
PSYCHOMETRIKA--VOL. 65, NO. 3, 391-411 
SEPTEMBER 2000 

GENERALIZED LATENT TRAIT MODELS 

I R I N I  M O U S T A K I  A N D  M A R T I N  K N O T T  

L O N D O N  S C H O O L  OF E C O N O M I C S  A N D  P O L I T I C A L  S C I E N C E  

In this paper we discuss a general model framework within which manifest variables with different 
distributions in the exponential family can be analyzed with a latent trait model. A unified maximum 
likelihood method for estimating the parameters of the generalized latent trait model will  be presented. We 
discuss in addition the scoring of individuals on the latent dimensions. The general framework presented 
allows, not only the analysis of manifest variables all of one type but also the simultaneous analysis of 
a collection of variables with different distributions. The approach used analyzes the data as they are by 
making assumptions about the distribution of the manifest variables directly. 
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1. Introduction 

It will be shown in this paper that the latent trait model can be put in a general framework 
which allows a common methodology to be used for estimating model parameters and scoring 
individuals on the factor dimensions. 

Survey data contains variables which are measured on a binary scale, or a categorical scale 
(nominal or ordinal), or a metric scale (discrete or continuous) or combinations of the above. A 
latent trait model fitted to such data must take into account the scale of each variable. 

Within the item response theory framework authors such as Lawley and Maxwell  (1971), 
B ock and Aitkin ( 1981), Bartholomew and Knott (1999), and many other psychometricians have 
looked at models for either binary or polytomous or metric variables. Bartholomew and Knott 
proposed a unified estimation method for binary, categorical (nominal) and metric variables. This 
approach is now put into a generalized linear model framework which also allows simultaneous 
analysis of all types of variables. 

In the underlying variable approach where the observed items are treated as metric through 
assumed underlying normal variables, important contributions have been made for both single 
and mixtures of types of variables. That framework covers a wide range of models which also al- 
low relationships among the latent variables and inclusion of exogenous (explanatory) variables. 
For example Muth6n (1984) and Lee, Poon, and Bentler (1992) proposed estimation methods 
where at the first stage tetrachoric, polychoric (Olsson, 1979) and polyserial  (Olsson, Drasgow, 
& Dorans, 1982) correlations are estimated by ML and at a second stage the model parameters 
are estimated by weighted least squares using a weight matrix which is supposed to be a consis- 
tent estimate of the asymptotic covariance matrix of the correlations estimated at the first stage. 
This weight matrix grows very rapidly as the number of manifest variables increases and so it 
is not feasible for large numbers of items. J6reskog (1990, 1994) discusses the issue of estimat- 
ing polyserial  and polychoric correlation coefficients together with their asymptotic covariance 
matrix. 

Arminger  and Ktisters (1988) have also adopted an underlying variable approach in which 
all the observed variables are treated as metric variables but in which the estimation method is 
maximum likelihood. They give a very general framework for estimating simultaneous equa- 
tion models, (endogenous observed variables connected to latent endogenous variables), with 
observed variables of levels of measurement of any type and metric latent variables. 
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Our approach is an extension of Bartholomew and Knott (1999) for categorical and metric 
variables and Moustaki (1996) for mixed (binary and metric) manifest variables and it is funda- 
mentally different from the underlying variable approach as will be shown. 

Mellenbergh (1992) discusses the issue of putting item response theory in a generalized 
linear model framework. As he noticed, a latent variable model can be described by a general 
linear model (GLIM) in which a monotone function of the expected response to a manifest item 
can be expressed as a linear function of latent variables and manifest explanatory variables. 
However, he does not discuss the possibility of having several types of distributions and he does 
not go into the problem of estimating the parameters of the generalized item response model. 

The GLIM framework for latent variable models has also been discussed by Green (1996). 
Green allows for "mixed" types of data to be analyzed. The paper briefly refers to the general 
framework without giving much detail. Scoring methods have also been looked at and some 
empirical results were also given. The goodness-of-fit of the models was not discussed at all. 

Sammel, Ryan, and Legler (1997) also discuss a latent trait model for mixed outcomes with 
covariate effects both on the observed outcomes and on the latent variables within the generalized 
linear models framework. Results in their paper are restricted to binary and normal manifest 
outcomes with one latent variable. In our paper we look only at a measurement model which 
shows the effect of a set of latent variables on manifest variables from any distribution in the 
exponential family. In addition to binary and normal outcomes our results cover polytomous, 
Poisson and gamma distributed variables. 

Generalized linear models (GLIM) were introduced by Melder and Wedderburn (1972) and 
a systematic discussion of them can be found in McCullagh and Nelder (1989). GLIM include 
as special cases linear regression models with Normal, Poisson or Binomial errors and log-linear 
models. In all these models the explanatory variables are observed variables. In our results the 
explanatory variables are latent (unobserved) variables. 

We put the latent trait model with mixed manifest variables in a general framework and pro- 
vide the necessary software which will make the proposed theory easily applicable and available 
to researchers. A program called LATENT (Moustaki, 1999) has been written in FORTRAN 77 
to fit all the models proposed in that paper. 

Other software such as MULTILOG (Thissen, 1991) and PARSCALE (Muraki & Block, 
1991) are available and they can fit a range of response models for nominal responses (Bock, 
1972), ordinal responses (Samejima, 1969; Masters, 1982) and multiple choice items (Thissen 
& Steinberg, 1984). Those programs deal only with unidimensional categorical observed items. 
The programs provide marginal maximum likelihood item parameter estimates using an EM 
algorithm for most of the models they fit. 

The paper is organized as follows: section 2 discusses the theoretical framework of gener- 
alized linear models; section 3 discusses the estimation method used for the generalized latent 
trait model; section 4 discusses scoring methods; section 5 presents the results for more than one 
latent variable; section 6 illustrates the methodology using an example from the Eurobarometer 
survey of 1992 (section on science and technology), finally section 7 outlines the results of this 
work. 

