1979] showed that application of factor analysis to discrete data
may lead to incorrect conclusions regarding the number of factors, and to biased estimates
of the factor loadings, especially when the distributions of the observed variables are
skewed in opposite directions. This is mainly due to biased estimates of the correlations.
Thus, there seems to be some need for correlation estimates which are more viable when
the observed data are ordinal with only a few scale steps.
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In this paper, we shall discuss the maximum likelihood estimation of correlation co-
efficients from ordinal data. In short, our problem may be summarized as follows: We ob-
serve two ordinal variables, x and y. These are classified into s and r categories, respec-
tively. A cross-tabulation of x by y gives the observed frequencies as denoted in Table 1.
We further assume that underlying x and y there are some latent variables, £ and 5, which
are bivariate normally distributed. The relation between x and § may be written

x=1 iff{<a,
x=2 ifa=ét<a,

x=3 fa,=f(<a,
x=ys5 ifa_, =¢§

TABLE 1

The General Form of the Raw Data: a Cross-tabulation of

x by vy.
Y by by by

X 1 2 3 . r

1 N4 Ny nis Dy
ay 2 Sy Ny Roy
a, 3 N34 Nay
as-1

S ns1 nsr

a; and bj denote thresholds, where

a:boz—wandaszbrz+co
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and correspondingly for y. The parameters g, are usually termed thresholds. The problem
is to estimate the correlation p between £ and 7, given data in the form of Table 1. This is
a generalization of the arguments behind the familiar tetrachoric correlation coefficient to
polytomous variables.

We shall discuss estimation of p by means of the maximum likelihood method. Even
given the method of estimation, the problem may be solved in at least two different ways.
One way is to estimate p and the thresholds simultaneously. Alternatively, the thresholds
are first estimated as the inverse of the normal distribution function, evaluated at the cu-
mulative marginal proportions of the table, and the maximum likelihood estimate of p is
then computed given the thresholds. This may be called a “two-step maximum likeli-
hood” procedure. The latter approach has the advantage of greater ease in the numerical
computations, although the former is formally more correct. One of the points discussed
in the paper is the differences in results from the two methods in some reasonable cases.

In Section 2 we summarize the results of some earlier writers in the area. In Section 3
the likelihood equations are derived, and in Section 4 we derive asymptotic standard er-
rors of the estimates. Section 5 contains a numerical computer study, based on both true
data and on Monte Carlo simulations. There we also analyze some real data. Finally our
results are summarized in Section 6.

2. Earlier Research

2 X 2 Tables: The Tetrachoric Correlation

The tetrachoric correlation coefficient was suggested by Pearson [1901] as a measure
of bivariate normal correlation, when only data from a 2 X 2 cross-classification of the
data are available. Pearson also supplied formulae for the standard error of the correla-
tion,

The tetrachoric correlation may be obtained by solving p from

W o0 ;)= 21 = o1 [ [ exp|- 722 gy

The method suggested by Pearson [1901] was to expand the right-hand side of (1)
into a series expansion in p, the so called tetrachoric series. This leads to a polynomial
equation in p, where the degree of the polynomial depends on the number of terms in the
series expansion.

Hamdan [1970] showed that the tetrachoric r is equivalent to the maximum likeli-
hood estimate of p from a 2 by 2 table. This is not unexpected, since the estimation prob-
lem involves three parameters (p, » and k where 4 and k are the thresholds), and the data
supplies three independent statistics in the table, for example », , n; and n,,. Thus, the
estimation problem is just identified. The advantage of the maximum likelihood approach
is that asymptotic standard errors are easily obtained through the inverse of the second
order derivative of the log likelihood.

The tetrachoric correlation is a biased estimate of the corresponding true correlation.
Brown and Bendetti [1977] showed that the expected cell frequencies are critical for the
bias. If no expected frequencies are less than 5, the bias is negligible. This applies also for
the bias of the standard error if p = 0. If p % 0, Brown and Bendetti recommended the
standard error based on ML-estimation, but even this converges fairly slowly towards true
o, with increasing n. It seems that expected frequencies of at least 10 are necessary in or-
der to obtain reasonable estimates of the standard error,
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Computer routines for the numerical solution of (1) are now available as packed pro-
grams at many computer installations. Froemel [1971] made a comparison of some rou-
tines. The best routine to date is probably that by Kirk {1973], who attacks the problem by
Gaussian quadrature and Newton-Raphson iteration.

r X s Tables: The Polychoric Correlation

Several coefficients have been suggested as measures of association in contingency ta-
bles; we shall here confine ourselves to those which, like the tetrachoric correlation, use an
assumption of an underlying bivariate normal distribution, for which the correlation is to
be estimated.

