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A family of scaling con'ections aimed to improve the chi-square approximation of goodness-of-fit 
test statistics in small samples, large models, aM nonnormal data was proposed in Saton'a and Bentler 
(1994). For structural equations models, Satorra-Bentler's (SB) scaling con'ections are available in stan- 
dard computer software. Often, however, the interest is not on the overall fit of a model, but on a test 
of the restrictions that a null model say Ad O implies on a less restricted one Adl. If To and T 1 denote 
the goodness-of-fit test statistics associated to AdO and Adl, respectively, then typically the difference 
Td = To - T1 is used as a chi-square test statistic with degrees of freedom equal to the difference on 
the number of independent parameters estimated under the models AdO and Adl. As in the case of the 
goodness-of-fit test, it is of interest to scale the statistic T d in order to improve its chi-squaxe approxi- 
mation in realistic, that is, nonasymptotic and nonnormal, applications. In a recent paper, Satorra (2000) 
shows that the difference between two SB scaled test statistics for overall model fit does not yield the cor- 
rect SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference 
test statistic, but his formula has some practical limitations, since it requires heavy computations that are 
not available in standard computer software. The purpose of the present paper is to provide an easy way to 
compute the scaled difference chi-square statistic t~om the scaled goodness-of-fit test statistics of models 
Ado and Adl. A Monte Carlo study is provided to illustrate the performance of the competing statistics. 

Key words: moment-structures, goodness-of-fit test, chi-square difference test statistic, chi-squaxe distri- 
bution, nonnormality. 

1. Introduct ion 

M o m e n t  structure analysis is wide ly  used in behavioural ,  social  and economic  studies to 

analyze  structural relat ions be tween  variables,  some  of  which  may  be  latent  (i.e., unobservable) ;  

see, for example ,  Bol len  (1989), Bent ler  and Dudgeon  (1996), Yuan and Bent ler  (1997), and 

references  therein. Commerc i a l  compute r  programs to carry out  such analysis,  for  a genera l  

class o f  structural equat ion models ,  are available (e.g., L I S R E L  of  JOreskog & S6rbom,  1994; 

E Q S  of  Bentler,  1995). In mul t i sample  analysis,  data f rom several samples  are combined  into 

one  analysis,  making  it  possible,  among  other  features,  to test for across-group invariance o f  

specific m o d e l  parameters .  Statistics that are central in m o m e n t  structure analysis  are the overal l  

goodness-of- f i t  test o f  the m o d e l  and tests o f  restr ict ions on parameters .  

Asympto t i c  distr ibution-free (ADF)  methods  which do not  require  distr ibutional  assump- 

tions on the observable  variables have  been deve loped  (Browne,  1984). The  A D F  methods ,  

however ,  involve four th-order  sample  moments ,  thus riley may  lack robustness to smal l  and 

med ium-s i zed  samples.  In the case  o f  n o n n o n n a l  data, an al ternat ive to the A D F  approach is 

to use a normal - theory  es t imat ion me thod  in conjunct ion  with  asymptot ic  robust  standard er- 

rors and test statistics (see Satorra, 1992). Asympto t i c  robust  test statistics, however ,  m a y  still 

lack robustness to smal l  and med ium-s i zed  samples.  As  an al ternat ive to asymptot ica l ly  robust  

test statistics, Satorra & Bent ler  (1994; Satorra and Bentler,  1988a, 1988b) deve loped  a family  
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of corrected normal-theory test statistics which are easy to implement in practice, and which 
have been shown to outperform the asymptotic robust test statistics in small and medium-sized 
samples (e.g., Chou, Bentler & Satorra, 1991; Curran, West & Finch, 1996; ttu, Bentler & Kano, 
1992). Bentler and Yuan (1999) provide a recent comparison of alternative test methods for small 
samples. Extension of Satorra-Bentler (SB) corrections to goodness-of-fit test statistics in the 
case of the analysis of augmented moment structures, multisamples and categorical data, have 
been discussed respectively by Satorra (1992) and Muthdn (1993). 