2. Generalized Linear Models 

A generalized linear model consists of three components: 

1. The random component in which each of the p random response variables, (x l  . . . . .  xp )  has 
a distribution from the exponential family, (such as Bernoulli, Poisson, Multinomial, Normal, 
Gamma). 

2. The systematic component in which covariates, here the latent variables, z I = zl, z2, . . . ,  zq 
produce a linear predictor rJi corresponding to each xi: 
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. 

q 
tli = O~iO -]- ~_.£ o~ijZj, 

j = l  

i = 1 . . . . .  p.  (1) 

The links between the systematic component and the conditional means of the random com- 
ponent distributions: 

I~]i : Ui (# i  (Z)) 

where 

# i ( Z )  : E(Xi  I z) 

and vi (.) is called the link function which can be any monotonic differentiable function and 
may be different for different manifest variables xi, i = 1 , . . . ,  p.  

In item response theory where z is usually a scalar and the observed variables binary, the 
link function used is the logit or the probit and #i (z) is a probabil i ty known as response function. 

We shall, in fact, assume that (xl ,  x2, . . . ,  xp)  denotes a vector of p manifest variables 
where each variable has a distribution in the exponential family taking the form: 

f i ( x i "  Oi' ~i)  = exp { xiOi - bi(Oi) } , "--~; -]- di ( X i ,  ¢ i )  , i = 1 . . . . .  p ,  (2) 

where bi (Oi) and di (Xi,  ~ i )  are specific functions taking a different form depending on the dis- 
tribution of the response variable xi. All  the distributions discussed in this paper have canonical 
link functions with 0 i = I']i ; ~ i  is a scale parameter. 

We give below for several different types of responses the three components of the general- 
ized model. We will illustrate the models with one latent variable. Theoretically, the results are 
easily extended to any number of latent variables (see sec. 5). So far computational constraints 
have allowed the fitting of models with up to two latent variables. 

2.1. Binary Responses  

Let xi take values 0 and 1. Suppose that the manifest binary variable has a Bernoulli distri- 
bution with expected value rci (z). The link function is defined to be the logit, that is, 

] 
v(rci(z)) = Oi(z) = logitrci(z) = in 1 --- ~ i z )  J = c~io ÷ c~ilz, 

where 

Then 

7gi (Z) : P ( x i  : 1 I z) - 
expO~ (z) 

(1 + exp°~(z)) 

bi (Oi (z)) = log (1 + exp °~ (z)), 

di (xi, ~ i )  = O, 

@i = 1, 

and the conditional probabili ty of xi is 

gi (xi I z) = ~i (z) xi (1 - ~i  (z) )  1-xi .  (3) 
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2.2. Polytomous Betas 

In the polytomous case the indicator variable xi is replaced by a vector-valued indicator 
function with its sth element defined as 

1, if the response falls in category s, for s = 1 . . . . .  ci 
x i ( s )=  O, otherwise, 

where ci denotes the number of categories of variable i and ~ 1  xi(s) = 1. The response pattern 
of  an individual is written as x ~ = (x~, x~, . . . ,  xS) of dimension ~ i  ci. In this section we look 
at only variables measured on a nominal scale. 

The single response function of the binary case is now replaced by a set of  functions rci(s) (z) 
(s = 1 . . . . .  ci) w h e r e  ~ c / _ _  1 ~ i ( s ) ( g )  = 1. 

In the binary case both xi and Oi are scalars where in the polytomous case they are vectors. 
The first category of  the polytomous variable is arbitrarily selected to be the reference category. 
The vector Oi (z) is written as 

{ rci(<)(z)} O~(z) = 0, in 7 g i ( 2 ) ( g )  . .  In i = 1 . . . .  , p.  
rci(1)(z)'" ' ~ci(1)(z) ' 

The canonical parameter 0i (z) remains a linear function of the latent variable 

Oi(z) = o~io + o~ilz, 

where ee~z = (C~il(1) = 0, c~ii(2) . . . . .  Otil(Ci)), I = 0, 1, and 

exp<0(s)+<~ (s)z 
:ri(,) (z) = ( ~ ; 2 1  exp ~°(r )+~(r)z)  ' 

( c ~  exp<O (,)+c~,~ (r)z) bi (Oi (z)) = log 
\ r = l  / 

¢i = 1. 

As rci(s) (z) is over-parameterized, we fix the parameters of the first category to zero, ceio(1) = 

o~i1(1 ) = 0.  
The conditional distribution of xi given z is taken to be the multinomial distribution 

ci 

gi (xi [ Z) = I-I(rci(s)(Z)) x/<'~') (4) 
S=I 

2.3. Normal Distribution 

Let xi have a normal distribution with marginal mean ceio and variance q-tii. The l ink function 
of  the conditional distribution xi I z is the identity 

Also,  

V(/Li (Z))  = Oi(Z ) = aiO -4-O!ilg, 

[Oi(z)] 2 
bi(Oi(z)) - - -  

2 

~i  = q l i i ,  

1 - ~ ( X i  - -~ i lZ)  2 g i ( x i l z )  -- 7 ~ e x p  - " i o  • 
, /2rc,t ,  ii 

(5) 
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2.4. Gamma Distr ibut ion 

Suppose xi has a Gamma distribution. The link function is the reciprocal: 

1 
v ( # i  (z))  = Oi(z) - -  - -  --  c~io + ceilz, 

×i (z) 

and 

bi (Oi (z)) = - l o g ( - 0 i  (z)) = - log 

1 
~b i z - -  

vi 

di(x i ;  ~ i )  = vi log(v iXi )  - l o g x i  - log F ( v i ) .  

