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MAXIMUM LIKELIHOOD ESTIMATION OF THE POLYCHORIC 
CORRELATION COEFFICIENT 

U L F  OLSSON 

UNIVERSITY OF UPPSALA 

The polychoric correlation is discussed as a generalization of the tetrachoric correlation coef- 
ficient to more than two classes. Two estimation methods are discussed: Maximum likelihood esti- 
mation, and what may be called "two-step maximum likelihood" estimation. For the latter 
method, the thresholds are estimated in the first step. For both methods, asymptotic covarianc¢ 
matrices for estimates are derived, and the methods are illustrated and compared with artificial 
and real data. 
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1. Introduction 

Especially in the behavioral sciences, data are often recorded as ordinal variables 
with only a few scale steps. Examples of such variables are attitude items, rating scales, 
Likert items and the like. Typical cases are when a subject is asked to report some attitude 
on scales like 

(a) approve don't know disapprove or 

(b) approve approve don't disapprove disapprove 
strongly know strongly. 

When analyzing this kind of data, a common approach is to assign integer values to each 
category-[for example 1, 2 and 3 in Example (a) and 1 through 5 in Example (b)] and pro- 
teed in the analysis as if the data had been measured on an interval scale with desired 
distributional properties. To quote Wainer and Thissen [ 1976], in such cases "a quick and 
easy approach is to assume normality and be on your merry way". 

Although many statistical methods seem to be fairly robust against this kind of de- 
viation from the distributional assumptions---at least in not-so-extreme cases--there are 
instances when this approach may lead to erroneous results. 

For example, Olsson [1979] showed that application of factor analysis to discrete data 
may lead to incorrect conclusions regarding the number of factors, and to biased estimates 
of the factor loadings, especially when the distributions of the observed variables are 
skewed in opposite directions. This is mainly due to biased estimates of the correlations. 
Thus, there seems to be some need for correlation estimates which are more viable when 
the observed data are ordinal with only a few scale steps. 
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In this paper, we shall discuss the maximum likelihood estimation of  correlation co- 
efficients from ordinal data. In short, our problem may be summarized as follows: We ob- 
serve two ordinal variables, x and y. These are classified into s and r categories, respec- 
tively. A cross-tabulation of  x by y gives the observed frequencies as denoted in Table 1. 
We further assume that underlying x and y there are some latent variables, ~ and % which 
are bivariate normally distributed. The relation between x and ~ may be written 

x = 1 i f ~ <  at 
x = 2  i fa ,  =< ~ <  a2 

x = 3  ifa2-< ~ <  a3 

x = s  ifa~_, _--< ~, 

TABLE I 

The General Form of the Raw Data: a Cross-tabulation of 

x by y. 

1 

a I 2 

a 2 3 
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denote thresholds, where 

-~ and a = b = +~ 
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and correspondingly for y. The parameters a, are usually termed thresholds. The problem 
is to estimate the correlation p between ~ and 7/, given data in the form of  Table 1. This is 
a generalization o f  the arguments behind the familiar tetrachoric correlation coefficient to 
polytomous variables. 

We shall discuss estimation of  p by means of  the maximum likelihood method. Even 
given the method of  estimation, the problem may be solved in at least two different ways. 
One way is to estimate O and the thresholds simultaneously. Alternatively, the thresholds 
are first estimated as the inverse o f  the normal distribution function, evaluated at the cu- 
mulative marginal proportions of  the table, and the maximum likelihood estimate of  p is 
then computed given the thresholds. This may be called a "two-step maximum likeli- 
hood" procedure. The latter approach has the advantage of  greater ease in the numerical 
computations, although the former is formally more correct. One of  the points discussed 
in the paper is the differences in results from the two methods in some reasonable cases. 

In Section 2 we summarize the results of some earlier writers in the area. In Section 3 
the likelihood equations are derived, and in Section 4 we derive asymptotic standard er- 
rors of  the estimates. Section 5 contains a numerical computer study, based on both true 
data and on Monte Carlo simulations. There we also analyze some real data. Finally our 
results are summarized in Section 6. 

2. Earlier Research 

2 × 2 Tables: The Tetrachoric Correlation 

The tetrachoric correlation coefficient was suggested by Pearson [1901] as a measure 
o f  bivariate normal correlation, when only data from a 2 × 2 cross-classification of  the 
data are available. Pearson also supplied formulae for the standard error of  the correla- 
tion. 

The tetrachoric correlation may be obtained by solving O from 

(I) • (h, k; p) = I2~r(l - p2),/~]-, ~, - exp - 2(1 - p2) ] 

The method suggested by Pearson [1901] was to expand the right-hand side of (1) 
into a series expansion in p, the so called tetrachoric series. This leads to a polynomial 
equation in p, where the degree of  the polynomial depends on the number of  terms in the 
series expansion. 

Hamdan [1970] showed that the tetrachoric r is equivalent to the maximum likeli- 
hood estimate of # from a 2 by 2 table. This is not unexpected, since the estimation prob- 
lem involves three parameters (p, h and k where h and k are the thresholds), and the data 
supplies three independent statistics in the table, for example n , ,  n~ and n , .  Thus, the 
estimation problem is just identified. The advantage of  the maximum likelihood approach 
is that asymptotic standard errors are easily obtained through the inverse of  the second 
order derivative of  the log likelihood. 