Although SB corrections have been available for some time, formal derivations of SB cor- 
rections to the case of nested model comparisons have not been available. The obvious and gener- 
ally accepted approach of computing separate SB-corrected test statistics for each of two nested 
models, and then computing the difference between them (e.g., Byrne & Campbell, 1999), turns 
out to be an incorrect way to obtain a scaled SB difference test statistic. The difference could be 
even be negative, which is an improper value for a chi-square variate. In a recent paper, Satorra 
(2000) gives specific formulae for extension of SB corrections to score (I,agrange multiplier), 
difference and Wald test statistics. He showed that the difference between two SB-scaled test 
statistics does not necessarily correspond to the scaled chi-square difference test statistic. The 
purpose of the present paper is to provide a simple expression that allows a researcher to cor- 
rectly compute the SB difference test statistic when the SB-scaled Chi-square goodness of fit 
tests for the corresponding two nested models are available. The formula is simple to use and 
provides an alternative scaled test for evaluating a specific set of restrictions. 

The paper is structured as follows. In section 2 we describe goodness-of-fit tests in weighted 
least squares analysis, and the corresponding SB scaling corrections. In section 3 we describe 
the proposed procedure for computing the SB scaled difference test statistic. Section 4 concludes 
with an illustration. 

2. Goodness-of-Fit Tests 

Let ~ and s be p-dimensional vectors of population and sample moments respectively, 
where s tends in probability to cr as sample size n --+ +oc.  Let v/-n(s - o) be asymptotically 
normally distributed with a finite asymptotic variance matrix F (p x p). Consider the model 
Ado : o- = o-(0) for the moment vector o-, where o-(.) is a twice-continuously differentiable 
vector-valued function of 0, a q-dimensional parameter vector. Consider a WLS estimator () of 0 
defined as the minimizer of 

Fv(O) : =  ( s  - o - ) ' ~ ( s  - o-)  ( 1 )  

over the parameter space, where l? (p x p), converges in probability to V, a positive def- 
inite matrix. A typical test statistic used for testing the goodness-of fit-of the model 3-4o is 
To := nFv(s,  ~), where ~ := c~(0). It is widely known that, when the model 3,4o holds and 
V satisfies the asymptotic optimality (AO) condition of V = F -1, then ]~ is asymptotically 
chi-square distributed with degrees of freedom (dr) ro = p - q. In practice, however, AO may 
not hold, and concern on the quality of the chi-square approximation do arise. For general types 
of distributions, that is, when AO does not necessarily hold, To is asymptotically distributed as 
a mixture of chi-square distributions of 1 degree of freedom (df) (see Satorra & Bentler, 1986); 
that is, 

r0 

j = l  

as n --+ oc, where the X) are independent chi-square variables of 1 df, and the a j  are the nonnull 
eigenvalues of the matrix UoF, with 

U0 := V - V A ( A I V A ) - I A I V  
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and A :=  (a/ao~)o- (0). When AO holds, then of  course the o~j's are equal to 1 and the asymptotic 
exact chi-square distribution applies. Clearly, when the cei are all equal to ce, say, then T/o~ is an 
asymptotic chi-square statistic. Conditions where that occurs are discussed in Satorra and Bentler 
(1986). In the context of  structural models and for general types of  distributions, Satorra and 
Bentler (1994; Satorra & Bentler, 1988a, 1988b) proposed replacing T by the scaled statistic 

T = T I <  (3) 

where ~ denotes a consistent estimator of  

c : = - - t r U o F = - - t r { V F } - - - t r  ( A I V A ) - I A ~ V F V A  . (4) 
F0 F0 F0 

In some situations, computations involving the large matrix V can be simplified using methods 
suggested in Kano (1992). Note that the SB scaled test statistic has the same asymptotic mean as 
the corresponding Xffo variate. The SB scaled goodness-of-fit test has been shown to outperform 
alternative test statistics in a variety of  models and nonnormal distributions (e.g., Chou, Bentler 
& Satorra, 1991; Curran, West & Finch, 1996; Hu, Bentler & Kano, 1992). Of course, when AO 
holds, this statistic will have the same asymptotic distribution as the unscaled statistic To. Note 
that a consistent estimator 1 ~ of  F under general distribution conditions is required to compute 
the scaling factor ~. In structural equation models, a consistent estimator of  F is readily available 
from the raw data (e.g., Satorra & Bentler, 1994; see also the illustration section of  the present 
paper). 