Hence, 

exp{-~xi}x~ *-1 
g i (x i  I Z) = (Yi(z)~ vi F ( v i )  ?/i(Z) > O, xi > O, vi > 0.  (6)  

t - 7 7 /  

The shape parameter for the Gamma distribution is vi = 1/~i and the dispersion parameter is 
gi ( z ) / v i  = gi ( z )~ i .  Now, the requirement that the Yi (z) is positive imposes restrictions on the 
values of the parameter estimates which imply that Oi (z) is negative. To overcome this problem 
in the estimation, the distribution of the latent variable z is taken to be a censored normal distri- 
bution, that means, that only a subset of the original range of the variable z is taken into account. 
In the case of mixed observed variables this solution is not appropriate because the distribution 
of z will be censored for all types of data. 

2.5. Poisson Distr ibut ion 

Let xi denote a Poisson random variable. The link l~mction is defined through 

I)(#i (g ) ) = 0 i (Z)  = ln # i  ( Z ) = cliO -4- C~i l Z, 

bi (Oi ( z ) )  = e x p ( 0 i  ( z ) )  = # i  ( z ) ,  

qhi = 1, 

g i ( x i l z ) -  #i(z)x~i exp -re(z),  xi > 0. 
xi!  

3. Estimation 

We estimate the parameters by  maximum likelihood based on the joint  distribution of  the 
manifest variables. In this formulation of the model we allow the manifest variables to take any 
form from the exponential family. For simplicity of  exposition we initially take a single latent 
variable, z. 

Under the assumption of  local independence the joint  distribution of the manifest variables 
is: 

F 
o o  

f ( x )  = g ( x l z ) h ( z ) d z  
o o  

iTEn 1 = g~(xi I z) h ( z ) d z .  
oo i=l 
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We do not assume that gi (xi I z) for all the p items must be of the same type: rather, gi (xi I z) 
can be any distribution from the exponential family. The latent variable z is taken to be standard 
normal and h(z) denotes the standard normal density. 

For a random sample of size n the loglikelihood is written as 

n 

L = ~ log f (xm) 
m = l  

= log g(xm I z)h(z)dz 
m = l  oo 

= log H e x p  +di@i, xira) h(z)dz.  (7) 
m = l  oo L . i = I  

The unknown parameters are in Oi (z) and qSi. We differentiate the log-likelihood given in (7) with 
respect to the model parameters, o~io, c~i 1 and the scale parameter ~bi. 

Finding partial derivatives, we have 

8L _ + 1 O f (xm) 
aceil ~= f(x~) Oc~il 

=~-~. 1 f f-oo 8 IximOi(z) bi(;¢Z))] 
m=l f (xm) oo g(xm I z ) h ( Z ) ~ i  l L 77 - dz. (8) 

The integral in (8) can be approximated by Gauss-Hermite quadrature with weights h(zt) at 
abscissae zt. By interchanging the summation we get 

2 _ _ , ' k  
8L _ x-~h(zt) F ~~x,n g(xm" I zt) 80i(zt) g(Xm I Zt) 8bi(Oi(Zt)) 

-/_..~ ,tin ~ - - 7  
OC~il t = l  m = l  Lm=l j (Xm)efli 8O:il f (Xm)~i 8~il 

where 

and 

k 

t = l  

O[ ( z t ) -  aoi(zt) 
8ctiz 

, ,, Obi (Oi (Zt)) 
b i (Oi (zt)) - 

ac~i~ 
n 

flit = h(zt) ~ ximg(xm I zt) / f (xm) 
m = l  

tl 

= ~ xi~h(zt  Ix.d, 

n 

Nt = h(zt) ~_~ g(xm I Zt)/f(xm) 
~Z=I 

n 

= ~ h (zt I xm). 
m = l  

(9) 

(10) 

(11) 
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Setting the partial derivatives (see (9)) equal to zero the ~bi parameter disappears and we get 

OL k 
= ~ _ . [ r i ~ O : ( z ~ )  - ~ : , ; ( o ~  (z~))] = o, 

O0~il t = l  

where the b~ (Oi (zt ) ) becomes 

Binary items: 

Normal metric items: 

Gamma metric items: 

Poisson items: 

b~ (el (z,))  = zl,~i (z~), 

b~ (oi ( z t ) )  = z~ (eel o + o~i 1 z t  ),  

1 

bl(Oi (zt)) = z~ exp(ceio + O~ilZt), 

(12) 

1 = 0 , 1 ;  

1 = 0 , 1 ;  

I = 0 , 1 ;  

l = 0 , 1 ;  

~i = ~ii -- 

and 

1Vx  11 d; (* i , x i )  = ~ L ,  2 f i  " 

Substituting from (16) into (14) we get 

k 
1 ~-~,[r2it -- 2&iorlit -- 2&ilZtrlit 4- (&iO + &ilZt)2Nt], 

~1~ Nt t = l  t = l  

(15) 

(16)  

(17) 

] di(4)i, xi)  = - ~  [_~i + log(2rrqSi) 

Polytomous items: (12) is written as 

OL k 
- ~[rIit(~,)o:(~,)(z~) - X~bl (Oi (zt))] = 0, 

Oceiz(s) t=l 

whereb~(Oi(zt))=z~rgi( , ) (z t ) ,  1 = 0 , 1  s = 2  . . . . .  ci. 
By formulating the model in this way it can be seen that the derivatives of  the loglikelihood 

with respect to the unkmown parameters are very easily obtained for any distribution from the 
exponential family. The only information we need is the first derivative of  the specific function 
hi. 

For Normal continuous items we get explicit formulae for the estimated parameters &io 
and &i~. For binary, polytomous, Gamma and Poisson items the ML equations are nonlinear 
equations. The nonlinear equations can be solved using a Newton-Raphson iterative scheme. 

