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Cureton & Mulaik (1975) proposed the Weighted Varimax rotation so that Varimax (Kaiser, 1958) 
could reach simple solutions when the complexities of the variables in the solution axe larger than one. 
In the present paper the weighting procedure proposed by Cureton & Mulaik (1975) is applied to Direct 
Oblimin (Claxkson & Jennrich, 1988), and the rotation method obtained is called Weighted Oblimin. It 
has been tested on artificial complex data and real data, and the results seem to indicate that, even though 
Direct Oblimin rotation fails when applied to complex data, Weighted Oblimin gives good results if a 
variable with complexity one can be found for each factor in the pattern. Although the weighting procedure 
proposed by Cureton & MulaJk is based on LandaJal's (1938) expression for orthogonal factors, Weighted 
Oblimin seems to be adequate even with highly oblique factors. The new rotation method was compared to 
other rotation methods based on the same weighting procedure and, whenever a variable with complexity 
one could be found for each factor in the pattern, Weighted Oblimin gave the best results. When rotating a 
simple empirical loading matrix, Weighted Oblimin seemed to slightly increase the performance of Direct 
Oblimin. 
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1. T he  W e i g h t e d  O b l i m i n  Ro ta t ion  

In factor  analysis ,  the  r e t a ined  factors  are of ten o r thogona l ly  and  ob l ique ly  ro ta ted  in an 

a t t empt  to e l imina te  the  i n d e t e r m i n a c y  of  thei r  final pos i t ion .  The  ro ta t ion  a ims  to e l imina te  this  

i n d e t e r m i n a c y  ro ta t ing  the  pa t te rn  so tha t  it b e c o m e s  as s imple  as poss ib le ,  enab l ing  the  so lu t ion  

ob ta ined  to be  in te rpre ted .  T h u r s t o n e  (1947)  p r o p o s e d  an ob jec t ive  def in i t ion  of  a s imp le  so lu t ion  

b y  m e a n s  of  a set  of  s imp le  s t ruc ture  cri teria.  T h e s e  cr i ter ia  can  b e  s u m m a r i z e d  as fol lows:  A 

solu t ion  is a s imple  so lu t ion  i f  (a) the  var iab les  in the  analys is  have  load ings  d i f ferent  f rom zero 

in on ly  one  factor  in the  pa t te rn ,  and  (b) all the  factors  in the  pa t te rn  have  some  var iab les  wi th  

load ings  d i f ferent  f rom zero  (Thurs tone) .  T he  var iab les  in such a s imple  so lu t ion  are k n o w n  as 

var iab les  of  c o m p l e x i t y  one, as they on ly  h a v e  one  loading  d i f fe rent  f rom zero  in the  pat tern .  

S ince  the  s imp le  s t ruc ture  cr i ter ia  we re  p roposed ,  m a n y  o r thogona l  and  ob l ique  ro ta t ion  

m e t h o d s  have  b e e n  p r o p o s e d  to ro ta te  so lu t ions  to a s imple  s tructure.  S o m e  of  these  are N o r m a l  

Var imax  (Kaiser,  1958),  Ha r r i s -Ka i se r ' s  m e t hods  (Harr i s -Kaiser ,  1964), P r o m a x  ( H e n d r i c k s o n  

& Whi t e ,  1964) and  Di rec t  O b l i m i n  (C la rkson  & Jennr ich ,  1988).  However ,  all these  p rocedures  

m a y  not  f ind an in te rp re tab le  so lu t ion  i f  the  so lu t ion  has  c o m p l e x  var iables .  A n  e x a m p l e  of  a 

so lu t ion  in w h i c h  these  ro ta t ion  p rocedures  fail is the  w e l l - k n o w n  26 Box  P r o b l e m  (Thurs tone ,  

1947).  In this  example ,  a cons ide rab l e  n u m b e r  of  the  var iab les  have  complex i t i e s  larger  than  one: 

W h e n  the  so lu t ion  is ro ta ted  to a t ru ly  s imp le  pat tern ,  the  var iab les  have  load ings  d i f ferent  f rom 

zero  in m o r e  than  one  factor. 

Cure ton  & M u l a i k  (1975)  s u m m a r i z e  the  s i tuat ions  in w h i c h  N o r m a l i z e d  Var imax  can  fail 

to obta in  an in te rp re tab le  solut ion.  T h e s e  s i tuat ions  are the  fol lowing:  

1. I f  a cons ide rab l e  n u m b e r  of  var iab les  h a v e  s igni f icant  load ings  on m o r e  than  one  factor, and  

on ly  a few var iab les  h a v e  one  s igni f icant  load ing  on each  factor. 
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2. If the number of variables with near-zero loadings on one factor in the initial orthogonal factor 
solution is larger than the number of factors. 