A goodness-of-fit statistic which can be used given any estimation method, is given by 

~r* : =  n(s  - a) '{1  " - ~  - ~ - ~ k ( k ' f ' - ~ k ) - ~ k ' f ' - ~ } ( s  - a ) .  (5) 

When 1 ~ is a (distribution-free) consistent estimator of  F (as in (16) below), then T* will be 
called an asymptotic robust goodness-of-fit test statistic, since it is an asymptotic chi-square 
statistic regardless of  the distribution of observable variables. In the context of single-sample co- 
variance structure analysis, this statistic was first introduced by Browne (1984). Its performance 
was studied by Yuan and Bentler (1998), who found that very large samples are required to obtain 
acceptable performance in models with intermediate to large degrees of  freedom. 

3. Testing a Set of Restrictions 

Consider now the case of  testing a specific set of  restrictions on the model. Consider a 
re-parameterezation of  Ado as o- = o-*(3) with a(3) = a0, where 3 is a (q + m)-dimensional 
vector of  parameters, a0 is an m x 1 known vector, and o-*(.) and a(.) are twice-continuously 
differentiable vector-valued functions of  3 E ® 1, a compact subset of  T~ q+m. Our interest now is 
in the test of  the null hypothesis Ho : a(3) = a0 against the alternative H1 : a(3) # a0. Define 
the Jacobian matrices 

r I ( p  × (q + m))  : =  (a/a~1)o-*(3) and A(m x (q + m)) :=  (a/a3 ' )a(3) ,  

which we assume to be regular at the value of  3 associated with 00, say 30, with A of full row 
rank. Let P ((q + m )  x (q + m ) )  : = FI ~ V FI and denote by Ad 1 the less restricted model o- = o-* (3). 
The goodness-of-fit test statistic associated with 3.41 is thus T1 = n F (s, 3),  where 3 is the fitted 
moment vector in model Ad 1, now with associated degrees of  freedom rl :=  r0 - m and scaling 
factor cl given by 

1 1 _1 
cl :=  - - t r  U1F = - - t r { V F } -  t r { P - 1 H ' V F V H }  (6) 

El El El 

where 

U1 :=  V - VFIP-1FIIV. 
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When both models 34o and .A-41 a r e  fitted, then we can test the restrictions a(O) = a t  using the 
difference test statistic To :=  To - T1, where under the null hypothesis, it is intended that To 
have a chi-square distribution with degrees of  freedom m = r0 - r~. 

In order to improve the chi-square approximation in the case of large values of  m and mod- 
erate or small sample sizes, we are interested in the SB scaled difference test statistic, say To. 
Extending his earlier work (Satorra, 1989), Satorra (2000) recently provided formulae for com- 
puting such scaled statistics for the difference, Score and Wald test statistics. From Satorra's 
formulae it becomes apparent that the SB scaled difference test statistic does not coincide with 
the difference between the two SB scaled goodness-of-fit test statistics that arise when fitting the 
two nested models; that is, in general To ~ T~) - T1, where by To and T1 we denote the SB 
scaled goodness-of-fit test statistics arising when fitting the models .Ado and 3.41 respectively. In 
Satorra (2000), the SB scaled difference test statistic is defined as To : =  Td/gd where 8d is a 
consistent estimate of  

1 
cd :=  - - t r  UG I" (7) 

m 

with 

Uo = V I I P - 1 X ( A P - 1 A I ) - 1 A p - 1 F I I V .  (8) 

As follows from Satorra (1989), when the nonnull eigen-values of  Uo F are equal, not necessarily 
equal to 1, then the scaled statistic To is asymptotically a chi-square statistic. Note that neces- 
sarily co > 0, since the eigen-values of  UoF are non-negative. Let 3o and ~1 be the estimated 
values of  3 when fitting models 34o and 3//1 respectively. A consistent estimate of  co is obtained 
when F is replaced by a distribution-free consistent estimate, as in (16) below, and Uo of  (8) is 
evaluated at one of  the estimates go or ~ .  Note that as with co, we have that ~o > 0. 