Next we differentiate the loglikelihood with respect to the scale parameter qS: 

m~. 1 ~..k { ximOi(zt) _ bi(Oi(zt)) d t }. OL 
= 1----~ h(z t )g(xm I zt) + i@i,Xim) (13) 

a~bi = f ( x m ) t = l  q~2 

By interchanging the summation in (13), setting it equal to zero and solving with respect to 4~/2 
we have 

~9 ~ = 1  [rlitOi (zt) - bi (Oi (zt))A,~] (14) 
4'; = k ,, 

~ = i  E,~,=I h(z,  I xm)<(q~,,  x,m) 

The function d:((ai, Xim) depends on qSi and so we do not get an explicit %rm %r q~i. 
More specifically for the different types of distributions, we have that for the Bernoulli, the 

multinomial and the Poisson distribution the scale parameter ~b = 1. For Normal items the form 
of di @i, xi ) is given by 
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where 
n 

flit = ~_~ ximh(Zt I Xm) 
m=l 

n 

r2it = ~ x~mh(zt I xm) 
m=l  

n 

Nt = ~ h (zt I xm). 
m=l  

For Gamma metric variables the form of di (~i, xi) is given by 

d i ( ~ i ,  x i )  = vi log ViXi --  logxi - log F(Vi)  

where vi = 1/~i .  The first derivative of the function di (~i, x i)  required by (14) is 

d~(~i, xi) = __27q5il log --~ixi _ __qS/21 + qS/21 F (~/_ 1 ) [F (q5/_1)]," 

From (14) we get 

t 

(18) 

(19) 

(20) 

where 
n 

= h (Zt) ~ (log Xim)g(xm [ Zt)/f (Xm). (23) f 3 i t  
m=l  

But F(q5 -1) does not depend on xm and so (22) becomes 

~-~[rlitOi(zt) - bi(Oi(zt))Nt + r3it + Nt] = logqSi + r(qS/-1)-------m~- ~-~ Nt. (24) 
t=l r(~b71) t=l 

Multiplying both sides of (24) by (-2) :  

- - 2  ~ - ~ f l r l i t O i ( z t )  - -  b i ( O i ( z t ) ) N t  q- r3i t q- Nt ]  = 2 logqS/-1 F(qS/-1)1- 
k 

t= l  C(~b/_l) ~-]Nt.t=l (25) 

The maximum likelihood estimate ofq~i is given in (25). The left hand side of (25) is the deviance, 
D(x; fi), of the latent variable model. A ML estimate for the scale parameter can be obtained by 
a Newton-Raphson algorithm which requires the calculation of gamma, digamma and trigamma 
functions. An alternative is to use an approximation to the maximum likelihood estimate that is 
given in McCullagh and Nelder (1989). Under the condition that vi is sufficiently large and so qSi 
is small, an approximation of the maximum likelihood estimate of the scale parameter is: 

~_~ 5 ( 6  + 5 )  
v -- , (26) 

6 ÷ 2 D  

(22) 

k 
~ t = l  [rl i tOi  (Zt)  - -  bi  (Oi ( z t ) ) N t ]  

(21) 
k n g(x,,Izt) + 1 ~ j j  E,=I h(z,) Em=l ~ log X~" ~/+;l/'ll 

And so 

k k k n ~  

~-~{rlitOi(zt) - bi(Oi(zt))Nt + r3it + Nt] = logq5 ~ Nt + ~-~h(zt) L g(xmf(xm)[ Zt) r 1'(052)/.~_, 
t = l  t = l  t = l  m = l  r~'il~ 
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where D = D(x; ~)/n. This approximation is used in the program LATENT for estimating the 
scale parameter in the gamma case. We found that the other model parameters are not sensitive 
to changes in the value of the scale parameter. 

3.1. EM Algorithm 

Let the vector of observed variables be x = ( x 1 ,  . . . ,  X L )  where xj is a vector of observed 
variables all of the same type but the type of variables is different for different values of j ,  j = 
1 , . . . ,  L, where L denotes the number of different types of observed variables to be analyzed. 
Assume that xl denotes binary items, x2 polytomous items, x3 normal items, x4 gamma items 
and x5 poisson items. 

The maximization of the log-likelihood (7) is done by an EM algorithm. The steps of the 
algorithm are defined as follows: 

Step 1. Choose initial estimates for the model parameters (cei~ and the scale parameters). 
Step 2. E-step: Compute the values rlit(Xl), rlit(s)(X2), flit(x3), flit(x4), flit(x5), r2it(x2), 

r3it ( log X4) and Nt. 
Step 3. M-step: Obtain improved estimates for the parameters by solving the non-linear maxi- 

mum likelihood equations for Bernoulli, Multinomial, Gamma and Poisson distributed 
variables and using the explicit equations for Normal distributed variables. 

Step 4. Return to Step 2 and continue until convergence is attained. 

3.2. Sampling Properties of the Maximum Likelihood Estimates 

From the first order asymptotic theory the maximum likelihood estimates have a sampling 
distribution which is asymptotically normal. Asymptotically the sampling variances and covari- 
ances of the maximum likelihood estimates of the parameters c~io and O{ij and the scale parame- 
ters are given by the elements of the inverse of the information matrix at the maximum likelihood 
solution. 

An approximation of the information matrix is given by 

1 Of (xm) Of (xm) 
I ( ~ ) =  

f(Xm) 2 a/3j a/3k m=l  

where/3 is the vector of the estimated parameters. 
Alternatively, the information matrix can be obtained within the EM algorithm, see Louis 

(1982). In Verhelst and Glas (1993), Louis's method used for the Rasch model. In the program 
LATENT the first method is used to compute standard errors. 