The tetrachoric correlation is a biased estimate o f  the corresponding true correlation. 
Brown and Bendetti [1977] showed that the expected cell frequencies are critical for the 
bias. If  no expected frequencies are less than 5, the bias is negligible. This applies also for 
the bias of  the standard error if p = 0. If  p # 0, Brown and Bendetti recommended the 
standard error based on ML-estimation, but even this converges fairly slowly towards true 
o: with increasing n. It seems that expected frequencies of  at least 10 are necessary in or- 
der to obtain reasonable estimates of  the standard error. 
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Computer routines for the numerical solution of (1) are now available as packed pro- 
grams at many computer installations. Froemel [1971] made a comparison of some rou- 
tines. The best routine to date is probably that by Kirk [1973], who attacks the problem by 
Gaussian quadrature and Newton-Raphson iteration. 

r × s Tables: The Polychoric Correlation 

Several coefficients have been suggested as measures of association in comingency ta- 
bles; we shah here confine ourselves to those which, like the tetrachoric correlation, use an 
assumption of an underlying bivariate normal distribution, for which the correlation is to 
be estimated. 

Pearson [Note 1 ] suggested that the mean square contingency, which is based on the 
usual X 2, couM be used to estimate p from a polychoric table. Ritchie-Scott [1918] devel- 
oped a coefficient based on a weighted mean of all possible tetrachoric correlations which 
may be computed from the table. Pearson and Pearson [1922], influenced by the result of 
Ritchie-Scott, suggested simpler methods for larger tables. 

Lancaster and Hamdan [1964] showed that the mean square contingency does not 
work well when the classification is crude. Instead, using the theory of orthonormal func- 
tions, they generalized the tetrachoric series expansion to the polychoric case. Pearson's 
corrected ¢2 was equated to a series which they called the polychoric series and the corre- 
sponding polynomial equation was solved for p. The method does not produce standard 
errors of the estimates; confidence intervals are instead obtained by inserting 2.5 and 97.5 
percent limits for X 2 in ¢2 and solving the equations. Hamdan [1968] showed that Pear- 
son's [1901] tetrachoric series is a special case of the polychoric one. Hamdan [1971] gave 
computing formulae for smaller tables, and Martinson and Hamdan [1975] designed a 
computer program for the method. Martinson and Hamdan [1971] used a Maximum 
Likelihood approach to estimate p given the thresholds, and did also present formulae for 
the asymptotic standard error. The latter formulae, however, do not take into account that 
the thresholds are estimated from the data, and that they are thus also subject to random 
e r r o r s .  

In all the above methods, the thresholds are regarded as fixed, although already Pear- 
son and Pearson [1922] were aware that this might not be Meal. For the tetrachoric case 
this does not matter, since, as noted above, the estimation problem is just identified. For 3 
by 3 tables, for example, we have 5 parameters (O and two threshoMs for each variable) 
but 8 independent proportions, i.e. the problem is over-identified. Tallis [1962] attacked 
the problem via maximum likelihood estimation of p and thresholds simultaneously in 2 
× 2 and 3 × 3 tables. For 2 x 2 tables the results shouM be the tetrachoric correlation [cf. 
Hamdan, 1970], but for 3 × 3 tables the results may differ from Lancaster and Hamdan's 
[ 1964] polychoric correlation. 

3. Derivation o f  the Likelihood Equations 

The data consists of an array of observed frequencies n U : i = 1, 2, -.., s; j = 1, 2, ---, 
r, as given in Table 1. 

If we denote by ¢r,~ the probability that an observation falls into cell (i, j), the likeli- 
hood of the sample is 

i j 
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where  C is a constant.  Tak ing  logari thms,  

(3) l= lnL- - lnC+ ~ ~ noln %. 
i ~ l  j ~ l  

447 

T h e  thresholds  for x are denoted  by  a,, i = 0 ..- s and  the thresholds  for  y by bj ,  j = 0 -.. r, 
where  ao = bo = - o o  and  a, = b, = + oo. It  follows tha t  

(4) % = (I)2(a,, bj) - (I)2(ai_l , bj) - (I)2(a,, bj_,) + (I):(a,_|, bj_,) 

where  (I)2 is the bivar ia te  no rma l  distr ibution funct ion with correlat ion t,. 

Case 1: All Parameters Are Estimated Simultaneously 

T h e  pa ramete r s  to be  es t imated are t,, a~ ... a,_~, bl "" b,_,. Part ial  differentiation o f  ! 
with respect  to these pa ramete r s  yields 

OI ~ ~ n o 0% 
(5)  at, ,_, j_, ~r~ 0t, 

0, ~ ~ n~ o~r o, 
(6) Oa---~k = ,=, ~=, % Oak 

Ol ~ ~ no O%. 
(7) ab--~ = % Obm 

iffil j f f i [  

Since o~2(u, v)/Op = q~2(u, v) where  q~2 is the bivar ia te  no rma l  density function, (see Tallis, 
1962, p 344; see also Johnson  & Kotz,  1972, p 44), it follows that  

(8) aO = ffz(a,, bj) - ~2(a~-,, bj) - ~b2(a,, b~_,) + ~2(a,-~, bj_~). 