A practical problem with the statistic To is that it requires computations that are outside the 
standard output of  current structural equation modeling programs. Fm'thermore, difference tests 
are usually hand computed from different modeling runs. ttere we will show how to combine 
the estimates of  the scaling corrections co and cl associated to the two fitted models 34o and 
341 in order to compute a consistent estimate of  the scaling correction co for the difference test 
statistic. It turns out that the computations are extremely simple and can be carried out using a 
hand calculator. 

First we show that Uo = Uo - U1. Note that the model .Ado implies a specific function 
= 3(0) that, by the implicit function theorem, is continuous differentiable. Consider thus 

the matrix H :=  O~(O)/OOq Clearly, it holds that A = I I H  and A H  = 0 (recall that A is a 
m x (q + m) matrix), that is, the matrix A t is an orthogonal complement of  H. We have 

Uo - U1 = V I I ( I I ~ V I I ) - I I I ~ V  - V I 1 H ( H f I I t V F I H ) - I  H t I I ~ V  

= V F I { p  -1 _ H ( H ~ P H ) - I H I } F I ~ V  

since 

p - 1  _ H ( H ~ P H ) - I H  ~ = p - 1 A I ( A p - 1 A I ) - I A p - 1  ' 

as A H  = 0 (see Rat ,  1973, p. 77). We thus have the basic result that 

Uo = Uo - U1. 

Now, since roco - rlCl = tr (Uo - U1)F = tr UoF = mc~J, we obtain Cd = (roco -- r l C l ) / m .  

This means that consistent estimation of  Cd is available from consistent estimates of  the scaling 
corrections co and Cl associated with the models 3,4o and AA1 respectively. 
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Thus the proposed practical procedure is as follows. When fitting models AA0 and A.41, we 
obtain the unscaled and scaled goodness-of-fit tests, that is To and To when fitting .AA0, and T1 
and Ta when fitting A.4a. Let r0 and ra be the associated degrees of freedom of the goodness- 
of-fit test statistics. Then we compute the scaling corrections ~o = To/To  and (~.a = Ta/Ta ,  and 
the usual chi-square difference Td = To - Ta. The SB scaled difference test is then given as 
i~d := Td/Sd, where 

Cd := ( r o ? o -  r l ~ a ) / m .  

Note that gd is obtained evaluating Uo and Ua at the estimates ~0 and 81 respectively. Thus, 
even though, necessarily, Cd > O, ?d may tmn out to be negative in some extreme cases (leading 
then to an improper value for 7)). Such an improper value requires that 80 and ~a deviate sub- 
stantially from each other, as a result of a small sample size artifact, or the null model A.40 being 
too deviant from the true model. In fact, our asymptotic theory of the difference test statistic 
uses the classical assumption of a sequence of local alternatives (see, e.g., Saton'a, 1989; Satorra, 
2000, p. 235), which requires 3.40 and A.4 a to be non-grossly misspecified. Thus, an improper 
value of Td can be taken as indication that either 3.4o is highly deviant from the true model, 
or the sample size is too small for relying on the test statistic; that is, as indication of a non- 
standard situation where the difference test statistic is not worth using. (Of course, if needed, 
more complex computations involving only ~o or ~a produce the statistic T--d described above, 
which value is certainly non-negative.) Clearly, under a sequence of local alternatives, Td and 
i?d are asymptotically equivalent, since both ~d and gd are consistent estimates of the population 
value Cal. 

When the population values of the two scaling corrections co and ca are equal, that is, 
Co = Ca = c, then Cd = C; thUS, this is a case where the simple difference of SB scaled chi-square 
test statistics, d T  := -To - T i  is asymptotically equivalent to i?d. This is the case, for example, 
when co = ca = 1, that is, when both un-scaled goodness-of-fit tests are asymptotically chi- 
square statistics. In general, however, co # ca and then the difference between two SB scaled 
goodness of fit test statistics does not yield the SB scaled difference test statistic. 