Pearson [Note 1] suggested that the mean square contingency, which is based on the
usual x?, could be used to estimate p from a polychoric table. Ritchie-Scott [1918] devel-
oped a coefficient based on a weighted mean of all possible tetrachoric correlations which
may be computed from the table. Pearson and Pearson [1922], influenced by the result of
Ritchie-Scott, suggested simpler methods for larger tables.

Lancaster and Hamdan [1964] showed that the mean square contingency does not
work well when the classification is crude. Instead, using the theory of orthonormal func-
tions, they generalized the tetrachoric series expansion to the polychoric case. Pearson’s
corrected ¢* was equated to a series which they called the polychoric series and the corre-
sponding polynomial equation was solved for p. The method does not produce standard
errors of the estimates; confidence intervals are instead obtained by inserting 2.5 and 97.5
percent limits for x* in ¢ and solving the equations. Hamdan [1968] showed that Pear-
son’s [1901] tetrachoric series is a special case of the polychoric one. Hamdan [1971] gave
computing formulae for smaller tables, and Martinson and Hamdan [1975] designed a
computer program for the method. Martinson and Hamdan [1971] used a Maximum
Likelihood approach to estimate p given the thresholds, and did also present formulae for
the asymptotic standard error. The latter formulae, however, do not take into account that
the thresholds are estimated from the data, and that they are thus also subject to random
errors.

In all the above methods, the thresholds are regarded as fixed, although already Pear-
son and Pearson [1922] were aware that this might not be ideal. For the tetrachoric case
this does not matter, since, as noted above, the estimation problem is just identified. For 3
by 3 tables, for example, we have 5 parameters (p and two thresholds for each variable)
but 8 independent proportions, i.e. the problem is over-identified. Tallis [1962] attacked
the problem via maximum likelihood estimation of p and thresholds simultaneously in 2
% 2 and 3 X 3 tables. For 2 X 2 tables the results should be the tetrachoric correlation [cf.
Hamdan, 1970}, but for 3 X 3 tables the results may differ from Lancaster and Hamdan’s
[1964] polychoric correlation.

3. Derivation of the Likelihood Equations

The data consists of an array of observed frequenciesn,:i=1,2, - ,5j =12, -,
r, as given in Table 1.

If we denote by =, the probability that an observation falls into cell (7, /), the likeli-
hood of the sample is

3} L=c- [T I =~
i
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where C is a constant. Taking logarithms,

3) I=lnL=WnC+ 3 3 nlnn

i el

The thresholds for x are denoted by a,, i = 0 -+- s and the thresholds for y by b,, =0 - r,
where g, = b, = —o0 and g, = b, = + oo, It follows that

(4) My = q)z(ai, b/) - (I)z(ai—l, b/) - (Dz(ai’ bj-1) + q)z(ai—n bj—l)
where @, is the bivariate normal distribution function with correlation p.

Case 1: All Parameters Are Estimated Simultaneously

The parameters to be estimated are p, g, **- a,.,, b, --- b,_,. Partial differentiation of /
with respect to these parameters yields

r

®) =y L

=1 =} W:j p

al A

6 o pociBRded A
©) Py 2 Z e

s r

@ -y 3 i

i=1 el 'rrij abm

Since a®,(u, v)/dp = ¢.(u, v) where ¢, is the bivariate normal density function, (see Tallis,
1962, p 344; see also Johnson & Kotz, 1972, p 44), it follows that

3 y
®) LZg das b) — ¢(a.,, b) — ¢(a, bj'-i) + ¢i(ay, b,y).

Therefore, (5) may be written

&) P —._Z:l gl ::_U {¢:(as b) — ¢(ai, b)) — ¢(a, bi1) + ¢x(ai-y, b))} -
In (6), it is evident that

O0ifi## kandi# k + 1, i.e. if the formula for 7, does not contain a,
aq)z(ak, b;) _ 34)2(“1«’ bj—!)

(10) omy _ da, N =t
da,
_ aP(a,, b) + 303, i) ifk=1i-— 1

da, da,

Thus, in (6) it suffices to let / go from & to k + 1. Therefore, (6) may be written
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i 1) (a,, ) ad (A, b‘~1)
11 288845 U 2 7
an aak FZ, { da, oa,
+ Rpvry {_ 0®.(a,, b) + 8®,(a;, bj-l)}
Tha1y da, da,
— 2 (”_k,_ _ nk+IJ) 8®,(ay, b) _ a®.(a,, b.-\)
=1 Ty Thrry da, 04, )

Also, if we let ¢, and @, denote univariate normal density and distribution function, re-
spectively,

(12) R A e

[Tallis, 1962, p 346]. Equation (6) may now be written as
E)_l_ o [T Py b, —pa)) _ (b1 —padl].
13 da, /-Z‘ ('”kj '”k+w) () {(1 - Pz)m} e { a-p)y- ]
o |[@a—pb)|]
° (G552

Equations (9), (13) and (14) constitute the set of first order derivatives of the log likeli-
hood.