3.3. Goodness of Fit 

A difficult task now is to establish a statistical test for checking the fit of the mixed model. 
Tests for checking the goodness-of-fit for the binary and the continuous model are well known. 
For example, given that the number of latent variables has been specified a priori, a likelihood ra- 
tio statistic can be used for assessing the goodness-of-fit of the linear factor model. For testing the 
goodness-of-fit of the latent trait model for binary data and polytomous data either the Pearson 
X 2 or the likelihood ratio statistic is used. Problems arising from the sparseness of the multi-way 
contingency tables in the binary case are discussed in Reiser and VandenBerg (1994). Bartholo- 
mew and Tzamourani (1999) proposed alternative ways for assessing the goodness-of-fit of the 
model based on Monte Carlo methods and residual analysis. 

For the mixed latent trait model the goodness-of-fit of the one or two-factor latent trait model 
has been looked at separately for the categorical and the continuous part. For the categorical part 
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of the model, significant information concerning the goodness-of-fit  of the model  is found in the 
margins. That is, the one-, two- and three-way margins of the differences between the observed 
and expected frequencies under the model  are investigated for any large discrepancies for pairs 
and triples of items which will suggest that the model does not fit well for these combinations of 
items. 

For the normal part of the model we check the discrepancies between the sample covariance 
matrix and the one estimated from the model. 

Instead of testing the goodness-of-fit  of a specified model we could alternatively use a cri- 
terion for selecting among a set of different models. This procedure gives information about the 
goodness-of-fit  for each model in comparison with other models. This is particularly useful for 
the determination of the number of factors required. In our case we will compare the one factor 
model with the two factor model. Sclove (1987) gives a review of some of the model selection 
criteria used in multivariate analysis such as those due to Akaike, Schwarz and Kashap. These 
criteria take into account the value of the l ikelihood at the maximum likelihood solution and the 
number of parameters estimated, 

Akaike 's  criterion for the determination of the order of an autoregressive model in time 
series has also been used for the determination of the number of factors in factor analysis, see 
Akaike  (1987). 

AIC = - 2 [ m a x  L] + 2m (27) 

where m is the number of model  parameters. The model with the smallest AIC value is taken to 
be the best one. 

4. Scoring Methods for the Generalized Latent Trait Model  

Social scientists are particularly interested in locating individuals on the dimensions of the 
latent factor space according to their response patterns. The latent scores can be substituted for 
the manifest variables in analysis with other independent variables of interest (though with some 
risk of bias). 

Scoring methods have been proposed in the literature for several latent variable models. 
Bartholomew (1980) proposed a method for scaling a set of binary responses using the logit 
factor model and in Bartholomew (1981) that method was extended to the factor model with 
continuous responses. He argues that as latent variables in the model are random, Bayes '  theo- 
rem provides the logical link between the data and the latent variables. Hence, the mean of the 
posterior distribution of z given x, (E (z I x)) can be used to score x. 

An alternative method uses the component scores (see Bartholomew 1984). That method 
avoids the calculation of the posterior mean and the numerical integrations involved. Barthol- 
omew investigated the logistic latent model for binary responses where the latent variable z 
follows a uniform distribution on (0, 1). From the posterior distribution of the latent variable 
given the observed response pattern it is clear that the posterior distribution depends on x only 
through X = ~ 1 C l i l X i ;  X thus is a Bayesian sufficient statistic for z. The sufficiency of X 
was noted by Birnbaum (1968) for a fixed effects version of the model. The sufficiency depends 
on the choice of the response function, it holds for the logit response function but not for the 
probit. 

The component score has an obvious intuitive appeal because of its linearity and the fact 
that it weights the manifest variables in proportion to their contribution to the common factor. 

Bartholomew (1984) and Knott and Albanese (1993) have shown that for the one factor 
logit/logit model  and the one factor logit/probit model for binary responses both scaling methods 
give the same ranking to response patterns/individuals. Analogous results have been derived for 
the linear factor model. 



IRINI MOUSTAKI AND MARTIN KNOTT 401 

Here we attempt to give a general framework for the scoring methods for the generalized 
latent trait model based on the ideas discussed above. We are using the framework used in the 
paper by Knott and Albanese (1993). Here, we derive a general formula for the component scores 
which can be used under any type of distribution or mixture of distributions in the exponential 
family. 

For the time being we will assume that all x 's  are of the same type. The conditional distri- 
bution of the response pattern x given z is in the exponential family and it takes the form 

P 

g(x I z) = I-Igi(xi  I z) 
i=1 

~--~exp xiOi(z) - bi(Oi(z)) 
i=1 ~i ~- di (xi , ~ ) , (28) 

where 0i(z) : o{io -]- O{ilZ. 
Equation (28) becomes 

w h ~ e  

F bi(Oi(z))  
g(x I z) = exp[Co(x) + Cl(X)Z] exp | -  

k i=1 q)i 

P o{io P O{il 
C o ( x  ) = ~ - - x  i and Cl(X) = ~ - - X i .  

i : 1  q)i i : 1  q)i 

- -  ~- ~ d i ( x i , ~ i )  , 
i=1 

The conditional distribution of zero responses to all items given the latent variable is 

(29) 

g ( 0 l z )  = 1 7 e x p  
i=1 

From (29) and (30) we have 

bi (Oi ) -]- di (0, q))/. (30) 
! 

P 
g(x I z) = exp[Co(x) + Cl (X)z]g(O I z) I-I exp(di(xi, ~i) ) 

i=1 exp(di(0, ~bi)) 
(31) 

where, Mzlo is the moment generating function of the conditional distribution of the latent vari- 
able z given a zero response on all items. 