Note that the above procedure applies to a general modeling setting. The vector of parame- 
ters a to be modeled may contain various types of moments: means, product-moments, frequen- 
cies (proportions), and so forth. Thus, the procedure applies to a variety of techniques, such as 
factor analysis, simultaneous equations for continuous variables, loglinear multinomial paramet- 
ric models, etc. It can easily be seen that the procedure applies also in the case where the matrix 
F is singular, and when the data is composed of various samples, as in multisample analysis. The 
results apply also to other estimation methods, for example, pseudo ML estimation. 

It is important to recognize that a competitor to the statistic Td will be the difference between 
asymptotic robust goodness-of-fit lest statistics associated with the models 3A0 and .A.41; that is, 
an asymptotic chi-square test statistic for Ho is just T~ := T~ - T{, where ~ and T~ are the 

goodness-of-fit test statistics of (5) (with 1 ~ a distribution-free consistent estimate of F) associated 
to the models A.40 and A.41 respectively (e.g., Satorra, 1989). In the next section, we will illustrate 
using Monte Carlo methods the small sample size performance of the competing test statistics 
for Ho. 

4. Illustration 

In this section a simple model context is used to illustrate the performance in finite samples 
of the described test statistics. The model context is a regression with errors-in-variables. We 
consider a regression equation 

Ygi = flXgi + Vgi, i = 1 . . . . .  rig, (9) 

where for case i in group g (g = 1, 2), Ygi and Xgi are the values of the response and explanatory 
variables, respectively, IJg i is the value of the disturbance term, and/3 is the regression coefficient. 
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The model assumes that Xgi is unobservable, but there are two observable va r i ab l e s  X~g i and X~g i 
related to Xgi by the following measurement-error equations 

* (lO) Xlg i = Xgi -}- Ulgi, X~g i = Ygi -1- 1/12gi, 

w h e r e  Ulgi and U2gi are mutually independent and also independent of Vgi and Xgi. It is assumed 
that the observations are independent and identically distributed within each group. Equations 
(9) and (10) with the associated assumptions yield an identified model (see Fuller, 1987, for 
a comprehensive overview of measurement-error models in regression analysis). Inference is 
usually carried out in this type of model under the assumption that the observable variables are 
normally distributed. Write the model of (9) and (10) as 

where 

and 

Define 

Zgi = A~gi, i = 1, 2 . . . .  , rig, g = 1, 2, (11) 

Ygi 
Zgi := X~g i , 

X~gi 
~gi :~ Vgi 

Ulgi 
U2gi 

/3 1 0 0 )  
A :=  1 0 1 0 . (12) 

1 0 0 1 

( C~xx 0 0 0 ) 
o ,, o o (13) 

qb : =  E~gi~;i = 0 tvuu 0 ' 
0 0 0 cI~u 

and the parameter vector 0 
moment structure 

:= (c%~, ~xx, c~,,/3)~. Under this set-up, Eg : =  EZgiZ;i has the 

2g = A ~ A  I = E(0), (14) 

where E (.), A(.) and • (.) are (twice-continuously differentiable)matrix-valued functions of 0, 
as deduced from (12), (13) and (14). Note that the model restricts the variances of u~ and u2 by 
equality. This is a setting of two-sample data, where the population and sample vectors ~ and s 
are defined as s = (a~, a~)' and s = (s~, s~)', where c~ = vecE x and Sg = vecSg, with 

1 ng 
! 

i=1 

Here "vec" denotes the colamn-wise vectorisation operator (see Magnus & Neudecker, 1999, for 
full details on this operator). We consider norton theory WLS estimation, where V of (1) has the 
form 

V := block diag (~-[ V1, ~-~ V2) , (15) 

with n = nl + n2 and l?g = ½(Sg -1 ® Sg-1),  g = 1, 2. We further assume that the matrices Sg 
and Eg are positive definite, and that n g / n  -+ f~ > 0, as n -~ +oc,  g = 1, 2. Clearly, when 
there is independence across groups, the asymptotic variance manix of x/-n(s - or) is of the form 
F = block diag (fl- lF1,  f f l F 2 )  where Fg is the asymptotic variance of x/-~(Sg - Crg). In this 
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case, a distr ibution-free consis tent  es t imator  of  F is 