Therefore ,  (5) m a y  be wri t ten 

Ol = ~  ~ n v (~b2(a,, bj) - ~bz(a,_,, b~) - ~b2(a,, bj_,) + ~2(aH, bj_,)}. 
(9) 0~ ~r-~j 

f ~ 1  j - - I  

In  (6), it is evident  that  

(1o) 

( 
0% = / 0~2(ak, bj) 0<I)2(ak, b~_~) i f k  = i 
Oak Oa~ Oak [ OtI~2(a~, bj) + / ~ : ( a , ,  b~_~) i f k  = i - 1 

Oak Oak 

0 if  i ~ k and  i ~ k + 1, i.e. i f  the fo rmula  for  % does not contain  ak 

Thus,  in (6) it suffices to let i go f rom k to k + 1. Therefore ,  (6) m a y  be writ ten 
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(11) 
01 ~, nky [ Odp2(ak, by) OdPz(a,, by_,) l 

~2(a1,, bj,,) / + nk+~j ~)2(a~, bi) + 
rrk+,j Oak Oak J 

= ~ (nk, nk+,jt [ig(~2(ak, by) i~2(ak, b,_,)l 

Also, if we let ~b, and ¢b, denote univariate normal density and distribution function, re- 
spectively, 

(12) 0402(u, v) [ (v = pu) ~ 
- - - - d - -  = ,/,,(u) • ,I,i I.(1 - p~)"~J 

[Tallis, 1962, p 346]. Equation (6) may now be written as 

(13)  a_l /= ~ (-ky .k+,j/ ,,(ak)[. ' [ (b , -pa , )  I _(~, [(bj- i --Pak)l ]  " 
Oak .- ~k, 7rk+tj! [(1 -- p:)'/~J ( (1 - p2),/: j l  

From the symmetry it also follows that 

(14) Ol = ~ (nero n,.m+t).~,(bm). [~, [ (a , -pb , ) l  _dpl [(a,~--pbm).]]. 
ab,,, ,_, ~ ~r,.+,, [(1 - O2),/2j L (1 --  p2),/2 Jl 

Equations (9), (13) and (14) constitute the set of first order derivatives of the log likeli- 
hood. 

Case 2: The Thresholds are Computed from the Marginals 

Most earlier researchers in this area [Pearson & Pearson, 1922; Lancaster & Hamdan, 
1964; Hamdan, 1971; Martinson & Hamdan, 1971, 1975] have regarded the thresholds as 
given from the cumulative marginal proportions of the table. Although theoretically non- 
optimal, this approach has the advantage of reducing the computational labor. 

In this case, the equation system to be solved is 

Ol ~.. nu [¢p2(a,, by) - ~)2(a,-,, bt) - (/)2(a,, bj_,) + ~b2(a,_,, bj_J] 0 (9) 0O ~u 
i =  | J I 

(15) a, = ¢ ~ - ' ( e ,  ) 

(16) bj = O,-l(Pq), 

where Pu is the observed proportion in cell (i, j), and where P,. and P j  are observed cu- 
mulative marginal proportions of the table, i.e., 

i 

(17) P,-= 2E ~ Pky 
k ~ l  j ~ l  

and 

(18) P.,= ~ 2 P~k. 
i ~ l  k - - I  
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4. Var iance /  Covar iance  Es t ima tes  

Case  1 

We denote the sample size by N, and introduce the notation 0' = (p, a .  a2, . . . ,  as_. 
b ,  b2 ---, br_t). The matrix I<a~ of expected second order derivatives o f /wi th  respect to 0 is 
obtained from 

l t 

[Tallis, 1962, p 348]. The derivatives within parenthesis in (19) are obtained from (8) and 
(10). 

A large-sample estimate of the covariance matrix of 0 is therefore 

(20) V = I,~ 

Case  2 

We define P' = (P, , ,  P,2, "'" , P,r, P2,, "'" , 1"2, "'" , P,,,  "'" , Ps,). The estimators are 
defined as the solution to the system 

01 1 
F,(O, P) . . . . .  0 

0p N 

(21) [F2(O, P)],. = a , -  ap-~'(p, ) = 0 

[F3(O, P ) L  = bj - C ; ' ( p )  = 0 

Let F =  (Ft F2' F / ) ' .  

The estimator 0 is implicitly defined from F(0, P) = 0. 

Since 

(22) 00 = _ [ 0Ft-t  OF 
OP tO0] 0 P '  

it follows from asymptotic theory that the large-sample covariance matrix for 0 is, 

'( ) • ,oP, 
where X is the covariance matrix of  P, and where 0F/0P and 0F/00 are computed in the 
probability limit. 

In (23), OF/O0 is structured as 

(24) 

02l 021 O~l 

002 OpOa  apOb 

0 I 0 

0 0 I 

The second order derivatives in (24) are given in the Appendix. Since nv = N .  Pu, we get 
for the first row of  0F/OP: 

(25) OF, 1 
OP o = ~r~ [q~2(a,, b) - ~2(a,_,, b )  - do2(a, , bj-i) "t- do2(a,_~, bj_~)]. 

Also, since D[f-~(yo)] = 1/D(f(Xo)) ,  and since OPk./OP o = 1, we get 
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OF2k 
(26) Op ° 0 if P~ does not contain Pu, i.e. if k < i 

- I ~ - ' ( e k ) ]  = OP~. OP o 

1 

O-~ [~I',(ak)] 

! 
= - - -  otherwise. ~,(a,) 

Similarly, 

OF~m fO i fm < j  

= l 1 otherwise. (27) ~ th,(b,.) 