From the symmetry it also follows that

S =L

Tim 7T| m+1

Case 2: The Thresholds are Computed from the Marginals

Most earlier researchers in this area [Pearson & Pearson, 1922; Lancaster & Hamdan,
1964; Hamdan, 1971; Martinson & Hamdan, 1971, 1975] have regarded the thresholds as
given from the cumulative marginal proportions of the table. Although theoretically non-
optimal, this approach has the advantage of reducing the computational labor.

In this case, the equation system to be solved is

O 5= L E 200, ) = e ) = s b + 0 )] =0
(15) a,=®(P,)
16) b=0'(P),

where P, is the observed proportion in cell (7, ), and where P,. and P, are observed cu-
mulative marginal proportions of the table, i.e.,

r

an P.=3Y Y P,

kel el

and

(18) P,=% %P

iesd ko]

It
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4. Variance/Covariance Estimates

Case 1

We denote the sample size by N, and introduce the notation & = (p, a,, a,, -+, a,_,,
by b, -, b,,). The matrix I, of expected second order derivatives of / with respect to 4 is
obtained from

N3 v 1 (87 (om,
(19) Iolm.=N § le ﬂv(aa,,,)(aﬁ,.)

[Tallis, 1962, p 348]. The derivatives within parenthesis in (19) are obtained from (8) and
(10).
A large-sample estimate of the covariance matrix of @ is therefore

(20) V=I5
Case 2
We define P’ = (P,,, P, -+, P\, Py, -+, P,, =+, P, -, P,). The estimators are
defined as the solution to the system
Fi(0,P) = g&’;%{ —0
(21) [F(6, P)},=a,~®7'(P) =0

[F3(0, P)L = bj hant @?I(Pj) S O

Let F=(F, F, Fy).
The estimator 4 is implicitly defined from F(d, P) = 0.

Since
o0 dF\"' oF
@2 P (55) P’
it follows from asymptotic theory that the large-sample covariance matrix for 4 is,
aF\~' {oF aFY [aF\"Y
@ @ =(55) (5¢) =) (3]

where X is the covariance matrix of P, and where dF/8P and 6F/a# are computed in the
probability limit.
In (23), oF /a0 is structured as

¥l ¥ ¥
dp> dpda dpdb
0 1 0
249 0 0 I

The second order derivatives in (24) are given in the Appendix. Since n, = N . P,, we get
for the first row of 8F/aP:

aF,

1
(25) P, = '—n': [$(a,, b) — ¢i(a,, bj) = ¢(a, bj—l) + ¢aaiy, b))

Also, since D[f~'(y,)] = 1/D(f(x)), and since aP, /P, = 1, we get
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(26) % =J 0if P, does not contain P, i.e.if k <i
i
_ 9 pyp oy 20 8P
oP, [®7(PO1 = aP, P,
-
i
a [®.(al)]
I .
= s @ otherwise.
Similarly,
oF 0ifm<j
Im
@7 9P, ~ ) ——L_ otherwise.
Y ¢I(bm)

In X, finally, the general element o,,, is obtained from

_[(P.(1—=P,) ifm=n
(28) No,..= { —P,P, otherwise.

5. Some Numerical Results

The formulae of the preceeding section have been used in a computer program for
maximum likelihood estimation of polychoric correlations, written by the author, The
program reads a cross-table (or, at the user’s option, raw data from which the cross-table
is prepared). Starting values for the thresholds and the correlation are computed, and the
program iteratively solves the likelihood equations by a Newton-Raphson algorithm. The
program uses subroutines from the IMSL [1975] library, except for the bivariate normal
distribution function, which was adopted from Kirk [1973]. The output consists of final
threshold estimates, correlation estimate, variance/covariance matrix of the estimates,
and the function value at the maximum. The latter may be used to test the fit of the
model. Empty rows and/or columns of the table are deleted from the computations. The
numerical results consist of the following steps:

(i) Some runs were made with the program where the cell frequencies are expected val-
ues, taken from some division of the bivariate normal surface. Thus, these runs are
made with artificial population data. These runs may be used partly to check the nu-
merical accuracy of the program, but first of all they give the expected variances and
covariances of the estimates, in large samples. If the expected correlations between g
and the thresholds are small this may serve as an indication that simultaneous esti-
mation of p and thresholds is unnecessary.