Hence, the conditional distribution of z given the response pattern x is 

h ( z  I x )  - 
g(x l z)h(z) 

f ( x )  

exp(C1 (x)z)g (0 I z)h (z) 
f(O)Mzlo(C1 (x)) 

(33) 

f ( x )  = f+_? g(x l z)h(z)dz 

P exp(di(xi, ¢ i ) )  ~'~O'M ~C ~x" 
= (exp(Co(x))) I - I  ~ ,  ~ J t  ) zlOt i t  )), 

i=1 

The joint probability of the manifest variables (x) may be written as 

(32) 
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The component scores for different type of variables are: 

for binary items: Cl (x)  = E i  O{ilXi since q5 = 1, 

for polytomous items: 

for Normal items: 

for Gamma items: 

C1 (x) = ~ i  ~i l(s)Xi(s), 

CI(X) = ~ i  •ii Ofil ~t'c' since @i = qlii, 

Cl(X) = ~ i  ~ ix i ,  

for Poisson items: C1 (x) = ~ i  c~i lXi. 

When more than one type of manifest variable is fitted the part which is changed in (33) 
is that depending on the manifest variables, that is, C1 (x). For the case of five different type of 
manifest variables 

x = ( X l ,  x2, x3, X4, X5), 

where xj  is a vector of observed variables all of the same type but different for different values 
of j ,  j = 1 . . . . .  5, we get 

Cl (x)  = C l ( x l )  + C1(x2) + C1(x3) + C1(x4) + C1(x5). (34) 

Hence, the component score for each response pattern/individual of the model with variables 
(xl ,  x2, x3, x4, xs) each of different type is 

K--~ O{il 
E OtilXli -]- E O{il(s)X2i(s) -]- E O{i-'-'j'l '-]- L - -7 - - x4 i  -]- E OtilX5i" (35) 

i i i ~j2i i X3t i (Pi i 

The moment generating function of the conditional distribution of z given x is 

Mzlx(t) = f + - 5  exp(tz)h(z l x)dz 

f ~ exp[cl(x)z]h(z 10)dz  = exp(tz) 

_ _ Mzlo(cl(x) + t) (36) 

Mzlo(cl (x)) 

The results of Knott and Albanese (1993) for the latent trait model with binary items are ex- 
tended here for the latent trait model for mixed variables. The same results can be also applied 
here for the generalized latent trait model. 

Result 1. If  Kzlo(t ) is the cumulant generating function for the density of z given that all 
responses are zero, then 

and 

E(Z ] x) = KIzlO(Cl(X)) (37) 

Var(z  Ix)  = K"zlO(Cl(X)), (38) 

where the prime and double prime indicate first and second derivatives of the cumulant generating 
function. 

Result2. E(z  [ x) is a strictly increasing function of (cl (x)) if  the variance of the conditional 
distribution of z given that all responses are zero is strictly greater than zero. 
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Result  3. When the conditional distribution of z when all responses are zero is normal, then 
the conditional distribution of z for any set of responses is normal. 

5. More than one Latent Variable 

The results presented in the previous sections assumed only one latent variable. These re- 
sults are easily generalized to more than one latent variable. 

Let the responses (xl ,  x2, . . . ,  Xp) be of different type formats in the exponential family. 
The generalized latent trait model is written as 

q 

v i ( # i ( Z ) )  = clio -]- ~ - ~  c l i jZ j  i = 1 . . . . .  p ,  (39) 
j = l  

where z denotes the latent variables and vi (.) can be any monotonic differentiable function taking 
different forms for different items depending on their distribution assumed. The latent variables 
are assumed to have independent standard normal distributions. 

The estimation of the model  parameters clio, clij and ~bi is based on the maximization of the 
log-l ikelihood of the joint  distribution of the manifest variables which under the assumption of 
local independence is written: 

f(x)=f+_?...f+_?g(x,z)h(z)dz, (40) 

where the log-likelihood for a random sample of size n is 

n 

L = ~ log f (xm). 
m = l  

The maximization of the loglikelihood is done via the EM algorithm described in a preceding 
section. 

The approximate maximum likelihood equations for the unknown parameters are 

OL k k 
Oclil -- ~ - ~ " "  ~ z}tj [r(1, i, tl . . . . .  tq) - N ( t l  . . . . .  tq)bl(Oi(zt I . . . . .  ztq))] = 0, (41) 

t l = l  tq=l 

where l takes the value 0 when the parameter clio is estimated and the value 1 when the coeffi- 
cients of the latent variables are estimated and j = 1 , . . . ,  q. 

Now r(1,  i, tl  . . . . .  tq) takes a different form depending on the type of the ith manifest 
variable. The only term to be calculated is the first derivative of the function bi (Oi (Ztl . . . . .  Ztq ) ) ) .  
In the program LATENT the M-step of the EM algorithm (solution to the non-linear equations 
given in 41) is done through a Newton-Raphson iterative algorithm. 

The scale parameter is estimated as before. An explicit  solution exists for the Normal items 
and a ML estimate or an approximation of it can be used for the Gamma items. 

5.1. Interpretation o f  the Parameters 

In the case of the binary and the polytomous variables the parameters clio and o~ij define the 
shape of the response function which shows how the probabil i ty of a correct response increases 
with "abili ty" and so it is usually taken to be monotonic nondecreasing in the latent space. 

The parameters clio and o~ij for the different type of variables are not directly comparable.  
That causes a problem when we come to identify which factors are important by looking at the 
factor loadings. 



404 PSYCHOMETRIKA 

The problem can be solved by standardizing the coefficients of the latent variables ~ij in or- 
der to express correlation coefficients between the manifest variable xi and the latent variable z j .  