In ~E, finally, the general element ore. is obtained from 

= [ P m ( l - P , , )  i f m = n  
(28) Nora, [ - I M P ,  otherwise. 

5. Some Numerical Results 

The formulae of  the preceeding section have been used in a computer program for 
maximum likelihood estimation of polychoric correlations, written by the author. The 
program reads a cross-table (or, at the user's option, raw data from which the cross-table 
is prepared). Starting values for the thresholds and the correlation are computed, and the 
program iteratively solves the likelihood equations by a Newton-Raphson algorithm. The 
program uses subroutines from the IMSL [1975] library, except for the bivariate normal 
distribution function, which was adopted from Kirk [1973]. The output consists of  final 
threshold estimates, correlation estimate, variance/covariance matrix of  the estimates, 
and the function value at the maximum. The latter may be used to test the fit of  the 
model. Empty rows and/or  columns of the table are deleted from the computations. The 
numerical results consist of the following steps: 

(i) Some runs were made with the program where the cell frequencies are expected val- 
ues, taken from some division of the bivariate normal surface. Thus, these runs are 
made with artificial population data. These runs may be used partly to check the nu- 
merical accuracy of the program, but first of all they give the expected variances and 
covariances of the estimates, in large samples. I f  the expected correlations between t3 
and the thresholds are small this may serve as an indication that simultaneous esti- 
mation of p and thresholds is unnecessary. 

(ii) Some runs were made with Monte Carlo data, generated from the population data. 
These simulations were performed in order to check the theoretical large-sample re- 
suits derived in Section 4. 

(iii) Finally, some empirical data were analyzed. 

Artificial Population Data 

Design. The data were chosen according to a factorial design with the following pa- 
rameters. The true correlation, p, was chosen as .  15, .50 and .85. The number of  classes in 
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the table, r = s, was 2, 3, 5 and 7. The thresholds were placed so that, for each variable, 
the probabilities of  the classes 1, ---, s were the same as those of  a binomial distribution 
with parameters P and n = s - 1. Parameter P was chosen so that the skewness of  the 
distribution attained specified values -y. This procedure was the same as that o f  Olsson 
[ 1979]. The combinations of  skewnesses used were 

(0,0), (1, -1 ) ,  (1, 0) and (1, 1). 

Results. The absolute difference between true correlation and the correlation com- 
puted by the program was in no case larger than 10 -s, which implies reasonable accuracy 
of  the program. For  reasons of  space, we do not exhibit all the variance/covariance matri- 
ces of  the parameter estimates here. In Table 2 we only give one typical example. 

For  low values of  p, the expected correlations between ~ and the thresholds are low; 
for O = 0 they are zero. For  higher values of  p, however, these expected correlations are in 
some cases more substantial, with a typical peak value o f  .20. This implies an increasing 
degree of  dependence between correlation estimate and threshold estimates with increas- 
ing p. In the Monte Carlo data we shall study how much this means in practice. 

In Table 3 we present the expected variance for ~ for the different combinations of  
parameters, given N = 500. For  other values of  N, the variances are proportional. The 
values are the same for both methods, to the given accuracy. 

The case r = s = 2 was included in the computations with the following problem in 
mind: Given a set of  skewed ordinal data, should the correlations be computed as (a) a 
polychoric correlation, or (b) a tetrachoric correlation from data dichotomized near the 
median? 

It can be seen in Table 3, that the variances are uniformly smaller for the polychoric 
than for the tetrachoric correlation. Given highly skewed trichotomous data (7,/~'2 = 1./ 
- 1 .  or 1./1.) the loss in efficiency if  it is possible to dichotomize at the median is moder- 
ate, or may even be a small gain. In general, however, there seems to be a loss in effi- 
ciency of  alternative (b) as compared to alternative (a) above. 

TABLE 2 

An Example of the Expected Covariance (in and below the 
diagonal) and Correlation (above the diagonal) Matrix for 
the Parameter Estimates. Artificial Population Data with 
r=s=5, yi=1., Y2=O. and p=.15 

....... al a 2 a 3 ..... a4 b I b 2 b 3 b 4 

a I • 

a 2 • 

a 3 • 

a4-- 

b I - 

b 2 - 

b3-. 

b4-. 

00281 

00059 

00040 

00021 

00001 

00023 

00007 

OOOO8 

00022 

.01895 .04680 .05151-.00368 .05022 .02250-.02482-.04738 

• 33913 .20104 .06310 .02311 .00822 .00972 .00761 .00379 

.01873 .02558 .31104 .11377 .02717 .03449 .02914 .01598 

.00277 .00375 .00569 .36431 .05186 .07101 .06473 .03880 

.00075 .00102 .00154 .00315 .06111 .09513 .09126 .06003 

.00042 .00038 .00034 .00030 .00774 .38355 .17451 .06619 

• 00033 .00032 .00031 .00030 .00198 .00343 .45465 .17455 

.00026 .00027 .00029 .00030 .00090 .00156 .00343 .38352 

.00019 .00022 .00026 .00030 .00051 .00090 .00198 .00774 
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TABLE 3 

Expected Variances for r for the Artificial Population 
Data. The Values are the Same for Both Methods. 