(ii) Some runs were made with Monte Carlo data, generated from the population data.
These simulations were performed in order to check the theoretical large-sample re-
sults derived in Section 4.

(iii) Finally, some empirical data were analyzed.

Artificial Population Data

Design. The data were chosen according to a factorial design with the following pa-
rameters. The true correlation, p, was chosen as .15, .50 and .85. The number of classes in
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the table, r = 5, was 2, 3, 5 and 7. The thresholds were placed so that, for each variable,
the probabilities of the classes 1, ---, s were the same as those of a binomial distribution
with parameters P and n = s — 1. Parameter P was chosen so that the skewness of the
distribution attained specified values y. This procedure was the same as that of Olsson
[1979]. The combinations of skewnesses used were

(0,0), (1, —1), (1,0) and (1, 1).

Results. The absolute difference between true correlation and the correlation com-
puted by the program was in no case larger than 10, which implies reasonable accuracy
of the program. For reasons of space, we do not exhibit all the variance/covariance matri-
ces of the parameter estimates here. In Table 2 we only give one typical example.

For low values of p, the expected correlations between § and the thresholds are low;
for p = 0 they are zero. For higher values of p, however, these expected correlations are in
some cases more substantial, with a typical peak value of .20. This implies an increasing
degree of dependence between correlation estimate and threshold estimates with increas-
ing p. In the Monte Carlo data we shall study how much this means in practice.

In Table 3 we present the expected variance for g for the different combinations of
parameters, given N = 500. For other values of N, the variances are proportional. The
values are the same for both methods, to the given accuracy.

The case r = s = 2 was included in the computations with the following problem in
mind: Given a set of skewed ordinal data, should the correlations be computed as (a) a
polychoric correlation, or (b} a tetrachoric correlation from data dichotomized near the
median?

It can be seen in Table 3, that the variances are uniformly smaller for the polychoric
than for the tetrachoric correlation. Given highly skewed trichotomous data (y,/y, = 1./
—1. or 1./1.) the loss in efficiency if it is possible to dichotomize at the median is moder-
ate, or may even be a small gain. In general, however, there seems to be a loss in effi-
ciency of alternative (b) as compared to alternative (a) above.

TABLE 2

An Example of the Expected Covariance (in and below the
diagonal) and Correlation (above the diagonal) Matrix for
the Parameter Estimates. Artificial Population Data with
r=g=5, yj=1., *\{2=0. and p0=.15

1 2 aj 3, b, b b3 D,
° .00281 .01895 .04680 .05151-.00368 .05022 .02250-.02482—.04738
a, -00059 .33913 .20104 .06310 .02311 .00822 .00972 .00761 .00379
a. .00040 .01873 .02558 .31104 .11377 .02717 .03449 .02914 .01598
a. .00021 .00277 .00375 .00569 .36431 .05186 .07101 .06473 .03880
a,~-00001 .00075 .00102 .00154 .00315 .06111 .09513 .09126 .06003
b, -00023 .00042 .00038 .00034 .00030 .00774 .38355 .17451 .06619
b, -00007 .00033 .00032 .00031 .00030 .00198 .00343 .45465 .17455
by~-00008 .00026 .00027 .00029 .00030 .00090 .00156 .00343 .38352
b,~-00022 .00019 .00022 .00026 .00030 .00051 .00090 .00198 .00774

o a a
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TABLE 3

Expected Variances for r for the Artificial Population
Data. The Values are the Same for Both Methods.

Y1/Y,
o r 0./0. 1./-1. 1./0. 1./1.
.15 2 .00478 .00635 .00545 .00607
3 .00295 .00429 .00354 .00417
5 .00231 .00344 .00281 .00339
7 .00215 .00318 .00261 .00314
.50 2 .00329 .00494 .00382 .00405
3 .00194 .00313 .00238 .00272
5 .00144 .00238 .00182 .00218
"7 .00131 .00215 .00166 .00201
.85 2 .00080 .00295 .00108 .00096
3 .00046 .00104 .00064 .00063
5 .00028 .00069 .00040 .00047
7 .00023 .00058 .00034 .00041

Monte Carlo Data

Design. The parameters for the Monte Carlo data were chosen using the same facto-
rial design as above, except that r = 2 was excluded. For each combination of parameters,
10 samples of size 500 were generated, using the multinomial routine GGMUL of the
IMSL [1975] library. Each sample was analyzed using both methods.