For Normal items c.gij denotes the covariance between the manifest variable xi and the latent 
variable z j .  By dividing o~ij by the square root of the variance of the continuous variable xi we 
obtain the correlation between the variable xi and z j ,  that is, 

°~iJ (42) C//j. z q 2 
( ~ j = l  O~ij -}- tlJii)l/2" 

For binary items following Takane and de Leeuw (1987) or Bartholomew and Knott (1999), we 
standardize as 

°~iJ (43) c/~ z q 
( ~ j = l  c/2 -~- 1)1/2" 

In the polytomous case items are treated as nominal. Hence, each category of a polytomous item 
can be seen as a binary item, where an individual either belongs to that category or does not. The 
standardization proposed for the binary items above can be used to standardize the coefficients 
of the latent variables for each category of the manifest variable, that is, 

O~ij(s) (44) 
°~i~ (s) = q 2 ( ~ j = l  + 1)1/2 °~ij (s) 

The coefficients given in (42), (43), and (44) respectively can be used for a unified interpretation 
of the factor loadings. The standardization of the parameters brings the interpretation close to 
factor analysis. 

6. Eurobarometer, 1992: Science and Technology Section 

To illustrate the methodology developed a dataset from the 1992 Eurobarometer survey will 
be looked at. The data used are from the Consumer Protection and Perceptions of Science and 
Technology section. The country chosen is Great Britain. The questions chosen for the analysis 
are given below. 

1. Science and technology are making our lives healthier, easier and more comfortable. 
2. Scientific and technological research do not play an important role in industrial development. 
3. New technology does not depend on basic scientific research. 
4. Scientific and technological research cannot play an important role in protecting the environ- 

ment and repairing it. 
5. The benefits of science are greater than any harmful effects it may have. 
6. Thanks to science and technology, there will be more opportunities for the future generations. 
7. The application of science and new technology will make work more interesting. 

Half  of the sample were asked the questions with the following response categories: strongly 
disagree, disagree to some extent, agree to some extent and strongly agree. For the other half  of 
the sample there was a middle category as well. The questions used here are the ones without the 
middle category. Missing values have been excluded from the analysis by listwise deletion. That 
left us with 392 respondents. Items 3, 4 and 5 have been negatively expressed. Items have been 
recoded so that a high score on any of these items shows a positive attitude towards science and 
technology. 

After looking at the frequency distribution of the 7 items we decided to dichotomize the 
first two items (agree vs. disagree), to treat Items 3 and 4 as polytomous and Items 5, 6 and 7 
as normally distributed. The dichotomization of the first two items is done for the purpose of 
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evaluating the procedures. The number of quadrature points used in the estimation is 48 for the 
one-factor model and (16 x 16) for the two-factors models. First a one-factor model is fitted to 
the seven items. The parameter estimates are given in Table 1. Standard errors are enclosed in 
parentheses. 

The goodness-of-fit  of the model is checked by looking at the two- and three-way margins of 
the binary and the polytomous observed variables. For each cell a chi-square value is calculated 
( ( 0  - E ) 2 / E ) .  The  fit of the one factor model on the margins of the binary variables is very 
satisfactory but not on the polytomous variables margins, see Table 2. 

Figure 1 gives the response functions for each category of Items 3 and 4. The plots show an 
unclear and unexpected pattern. In the case where the response categories of an item are ordered 
we would expect that individuals with high values on the z-scale have high probabilities of being 
in the higher category of that item. A reason for the bad fit could be using only one factor. 

Hence, one factor cannot account for the interrelationships among the seven items. The two 
factor model  improved the fit on the margins considerably, see Table 3. The AIC criterion values 
is also smaller for the two factor model than the one factor model which indicates that the two 
factor model fits the data better. The parameter estimates for the two factor model are given in 
Table 4. 

Figures 2 and 3 give the response functions for each category of the polytomous items. The 
pattern now is much clearer. The response probabilit ies for each of the response categories are 
more distinct than before. 

The aim of the analysis is to identify factors that can explain the interrelationships among 
the seven observed items. The factor solution is not unique since orthogonal rotations of the 
factors give the same value of the likelihood. This lack of identification does not create problems 
in the convergence of the EM algorithm. It does create a problem when it comes to computing 
standard errors for the parameter estimates of the multiple factor model. Because of the non- 
unique solution the inversion of the information matrix is not possible. To overcome this problem 
in the program, the value of one model parameter is constrained to be equal to the ML value 
before the inversion of the information matrix. 

TABLE 1. 
Estimates and Standard Errors for the One-Factor Latent Trait Model 

Binary c~io c~i 1 rri (z = 0) 

I tem 1 2.47 (0.22) 0.73 (0.21) 0.92 
I tem 2 1.77 (0.15) - 0 . 0 1  (0.17) 0.85 

Polytomous Cat c~i0 c~i 1 rri (z = 0) 

I tem 3 1 0.00 0.00 
I tem 3 2 2.01 (0.36) - 1 . 0 5  (0.30) 0.24 
I tem 3 3 2.56 (0.35) - 1 . 0 2  (0.31) 0.41 
I tem 3 4 2.34 (0.35) - 0 . 9 0  (0.31) 0.33 
I tem 4 1 0.00 0.00 
I tem 4 2 1.38 (0.26) - 0 . 8 3  (0.25) 0.23 
I tem 4 3 1.85 (0.25) - 0 . 8 9  (0.24) 0.37 
I tem 4 4 1.73 (0.26) - 0 . 6 5  (0.24) 0.33 

Normal  c~i o c~i 1 qJi i 

Item 5 2.84 (0.04) 0.31 (0.05) 0.54 (0.05) 
Item 6 2.99 (0.04) 0.61 (0.07) 0.20 (0.07) 
Item 7 2.72 (0.05) 0.39 (0.05) 0.50 (0.05) 

AIC 5189.916 
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TABLE 2. 
Poly tomous  Items: (O - E)2/E Values for  the Two-Way Margins,  One-Factor  Model  