YI/Y2 
r 0 . / 0 .  1 . / - 1 .  1 . / 0 .  1 . / 1 .  

.15 2 .00478 .00635 .00545 .00607 

3 .00295 .00429 .00354 .00417 

5 .00231 .00344 .00281 .00339 

7 .00215 .00318 .00261 .00314 

.50 2 .00329 .00494 .00382 .00405 

3 .00194 .00313 .00238 .00272 

5 .00144 .00238 .00182 .00218 

7 .00131 .00215 .00166 .00201 

.85 2 .00080 .00295 .00108 .00096 

3 .00046 .00104 .00064 .00063 

5 .00028 .00069 .00040 .00047 

7 .00023 .00058 .00034 .00041 

Monte Carlo Data 

Design. The parameters for the Monte Carlo data were chosen using the same facto- 
rial design as above, except that r = 2 was excluded. For  each combination of  parameters, 
l0 samples o f  size 500 were generated, using the multinomial routine G G M U L  of  the 
IMSL [1975] library. Each sample was analyzed using both methods. 

Results. The estimates of  the correlation coefficients in the different samples are dis- 
played in Tables 4 to 6, for s --- 3, 5 and 7, respectively, along with the mean value and the 
variance in each cell. In most cases, the two methods produce estimates which are very 
similar. A closer inspection of  Tables 4 to 6 reveals, that the differences between the meth- 
ods does increase with increasing p. For  p = .15 the largest difference is 8 × 10 4 ,  for p - 
.50 it is 31 × 10 -4 and fo r#  = .85 it is 43 × 10 -4. This is in agreement with the results given 
above. These values might give an indication of  magnitude of  the difference between the 
two methods. 

The question of  bias of  the estimates may be studied in several ways. We have per- 
formed the following comparisons: 

The mean value of  the 10 sample values were tested against the corresponding true 
value. Both when the theoretical and when the sample variance were used, 4 of  the 36 
sample means were significantly different from the true value at the 5% level. Since all the 
significant values were higher than the c.orresponding true values, this might indicate a 
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TABLE 4 

Estimated Correlations in Samples Generated with the 
Indicated Values of True Correlations and Skewnesses 
r=s=3, n=500 
The left column in each cell is the two-step estimate, 
the right column is the full maximum likelihood estimate. 

YI/Y2 

0./0. i./-i, i./0. i./i. 

.15 .1277 .1277 
.2245 .2245 
.2007 .2007 
.1018 .1018 
.0767 0767 
.2032 2033 
.0740 0740 
.1983 1983 
.1718 1718 
.1546 1546 

22 .1533 .1533 
s 0028 .0028 

.0342 0343 
1414 1414 
1754 1755 
1912 1912 
2324 2324 
1649 1649 
1560 1561 
1700 1701 
1458 1458 
1418 .1419 

.1553 .1554 

.0023 .0023 

.1647 .1648 

.1319 .1319 

.0346 .0346 

.1859 .1859 
-.0025-.0026 ~ 
.1792 .1791 
.1566 .1567 
.0643 .0643 
.1551 .1551 
.0622 .0622 

.1132 .1132 

.0041 .0041 

.2021 .2023 

.0208 .0208 

.-Y677 

.1703 1702 

.1780 1781 

.2122 2125 

.1439 1441 

.1020 1020 

.2000 2000 

.0193 0193 ~ 

.1412 .1413 

.0046 .0046 

.50 

x 
2 

s 

.4840 4846 

.5344 5345 

.5197 5199 

.5326 5329 

.4892 4896 

.5399 5392 

.4681 4678 

.5063 5058 

.5156 5152 

.5427 5424 

.5133 .5132 

.0006 .0006 

.5327 .5325 

.5107 .5105 

.4851 4857 

.3915 3915 

.4162 4161 

.4317 4319 

.4023 4025 

.5023 5023 

.5412 5420 

.6187 6188 * 

.4832 .4833 

.0047 .0047 

4583 .4586 
4714 .4713 
5594 5599 
4450 4447 
4914 4915 
5002 5002 
4748 4748 
4803 4803 
5877 5876 ~ 
.5115 5117 

.4980 .4981 

.0018 .0018 

.5285 .5257 

.5513 .5487 

.4699 .4699 

.6112 .6102 ~ 

.-5-6D-4 .5-6-/2-- 

.4205 .4197 

.5474 .5484 

.4379 .4385 

.4638 .4650 

.5327 .5329 

.5124 .5121 

.0034 .0033 

.85 .8326 8321 
8446 8449 
8681 8677 
8527 8532 
8739 8737 
8307 8301 
8491 8485 
8715 8728 
8389 8393 
8679 8677 

.8530 .8530 
2 

s .0002 .0002 

.8440 .8440 

.8781 .8781 

.8249 .8249 
8791 .8791 
8775 .8775 
8506 .8506 
8764 .8764 
8427 .8427 
8231 .8231 
8433 .8433 

.8540 .8540 

.0004 .0004 

.8484 .8484 
8400 .8402 
8828 .8830 
8306 .8307 
8761 .8762 
8573 .8574 
8592 .8594 
8645 .8647 
8452 .8454 
8654 .8657 

.8570 .8571 

.0002 .0002 

.8544 .8555 

.8968 .8958 ~ 

.8730 .8714 
8570 .8574 
8656 .8665 
8373 .8360 
8414 .8399 
8680 .8697 
8630 .8619 

.8431 .8460 

.8600 .8600 

.0003 .0003 

Note: Underlined entries are significantly different from the true value 
(5% level) when the true variance is used. Starred (~) entries are 
significantly different from the true value (5% level) when the 
variance estimate is taken from the sample. The stars apply to 
both entries in each pair. 
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TABLE 5 

Estimated Correlations in Samples Generated with 
the Indicated Values of True Correlations and Skewnesses. 
r=s=5, n=500 
The left column in each cell is the two-step estimate, 
the right column is the full maximum likelihood estimate. 