Results. The estimates of the correlation coefficients in the different samples are dis-
played in Tables 4 to 6, for s = 3, 5 and 7, respectively, along with the mean value and the
variance in each cell. In most cases, the two methods produce estimates which are very
similar. A closer inspection of Tables 4 to 6 reveals, that the differences between the meth-
ods does increase with increasing p. For p = .15 the largest difference is 8 X 107, forp =
.50itis 31 X 107 and for p = .85 it is 43 X 107 This is in agreement with the results given
above. These values might give an indication of magnitude of the difference between the
two methods.

The question of bias of the estimates may be studied in several ways. We have per-
formed the following comparisons:

The mean value of the 10 sample values were tested against the corresponding true
value. Both when the theoretical and when the sample variance were used, 4 of the 36
sample means were significantly different from the true value at the 5% level. Since all the
significant values were higher than the corresponding true values, this might indicate a
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TABLE 4
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Estimated Correlations in Samples Generated with the
Indicated Values of True Correlations and Skewnesses

r=s=3. n=500
The left column in each cell is the two-step estimate,
the right column is the full maximum likelihood estimate.
Y1775
0./0. 1./-1. 1./0. 1./1.
L1277 .1277 .0342 .0343 .1647 .1648 .2021 .2023
.2245 .2245 .1414 .1414 .1319 .1319 .0208 .0208
.2007 .2007 .1754 .1755 .0346 .0346 .1637 1638
.1018 .1018 1912 .1912 .1859 .1859 .1703 .1702
.0767 .0767 .2324 .2324 -.0025-.0026 .1780 .1781
.2032 ,2033 .1649 .1649 .1792 1791 L2122 .2125
.0740 .0740 .1560 .1561 .1566 .1567 .1439 .1441
.1983 .1983 .1700 .1701 .0643 .0643 .1020 .1020
.1718 .1718 .1458 .1458 .1551 .1551 .2000 .2000
.1546 .1546 .1418 .1419 .0622 .0622 .0193 .0193*
§2 .1533 .1533 .1553 .1554 .1132 .1132 .1412 .1413
s“ .0028 .0028 .0023 .0023 .0041 .0041 .0046 .0046
.4840 .4846 .5327 .5325 .4583 .4586 .5285 .5257
.5344 .5345 .5107 .5105 .4714 .4713 .5513 .5487
.5197 .5199 .4851 .4857 .5594 .5599 .4699 .4699
.5326 .5329 .3915 .3915 .4450 .4447 L6112 ,6102%*
.4892 ,4896 .4162 .4161 .4914 .4915 .5604 .562Z
.5399 .5392 .4317 .4319 .5002 .5002 .4205 .4197
.4681 .4678 .4023 .4025 .4748 .4748 .5474 .5484
.5063 .5058 .5023 .5023 .4803 .4803 .4379 .4385
.5156 .5152 .5412 .5420 .5877 .5876 .4638 .4650
.5427 .5424 .6187 .6188* .5115 .5117 .5327 .5329
X .5133 .5132 .4832 .4833 .4980 .4981 .5124 .5121
s2 .0006 .0006 .0047 .0047 .0018 .0018 .0034 .0033
.8326 .8321 .8440 .8440 .8484 .8484 .8544 .8555
.8446 .8449 .8781 .8781 .8400 .8402 .8968 .8958*
.8681 .8677 .8249 .8249 .3828 .8830 .8730 .8714
.8527 .8532 .8791 .8791 .8306 .8307 .8570 .8574
.8739 .8737 .8775 .8775 .8761 .8762 .8656 .8665
.8307 .8301 .8506 .8506 .8573 .8574 .8373 .8360
.8491 .8485 .8764 .8764 .8592 .8594 .8414 .8399
.8715 .8728 .8427 .8427 .8645 .8647 .8680 .8697
.8389 .8393 .8231 .8231 .8452 .8454 .8630 .8619
.8679 .8677 .8433 .8433 .8654 .8657 .8431 .8460
X .8530 .8530 .8540 .8540 .8570 .8571 .8600 .8600
52 .0002 .0002 .0004 .0004 .0002 .0002 .0003 .0003

Underlined entries are significantly different from the true value
(5% level) when the true variance is used. Starred

(*) entries are

significantly different from the true value (5% level) when the

variance estimate is taken from the sample.

both entries in each pair.

The stars apply to
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TABLE 5

Estimated Correlations in Samples Generated with

the Indicated Values of True Correlations and Skewnesses.
r=g=5, n=500

The left column in each cell is the two-step estimate,
the right column is the full maximum likelihood estimate.