Item 4 

Item 3 1 2 3 4 

1 2.67 0.36 0.12 1.75 
2 7.32 2.98 0.24 10.3 
3 2.25 0.38 5.70 5.61 
4 2.16 5.68 8.87 34.6 
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FIGURE 1. 
Response functions for i tem 3 and 4 respectively for the one-factor model. 
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TABLE 3. 
Polytomous Items: (O - E)2/E Values for the Two-Way Margins, Two-Factor Model 

407 

Item 4 

Item 3 1 2 3 4 

1 0.83 0.00 0.53 0.05 
2 0.21 0.04 0.23 0.70 
3 2.74 0.01 1.76 0.57 
4 1.82 0.12 1.07 0.11 

With the polytomous items we get parameter estimates (difficulty and discrimination) for 
each response category. One of the response categories is used as a reference category. The spread 
of the parameter estimates of the polytomous items indicate that the items have strong discrimi- 
nating power. The proposed modeling of the polytomous items provide us with information for 
each category of the item. On the other hand, a parameter for each polytomous item is needed to 
summarize the discriminating power of the item in relation to the other items in the battery (we 
will investigate this in further work). 

From Table 4 we see that the factor loadings of Items 2, 3 and 4 are larger on the second 
factor and the opposite is true for Items 1, 5, 6, and 7. Items 2, 3 and 4 are the ones which 
have been expressed negatively. The question wording might be then one of the reasons that 
these items form a scale by themselves. An orthogonal rotation of the factor loadings might have 
suggest a different pattern, but we found the pattern from the unrotated loadings to be the most 
intuitive one. 

Another possible explanation of the need %r two dimensions to explain attitudes to scientific 
and technological research could be that on the one hand people believe that science and tech- 
nology are important elements of our society but on the other hand people believe that science 
and technology cannot give an answer to all society's problems. 

TABLE 4. 
Estimates and Standm-d En'ors for the Two-Factor Latent Trait Model 

Binary ~i0 czi 1 e~i2 ~i(z = 0) 

Item 1 2.63 (0.27) 0.96 (0.27) 0.28 (0.46) 0.93 
Item 2 1.98 (0.2()) 0.32 (0.39) 0.74 (0.24) 0.88 

Polytomous Cat cziO(s ) czi l(s) o!i2(s ) yr i (z = 0) 

Item 3 1 0.00 0.00 0.00 
Item 3 2 1.10 (0.91) -1 .55  (0.80) -0 .63  (1.33) 0.12 
Item 3 3 3.00 (0.73) -0 .48  (0.95) 1.48 (1.38) 0.83 
Item 3 4 -1 .45  (12.3) 3.49 (13.3) 10.0 (23.3) 0.01 
Item 4 1 0.00 0.00 0.00 
Item 4 2 1.61 (0.30) -0 .58  (0.45) 0.72 (0.39) 0.25 
Item 4 3 2.14 (0.28) -0 .55  (0.52) 0.94 (0.37) 0.43 
Item 4 4 1.71 (0.34) 0.17(0.93) 2.03 (0.00) 0.28 

Normal ~i 0 c~i 1 c~i 2 tIJi i 

Item 5 2.84 (0.05) 0.29 (0.07) -0 .10  (0.13) 0.54 (0.05) 
Item 6 2.99 (0.04) 0.57 (0.12) -0 .25  (0.23) 0.17 (0.07) 
Item 7 2.72 (0.05) 0.33 (0.11) -0 .22  (0.14) 0.49 (0.05) 

AIC 5104.2 
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7. Conclusion 

The methodology developed provides a general framework for both estimating the model  
parameters of a latent trait model with observed variables of any type from the exponential family 
and for scoring individuals/response patterns on the identified latent dimensions. 

One of the advantages, not discussed in this paper, of having a model which can fit mixed 
types of variables is that it allows missing values to be incorporated in the analysis. A missing 
data indicator matrix is used, which contains binary values which indicate when an observation 
is missing from the data or not. So when the variables to be analyzed are metric or polytomous a 
model  that can handle "mixed" variables is required to fit both the observed part of  the data and 
the missing indicator matrix (see O'Muircheartaigh & Moustaki,  1999). A discussion on how to 
deal with nonresponse using missing indicator variables can be found in Girl (1990). 

We looked only at polytomous variables on a nominal scale. For the case where the observed 
variables are on an ordinal scale the canonical link function is not any more a linear function of  
the parameters. A general class of  latent variable models for ordinal variables is discussed in 
Moustaki  (in press). 

We have emphasized the interpretation of  the model parameters. The standardized coeffi- 
cients are recommended for a more unified interpretation of the results. The standardization aims 
to bring the interpretation of the factor coefficients close to factor loadings. 

The methods used to examine the goodness-of-fit of the model do not measure the overall fit 
of the model. However, the chi-square value computed for the one- two- and three-way margins 
of the binary and polytomous items is an indication of where the model might not fit well. In 
addition, the AIC is a way of comparing the one factor model with the two factor model. More 
work needs to be done in establishing an overall goodness-of-fit  test for the mixed model. 

In this paper we do not discuss the inclusion of covariates effects on the observed variables, 
however those can be easily incorporated within the generalized linear framework. The explana- 
tory variables can be added as extra terms in the linear predictor equation given in (1) and their 
effects can be estimated using the EM algorithm presented here. 

The software LATENT gives parameter estimates, goodness-of-fit  statistics based on the ob- 
served and expected frequencies on the one-, two-, and three-way margins of the binary and poly- 
tomous items, and scores (component scores, posterior mean) for the individuals in the sample. 

The program can handle a large number of observed variables and can fit up to two latent 
variables. The fit of more than two latent variables is expected to increase the computational time 
significantly. 
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