YI/Y2 

0./0. 1./-I. 1./0. 1 ./1. 

.15 

2 
S 

.2540 .2540* 

.1449 .1449 

.1909 .1909 

.1700 .1700 

.2247 .2247 

.1760 .1760 

.1426 .1426 

.1456 .1456 

.1636 .1636 

.2072 .2072 

,18~0 .1820" 

.0012 .0012 

.0656 .0657 

.1865 .1866 

.1738 .1738 

.1523 .1523 
0941 .0940 
1303 .1304 
0462 .0462 
2315 .2316 
1306 .1307 
I010 .i010 

.1312 .1312 

.0029 .0029 

.1762 .1763 

.2676 .2678* 

.1575 .1575 

.1399 .1403 

.2306 .2305 

.2312 .2313 

.1927 .1935 

.1419 .1419 

.1612 .1612 

.1589 .1590 

.1858 .1859" 

.0017 .0017 

.0325 .0326 

.1329 .1329 

.0767 .0767 

.1306 .1307 

.1457 .1457 

.1773 .1773 

.1469 .1471 

.2483 .2483 

.2187 .2188 

.1603 .1605 

.1470 .1471 

.0035 .0035 

.50 

2 
s 

.5574 .5587 

.5161 .5159 

.5588 .5581 

.5187 .5174 

.5522 .5524 

.4844 .4841 

.4782 .4780 

.4690 .4689 

.5420 .5433 

.5400 .5398 

.5216 .5217 

.0010 .0011 

.5O8O .5085 

.5026 .5029 

.5532 .5535 

.4987 .4988 

.4027 .4024 

.5244 .5251 

.4348 .4352 

.6096 .6095* 

.5222 .5223 

.5119 .5123 

.5068 .5071 

.0029 .0029 

.4949 .4956 

.5040 .5044 
5487 .5486 
5708 .5696 
4904 .4899 
4569 .4563 
5050 .5044 
5421 .5413 
5292 .5292 
5435 .5442 

.5186 .5184 

.0010 .0010 

.4008 .4020 
4~z2 .4~2/ 
4311 .4320 
4799 .4804 
5107 .5098 
5023 .5028 
4790 .4785 
5404 .5412 
5102 .5113 
5372 .5377 

.4884 .4888 

.0017 .0017 

.85 .8738 .8734 
.8613 .8615 
.8782 ,8775 
.8717 ,8711 
.8652 .8654 
.8429 .8429 
.8445 .8455 
.8560 .8562 
.8851 .8859" 
.8751 .8749 

.8654 .8654* 
2 

s .0002 .0002 

.8370 .8373 

.8414 .8416 

.8600 8599 

.8262 8261 

.8183 8180 

.8497 8496 

.8468 8471 

.8727 8726 

.8306 8305 

.8297 8296 

.8412 .8412 

.0002 .0002 

.8352 .8350 

.8462 .8458 

.8557 .8570 

.8921 .8932" 

.8599 .8599 

.8548 .856O 

.8153 .8158 

.8552 .8566 

.8659 .8675 

.8337 .8335 

.8514 .8520 

.0004 .0004 

.8582 .8574 

.8741 .8730 

.8605 .8567 

.8321 ,8284 

.8511 .8507 

.8754 .8765 

.8558 .86OO 

.8499 .8513 

.8212 .8208 

.8446 .8465 

.8523 .8521 

.O003 .00O3 

Note: Underlined entries are significantly different from the true value 
(5% level) when the true variance is used. Starred (*) entries are 
significantly different from the true value (5% level) when the 
variance estimate is taken from the sample. The stars apply to both 
entries in each pair. 
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TABLE 6 

Estimated Correlations in Samples Generated with 
the Indicated Values of True Correlations and Skewnesses. 
r=s=7 n=500 
The left column in each cell is the two-step estimate, 
the right column is the full maximum-likelihood estimate. 

YI/Y2 

0./0. i./-i, i./0. i./i. 