Y1/Y5
p

0./0. 1./-1. 1./0. 1./1.
.15 L2540 .2540* .0656 .0657 L1762 .1763 .0325 .0326

71479 .1449 .1865 .1866 L2676 .2678% * "
.1909 .1909 .1738 .1738 1575 .1575 .0767 .0767
L1700 .1700 .1523 .1523 L1399 .1403 L1306 .1307
L2247 .2247 .0941 .0940 .2306 .2305 .1457 .1457
L1760 .1760 .1303 .1304 .2312 .2313 L1773 L1773
L1426 .1426 L0462 .0462 .1927 .1935 L1469 .1471
.1456 .1456 .2315 ,2316 .1419 .1419 .2483 .2483
.1636 .1636 L1306 .1307 L1612 .1612 .2187 .2188
L2072 .2072 L1010 .1010 .1589 .1590 .1603 .1605
X ,1820 .1820* .1312 .1312 L1858 .1859* .1470 .1471
s .0012 .0012 L0029 .0029 L0017 .0017 .0035 .0035
.50 .5574 .5587 .5080 .5085 .4949 .4956 .4008 .4020
.5161 .5159 .5026 .5029 .5040 .5044 Py s vl
.5588 .5581 .5532 .5535 .5487 .5486 L4311 .4320
L5187 .5174 .4987 .4988 ;5708 .5696 L4799 .4804
L5522 .5524 L4027 .4024 .4904 .4899 .5107 .5098
.4844 .4841 .5244 .5251 .4569 .4563 .5023 .5028
L4782 .4780 .4348 ,4352 .5050 .5044 .4790 .4785
.4690 .4689 .6096 .6095* .5421 .5413 .5404 .5412
.5420 .5433 .5222 .5223 .5292 .5292 L5102 .5113
.5400 .5398 .5119 .5123 .5435 ,5442 L5372 .5377
X .5216 .5217 .5068 .5071 .5186 .5184 .4884 .4888
s .0010 .0011 .0029 .0029 .0010 .0010 L0017 .0017
.85 .8738 .8734 .8370 .8373 .8352 .8350 .8582 .8574
.8613 .8615 .8414 .8416 .8462 .8458 .8741 .8730
.8782 .8775 .8600 .8599 .8557 .8570 .8605 .8567
.8717 .8711 .8262 .8261 .8921 .8932* .8321 .8284
.8652 .8654 .8183 .8180 .8599 .8599 .8511 .8507
L8429 .8429 .8497 .8496 .8548 .8560 .8754 .8765
.8445 .8455 .8468 .8471 .8153 .8158 .8558 .8600
.8560 .8562 .8727 .8726 .8552 .8566 .8499 ,8513
. 1 .8859* .8306 .8305 .8659 .8675 .8212 .8208
.8751 .8749 .8297 .8296 .8337 .8335 .8446 .8465
X .8654 .8654*  .8412 .8412 .8514 .8520 .8523 .8521
s .0002 .0002 .0002 .0002 .0004 .0004 .0003 .0003

Note: Underlined entries are significantly different fram the true value
(5% level) when the true variance is used. Starred (*) entries are
significantly different from the true value (5% level) when the
variance estimate is taken fram the sample. The stars apply to both
entries in each pair.
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TABLE 6

Estimated Correlations in Samples Generated with
the Indicated Values of True Correlations and Skewnesses.

r=s=7 n=500

455

The left column in each cell is the two-step estimate,
the right column is the full maximum-likelihood estimate.