I ~ : =  b lock  diag F1, 2 , (16) 

where  

~tg 

i~g : =  1 Z ( d g i  - Sg)(dgi - Sg) I, 
ng - 1 i=1 

(17) 

with dgi : =  veczg iZg  i. 
We now consider  a Mon te  Carlo study (with 2000 replications),  in which,  for each replica-  

tion, two-sample  data is genera ted  f rom the above  regress ion model ,  with populat ion values o f  

the parameters  g iven by 00 = (1, 1, .3, 2) I. Regarding  the distribution o f  random consti tuents of  

the model ,  the values o f  v and x are genera ted  as i.i.d, independent  X 2 (i.e., a h igh ly  nonnormal  

distribution), convenient ly  scaled to have zero m e a n  and unit variance.  The  variables u 1 and u2 

are genera ted  as normal  variables,  mutual ly  independent ,  and independent  also o f  v and x. Two 

mode ls  are fitted for each s imulated ( two-sample)  data set. Mode l  34o  that restricts the parame-  

ter vector  0 to be  invariant across groups,  and m o d e l  341 that a l lows 0 to vary across groups.  For  

each s imulated data set, we  compute  the usual chi-square  goodness-of-f i t  test statistics, To and 

T1; the SB scaled statistics, To and T1; and the robust  test statistics T~ and T~. Three  combina-  

tions o f  samples sizes are used (small  samples:  n l  = 100 and n2 = 120; moderate :  n l  = 300 

and n2 = 400; large samples:  n l  = 800 and n2 = 900). 

Summary  results o f  the Mon te  Car lo  study are shown in Table 1.1 F r o m  this table we  see that 

in the case o f  small  samples,  and our specific mode l  context,  the new statistic i>~ outperforms the 

al ternat ive asymptot ic  robust  test statistic T~. In the case o f  large samples,  ir~ outperforms the 

TABLE 1. 
Monte Carlo results: empirical significance levels of test statistics 

nominal significance levels: 1% 5% 10% 20% 

n 1 = 100 and n 2 = 120 
Td 1.35 5.45 10.10 20.70 
Tff 2.40 9.00 15.45 28.30 
Td 21.40 39.10 49.15 61.25 
d T  76.70 77.20 78.00 78.80 

n 1 = 3 0 0 a n d n  2 = 4 0 0  
Td 1.55 5.80 10.60 20.25 
Tff 0.95 5.10 11.85 23.15 
T d 27.90 43.70 51.70 64.10 
d T  71.60 72.40 73.00 74.30 

n 1 = 8 0 0 a n d n  2 = 9 0 0  
Td 1.65 6.55 11.35 20.70 
Tff 0.80 4.75 10.50 21.10 
Td 30.45 44.05 53.75 64.20 
d T  70.05 70.08 71.25 72.45 

1Under the current Monte Carlo design of 2000 replications, the standard error of a cell of the table is (p(100 - 
p)/2000) 1/2,  w h e r e  p denotes the percentage reported in the cell. Under the null hypothesis that the nominal values 
are the true ones, we obtain the values .22, .49, .67 and .89 for the standard errors of cells in columns 1, 5, 10 and 
20, respectively. In the use of these standard errors, we should warn on the statistical dependence of percentages across 
columns, since they axe based on the same set of 2000 replications (though, of course, there is independence across the 
various sample sizes experiments). 
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alternative test statistics, though i?~ shows also an accurate performance. Especially interesting is 
that the statistic d T = T 0 -  T 1 performs very badly indeed. That is, doing the presumably natural 
thing, simply computing the difference between two SB scaled chi-square statistics, yields a very 
poorly performing test when evaluated by the chi-square distribution. We should note that no 
improper value of i?~ (i.e., a negative value) was found in all replications in the study (in clear 
contrast with dT, for which a substantial proportion of improper (negative) values were found). 
The present Monte Carlo study is just an illustration of the comparative performance of 5?~ with 
alternative difference test statistics discussed in this paper. It would be of interest, of course, a 
more intensive Monte Carlo study that compares the small sample size performance of ~l with 
other scaled restricted test discussed m Satorra (2000). Such an extended Monte Carlo evaluation, 
however, exceeds the scope of the present paper. 
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