.15 

x 

2 
s 

.1428 .1433 

.1168 .1169 

.1690 .1693 

.1031 .1033 

.1543 .1546 

.2256 .2262 

.1778 .1779 

.1426 .1428 

.1257 .1259 

.2409 .2413" 

.1599 .1602 

.0018 .0018 

.1429 .1430 

.2287 .2290 

.1676 .1676 

.2381 .2385 

.2229 .2228 

.1140 .1141 

.1557 .1557 

.2274 .2274 

.1927 .1931 

.1105 .1105 

.1801 .1802 

.0021 .0021 

.2075 .2078 

.0984 .0986 

.1601 .1601 

.1058 .1058 

.1334 .1336 

.1963 .1964 

.1292 .1294 

.1779 .1779 

.1676 .1679 

.0999 .I001 

.1476 .1478 

.0014 .0014 

.0702 .0702 

.1703 .1703 

.1399 .1399 

.1872 .1870 

.2351 .2353 

.2274 .2275 

.1645 .1644 

.1572 .1573 

.2023 .2026 

.0295 .0296 * 

.1584 .1584 

.0038 .0O38 

.50 .4542 .4555 
.5037 .5041 
.4793 .4802 
.5283 .5288 
.5607 .5611 
.5314 ,5335 
.4905 ,4908 
.4223 .4226* 
.~b}6 .4686 
.5415 .5430 

.4980 .4988 

s 2 .0017 .0017 

.5216 .5216 

.4829 .4829 

.3976 .3984* 
.~9~T- 

.4809 .4807 

.4220 .4222 

.4707 .4712 

.4916 .4918 

.4804 .4806 

.4820 .4824 

.4729 .4731 

.0012 .001~ 

.5022 5049 

.5083 5097 

.5126 5148 

.5698 5697 

.4982 4990 

.4688 4692 

.4978 4983 

.4948 4949 

.4424 4417 

.5384 5408 

.5033 .5043 

.0011 .0011 

.5289 .5287 

.5072 .5066 

.5429 .5399 

.4958 .4956 

.6026 .6051 * 

.--49-49 . T9-~7 

.5658 .5653 

.5566 .5583 

.5670 .5680 

.4700 .4722 

• 5332 ,$334 * 

.0015 .0015 

.85 .8470 ,8476 .8493 .8493 .8362 .8388 .8313 .8286 
.8718 .8728 .8418 .8421 .8523 .8528 .8438 .8434 
.8323 .8334 .8916 .8915" .8633 .8632 .8713 .8700 
.8267 .8270 .8621 .8621 .8414 .8427 .8579 .8596 
.8745 .8750 .8131 .8130 .8730 .8727 .8743 .8786 
.8445 .8457 .8859 .8859 .8671 .8678 .8390 .8388 
.8106 .8105" .8545 .8549 .8237 .8279 .8548 .8555 
.8772 .8769* .9210 .9210" .8719 .8712 .8321 .8326 
.8215 .8228 .8~02 .8~u3 .8713 .8711 .8568 .8582 
.8506 .8520 .8585 .8585 .8285 .8289 .7953 .7967. 

.8457 .8464 .8628 .8629 .8529 .8537 .8457 .8462 
2 

s .0005 .0005 .0008 .0008 .0003 .0003 .0005 .0005 

Note: Underlined entries are significantly different from the true value 
(5% level) when the true variance is used. Starred (*) entries are 
significantly different from the true value (5% level) when the 
variance estimate is taken from the sample. The stars apply to both 
entries in each pair. 
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tendency towards a slight positive bias. The results were the same for both methods. The 
significant values have been indicated in Tables 4-6. 

The variances among the 10 observations in each sample were tested against the cor- 
responding theoretical variances, using ~ with 9 d.f. Only one value was significant at the 
5% level (see Tables 4-6). 

Each single correlation estimate was tested against the corresponding true value, 
both using the theoretical variance and the estimate from the sample. The significant val- 
ues at the 5% level are indicated in Tables 4-6. Using the theoretical variance, 20 samples 
out of 360 (5.6%) were significant, of which 11 were over-, and 9 under-estimates. For the 
empirical variance estimates, 21 were significant (5.8%) for the full ML estimate, and 21 
(5.8%) for the two-step estimate. It may be noted that the differences in variance estimates 
between the two methods are very small. An example of a generated crosstable, including 
population parameter values and estimates, is given in Table 7. 

Analysis of  Some Real Data 

As a complement to the Monte Carlo results, we have also analyzed some real data 
with each of the two methods. The data consist of answers to nine five-step attitude items 

TABLE 7 

A Generated Cross-table, and the Corresponding Parameter Values 

and Sample Estimates. 

1 2 3 
x 

1 13 6 0 

2 69 1113 22 

3 41 132 104 

Population 
value 

Sample 
estimate 

Estimated 
standard error 

a I a 2 

.50 

.49 

.048 

b I 

-.67 -I .70 

-I .77 

.103 

-.31 

-.14 

.056 

-.69 

.061 

b 2 

.67 

.67 

.061 
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TABLE 8 

Some Real Data Analyzed with the Two Methods. 

Variables Raw ML-estimate TS-estimate 
correlation 

457 

2 I 
3 I 
3 2 
4 I 
4 2 
4 3 
5 I 
5 2 
5 3 
5 4 
6 I 
6 2 
6 3 
6 4 
6 5 
7 I 
7 2 
7 3 
7 4 
7 5 
7 6 
8 1 
8 2 
8 3 
8 4 
8 5 
8 6 
8 7 
9 I 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 