. Y1/Y5
0./0. 1./-1. 1./0. 1./1.
.15 .1428 ,1433 L1429 .1430 .2075 .2078 L0702 .0702
.1168 .1169 L2287 .2290 .0984 .0986 L1703 .1703
L1690 .1693 L1676 .1676 L1601 .1601 .1399 .1399
L1031 .1033 L2381 .2385 .1058 .1058 L1872 .1870
L1543 .1546 L2229 .2228 L1334 .1336 L2351 .2353
.2256 .2262 L1140 .1141 L1963 .1964 L2274 .2275
L1778 .1779 L1557 .1557 .1292 .1294 L1645 .1644
.1426 .1428 L2274 .2274 L1779 .1779 L1572 .1573
.1257 .1259 L1927 .1931 .1676 .1679 L2023 .2026
.2409 .2413*  .1105 .1105 .0999 .1001 L0295 .0296 *
X .1599 .1602 .1801 .1802 .1476 .1478 .1584 .1584
s® .0018 .0018 L0021 .0021 .0014 .0014 .0038 .0038
.50 .4542 .4555 .5216 .5216 .5022 .5049 .5289 .5287
.5037 .5041 .4829 ,4829 .5083 .5097 .5072 .5066
L4793 .4802 .3976 _.3984*  .5126 .5148 .5429 .5399
.5283 ,5288 4993 4991 .5698 .5697 .4958 .4956
.5607 .5611 .4809 .4807 L4982 .4990 .6026 .6051 *
.5314 .5335 L4220 .4222 .4688 .4692 ~2949 .2947
.4905 .4908 L4707 .4712 .4978 .4983 .5658 .5653
L4223 .4226%  .4916 .4918 .4948 .4949 .5566 .5583
T4678 .4686-  .4804 .4806 L4424 4417 .5670 .5680
.5415 .5430 .4820 .4824 .5384 .5408 L4700 .4722
X .4980 .4988 L4729 .4731 .5033 .5043 .5332 ,5334 *
s? .0017 .0017 .0012 .0012 L0011 .0011 .0015 0015
.85 .8470 .8476 .8493 .8493 .8362 .8388 .8313 .8286
.8718 .8728 .8418 .8421 .8523 .8528 .8438 .8434
.8323 .8334 .8916 .8915* .8633 .8632 .8713 .8700
.8267 .8270 .8621 .8621 .8414 .8427 .8579 .8596
.8745 .8750 L8131 .8130 .8730 .8727 .8743 .8786
.8445 .8457 .8859 .8859 .8671 .8578 .8390 .8388
.8106 .8105*  .8545 ,8549 .8237 .8279 .8548 .8555
. . * .9210 .9210%* .8719 .8712 .8321 .8326
.8215 .8228 T8502.8503 .8713 _g711 .8568 .8582
-8506 .8520 .8585 .8585 .8285 .8289 .7953 .7967x
X .8457 .8464 .8628 .8629 .8529 .8537 .8457 .8462
s2 0005 .0005  .0008 .0008  .0003 .0003  .0005 .0005

Note: Underlined entries are significantly different from the true value
evel) when the true variance is used. Starred (*) entries are
significantly different fram the true value (5% level) when the
variance estimate is taken from the sample. The stars apply to both

entries in each pair.
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tendency towards a slight positive bias. The results were the same for both methods. The
significant values have been indicated in Tables 4-6.

The variances among the 10 observations in each sample were tested against the cor-
responding theoretical variances, using x* with 9 d.f. Only one value was significant at the
5% level (see Tables 4-6).

Each single correlation estimate was tested against the corresponding true value,
both using the theoretical variance and the estimate from the sample. The significant val-
ues at the 5% level are indicated in Tables 4-6. Using the theoretical variance, 20 samples
out of 360 (5.6%) were significant, of which 11 were over-, and 9 under-estimates. For the
empirical variance estimates, 21 were significant (5.8%) for the full ML estimate, and 21
(5.8%) for the two-step estimate. It may be noted that the differences in variance estimates
between the two methods are very small. An example of a generated crosstable, including
population parameter values and estimates, is given in Table 7.

Analysis of Some Real Data

As a complement to the Monte Carlo results, we have also analyzed some real data
with each of the two methods. The data consist of answers to nine five-step attitude items

TABLE 7

A Generated Cross-table, and the Corresponding Parameter Values

and Sample Estimates.

Y
1 2 3
bid
1113 6 0
2169 11131} 22
31417 11321104
p a, a, b1 b2
Population .50 -1.70 -.31 -.67 .67
value
Sample .49 -1.77 -.14 -.69 .67
estimate
Estimated .048 .103 .056 .061 .061
standard error
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TABLE 8

Some Real Data Analyzed with the Two Methods.

Variables Raw ML-estimate TS-estimate
correlation
2 1 .470 L7277 .7215
31 <413 .5979 .5958
3 2 .390 .6267 .6240
4 1 ~-.084 -.2444 ~.2412
4 2 ~.001 -.0995 -.0990
4 3 -.459 -.6074 -.5899
5 1 .448 .7026 .6878
5 2 .364 .6202 .6140
5 3 .455 .6496 .6453
5 4 -.128 -.2752 -.2712
6 1 .414 .5898 .5880
6 2 .323 .5362 .5348
6 3 .540 .6583 .6523
6 4 -.313 -.4187 -.4116
6 5 .479 .7056 .6978
7 1 .355 .43912 .4908
7 2 .329 .5083 .5065
7 3 L4371 .5353 .5319
7 4 -.172 -.2511 -.2478
7 5 .395 .6075 .6016
7 6 .556 .6531 .6470
8 1 .187 .2767 .2760
8 2 .081 .2021 L2013
8 3 .169 .2308 L2301
8 4 .015 .0170 .0170
8 5 .210 .3366 L3351
8 6 .202 .2533 .2525
8 7 112 .1639 .1628
9 1 -.129 -.2519 -.2508
9 2 .049 -.0270 -.0269
9 3 -.340 ~.4426 -.4385
9 4 .427 .5299 .5246
9 5 -.139 -.2751 -.2728
9 6 ~-.254 -.3312 -.3284
9 7 -.205 -.2775 ~.2742
9 8 .087 .1055 .1050

of very varying skewness (about from —3. to +2.). The data was kindly supplied by Dr.
Thorleif Pettersson. The sample size was 329. In Table 8 we give the raw correlations, as
well as correlations estimated with the two-step (TS) and full maximum likelihood (ML)
methods.

The results do support the conclusions arrived at earlier, that the differences between
the methods are quite small, but that they increase with increasing p. The differences be-
tween the correlations estimated by our methods and the correlations computed as if the
data had been on an interval scale (in the table denoted “Raw correlation”) are seen to be
large.
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6. Discussion

To summarize the results of the preceding section, it seems that the bias of the esti-
mates is small, and that the variances are close to the theoretically derived ones for the
data analyzed so far. Inspection of the cross-tables for the few extreme cases does suggest
that bad estimates are more likely in tables where some marginals are small, i.e. where
some expected cell frequencies are low. Since we have not studied this problem system-
atically, this statement must be taken in a loose sense, however.

For practical purposes, the differences between the two methods discussed here seem
to be small, especially when the true correlation is small. This also applies for the variance
estimates. It may be noted here, that the simpler variance estimates used by Martinson
and Hamdan [1971] also turn out to be sufficiently accurate for practical work.

One problem which may have some practical importance is, that when several corre-
lations are estimated, the full maximum likelihood estimate may lead to different thresh-
old estimates for variable x when p,, is estimated than when p,, is estimated. From a theo-
retical point of view, this is not entirely satisfactory. One solution is to use the two-step
estimate, for which the thresholds are estimated from the marginals. A second solution
would be to estimate the correlations for all variables simultaneously, including all the
thresholds.

Another problem concerns the robustness of the methods. We have assumed here
that underlying each response there is some latent variable which is normally distributed;
an assumption, by the way, which is testable. In applications, such distributional assump-
tions are seldom exactly met. It might be a worthwhile task to examine to what degree
departures from the assumption of normality has any effect on the correlation estimates.

Appendix: Some Details of the Derivations

We shall here derive the derivative of F, with respect to p, a; and b,, computed at the
probability limit.

(A Fi= 38 " 160, b) = (@ b) = $(@s b) + 9(@s b))

Since

uv(l — p?) + p(1* — 2puv + v*) — 2p(1 — p?)
(I -p)

(A2) % [®(u, V)] = &(u, v) - { } = g(u, v),

say, it follows that the derivative of F, with respect to p may be written

(A3 G I8 2 (5@, b) ~ 80 b) — 80 b)) + 80 b))

1 ;O »
- N EZ 7%2 : 8’” * [o(a, bj) — ¢la, bj) — ¢(a, bj—l) +—¢(ai—la bj—l)]-

0 —

Since, in the probability limit, n,/ N, = 1, this reduces to
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(A4)

plim 9% =YY [g(a, b) — g(a.-, b) — g(as b))

- +g(ac bl - S5 5 ("alp) :

In (A4), it is easily seen that the first sum is reduced to

(AS) 8(a. b) — g(a., bo) — g(aw b)) + glas, bo) = 0.

This is so because all other terms cancel, and because g is zero in all points containing a,,
o, b, and/or b,. Thus,

(A6) lim 252 — L(ai
I,)v_m dp L% 7\ 0p

For the derivatives with regard to the thresholds, we may write
SFi_ 1y fmy[86(ab) _ 86as b,-_.)]
da, N“\m| da, da,

_ Ny dd(a, b) _ ¢(as bj—l)}}

Tivry da, ba,

(AT)

oo n, dm,
- N ) % . 8_:17: [o(a, bj) — ¢(aii, b) — ¢(a, bj-l) + ¢(a.., b))

Since, as noted before,
Nroo N Wy

the two terms in the first sum cancel. Therefore,

(A8) plim 2F:

— vy L (87 . (87 .
e 00 ) w,.,.(ap) (aak)

The result for 8F,/db,, is analogous.
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