470 
413 
390 

-084 
- 001 
- 459 

448 
364 
455 

- 128 
.414 
.323 
.540 

-.313 
.479 
.355 
.329 
.431 

-.172 
.395 
.556 
.187 
.081 
.169 
.015 
.210 
.202 
.112 

- . 1 2 9  
.049 

-.340 
.427 

-.139 
-.254 
-.2O5 
.087 

.7277 

.5979 

.6267 
-.2444 
-.0995 
-.6074 
.7026 
.6202 
.6496 

-.2752 
.5898 
.5362 
.6583 

-.4187 
.7056 
.4912 
.5083 
.5353 

-.2511 
.6075 
.6531 
.2767 
.2021 
.2308 
.0170 
.3366 
.2533 
1639 

- 2519 
- 0270 
- 4426 

5299 
- 2751 
- 3312 
- 2775 

1055 

.7215 

.5958 

.6240 
-.2412 
-.0990 
-.5899 
.6878 
.6140 
.6453 

-.2712 
.5880 
.5348 
.6523 

-.4116 
.6978 
.4908 
.5065 
.5319 

-.2478 
.6016 
.6470 
.2760 
.2013 
.2301 
.0170 
.3351 
.2525 
.1628 

-.25O8 
-.0269 
-.4385 
.5246 

-.2728 
-.3284 
-.2742 
.1050 

of very varying skewness (about from -3 .  to +2.). The data was kindly supplied by Dr. 
Thofleif Pettersson. The sample size was 329. In Table 8 we give the raw correlations, as 
well as correlations estimated with the two-step (TS) and full maximum likelihood (ML) 
methods. 

The results do support the conclusions arrived at earlier, that the differences between 
the methods are quite small, but that they increase with increasing p. The differences be- 
tween the correlations estimated by our methods and the correlations computed as if the 
data had been on an interval scale (in the table denoted "Raw correlation") are seen to be 
large. 
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6. Discussion 

To summarize the results of  the preceding section, it seems that the bias of  the esti- 
mates is small, and that the variances are close to the theoretically derived ones for the 
data analyzed so far. Inspection of  the cross-tables for the few extreme cases does suggest 
that bad estimates are more likely ha tables where some marginals are small, i.e. where 
some expected cell frequencies are low. Since we have not studied this problem system- 
atically, this statement must be taken in a loose sense, however. 

For  practical purposes, the differences between the two methods discussed here seem 
to be small, especially when the true correlation is small. This also applies for the variance 
estimates. It may be noted here, that the simpler variance estimates used by Martinson 
and Hamdan [1971] also turn out to be sufficiently accurate for practical work. 

One problem which may have some practical importance is, that when several corre- 
lations are estimated, the full maximum likelihood estimate may lead to different thresh- 
old estimates for variable x when pxy is estimated than when pxz is estimated. From a theo- 
retical point of  view, this is not entirely satisfactory. One solution is to use the two-step 
estimate, for which the thresholds are estimated from the marginals. A second solution 
would be to estimate the correlations for all variables simultaneously, including all the 
thresholds. 

Another problem concerns the robustness of  the methods. We have assumed here 
that underlying each response there is some latent variable which is normally distributed; 
an assumption, by the way, which is testable. In applications, such distributional assump- 
tions are seldom exactly met. It might be a worthwhile task to examine to what degree 
departures from the assumption of  normality has any effect on the correlation estimates. 

Appendix:  S o m e  Details o f  the Derivations 

We shall here derive the derivative of  Ft with respect to O, a, and bj, computed at the 
probability limit. 

l nij 
(A1) F~ = ~/YY. - -  [d?(ai, bj) - d?(a,_,, bj) - dp(a~, bj_l) + th(a;-,, bj_~)]. 

77"~ 

Since 

(A2) ~p kb(u, v)l -- ep(u, v)" uv(1 - 02) + p(u2 (-l 2puv~ ~-)7 + v2) - 200 - O 5) = g(u, v), 

say, it follows that the derivative of  F~ with respect to p may be written 

8F~ _ 1 n,j 
(A3) 6p N Y,Z - -  [g(a,, bj) - g(a,_,, bj) - g(a,, bj_,) + g(a,_,, bj-,)] % 

1 .~ 6% 
N y'y" " 60 " [4ffa,, bj) - q~(a,_,, bj) - ¢~(ai, bj_,) + th(a,_,, b,_,)]. 

Since, in the probability limit, n , J N %  = 1, this reduces to 
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(A4) ,. OFi 
p r i m  - -  = ~ [g(a,, bj) - g(a~_~, bj) - g(a.  bj_,) 
N ~  Op 

+ g(a,_,,  bj_,)] -- E Z  ~.. ~-~--p ] [ °~r'j/2 " 

In (A4), it is easily seen that the first sum is reduced to 

(A5) g ( a ,  b.) - g(a.,  bo) - g(ao, b.) + g(ao, bo) = O. 

This is so because all other terms cancel, and because g is zero in all points containing ao, 
a ,  bo a n d / o r  b.. Thus,  

(A6) pIim OF, 1 ( 0%/2 . 
, , _ ~  ao = - g Z  % l, ao / 

For  the derivatives with regard to the thresholds, we may  write 

(A7) 

~+td t ~ak 

8ak l 

&O(a~, b,_,) ]1 
aa~ IJ 

nq ~qr U -- ~..Z ~,j" aak [(h(a,, bj) - O(a,-~, bj) - (h(a,, bj_,) + (h(a,_,, bj_,)]. 

Since, as noted before, 

• 1 nzj p l im- -  - - =  1, 

the two terms in the first sum cancel. Therefore,  

(A8) p m0F, l/*,,  1 to-o/. 

The  result for OFl/Obm iS analogous. 
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