One, or both, of these situations can be found when variables in the solution to be rotated 
have complexities larger than one. To deal with solutions in which this kind of variable is found, 
Cureton & Mulaik (1975) proposed the Weighted Varimax rotation procedure. 

Weighted Varimax rotates the pattern so that the final position of the axes is mainly deter- 
mined by the simplest variables in the pattern, while the complex variables in the pattern do not 
have much influence on this final position. So Weighted Varimax needs: 

1. to detect the complex variables in the pattern before a rotation is performed, 
2. to weight any variable in the pattern to be rotated, so that the simplest variables have a high 

weight in the rotation, while the complex variables (depending on how complex they are) 
have less. 

Both procedures are described in detail below. Once the complex variables have been de- 
tected, and the weights for each variable computed, the Varimax rotation (Kaiser, 1958) is com- 
puted over the weighted pattern. It should be said that Weighted Varimax can successfully rotate 
such complex solutions as the 26 Box Problem (Cureton & Mulaik, 1975). However, as Cureton 
& Mulaik warned, the procedure may fail if the factors in the solution have a high correlation 
among one another. An anonymous reviewer noted that the procedure may also fail if a variable 
with complexity one cannot be found for each factor in the pattern. 

Cureton & Mulaik (1975) combined Weighted Varimax with Promax (Hendrickson & 
White, 1964). Complex oblique data can be rotated and good results obtained if the orthogonal 
Weighted Vafimax solution is taken as a starting point for Promax. This rotation procedure gives 
very good results when rotating Thurstone's 26 Box Problem (1947). 

Weighted Varimax has also been incorporated in Promin (Lorenzo-Seva, 1999) and results 
have been good with complex solutions. Other rotation methods that can deal with complex vari- 
ables are Orthosim and Oblisim (Bentler, 1977), Promaj (Trendafilov, 1994), and, in particular, 
Simplimax (Kiers, 1994). Although Simplimax can deal with very difficult situations, it is also 
the most complex to use. 

The aim of this paper is to show that the weighting procedure proposed by Cureton & Mulaik 
(1975) can be applied to Direct Oblimin (Clarkson & Jennrich, 1988) and provide good results. 
As Direct Oblimin (Clarkson & Jennrich, 1988) is one of the most popular oblique rotation 
procedures, it seems reasonable to improve its performance using this weighting procedure. Not 
only can Weighted Varimax deal with complex solutions but it can also slightly improve Varimax 
rotation when rotating simple solutions (Cureton & Mulaik, 1975). So Weighted Oblimin may 
also improve the performance of Direct Oblimin (Clarkson & Jennrich, 1988) when rotating this 
kind of simple solution. 

The algorithm for the Weighted Oblimin rotation is described below. Then, a simulation 
study is made with artificial data to test the performance of Weighted Oblimin. Thurstone's 26 
Box Problem (1947) is rotated and compared to the solution obtained by Cureton & Mulaik 
(1975). As this problem is a very special case, a new data sample based on the Box Problem is 
also generated and rotated. Finally, Weighted Oblimin is applied to a real sample data set. 

2. The Weighted Oblimin Rotation 

Weighted Oblimin applies exactly the same weighting procedure as Weighted Varimax 
(Cureton & Mulaik, 1975). To understand this weighting procedure fully, the original paper 
should be read carefully. This paper describes the procedure briefly, adapted to the Direct 
Oblimin (Clarkson & Jennfich, 1988) rotation. As has been explained before, this procedure first 
detects the complex variables in the pattern, and then decides their weight in the rotation. 
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2.1. Detecting Complex Variables in the Pattern 

Let the r x m matrix P be an orthogonal pattern matrix of r variables and m factors which 
is to be rotated, and the r x r matrix R* the reproduced correlation between variables matrix, 

R* = pp1 (1) 

If  R* is analyzed by Principal Components and m factors are retained, then the r x m matrix 
F will be the orthogonal pattern obtained from the factor extraction of R*. 

Let  D( r  x r)  be a diagonal matrix that is computed as, 

D = d iag (FF ' )  -1/2 (2) 

Then, the r x m matrix G is computed as the product 

G = D F  (3) 

Now G is the row-normalized matrix of  F.  Let the r x r diagonal matrix H be a reflection 
matrix, where hjj is the j - th  diagonal element of  H. Each hjj element has a value of  1, except 
if  the element gjl of G is negative. In this case the value of  ]~ljj will be - 1 .  Finally, the r x m 
matrix A is computed as, 

A = H G ,  (4) 

Now the first column in A is a vector in an r-dimensional  space that is placed approximately 
in the middle of the whole cluster of variables in A, and the loadings on this factor are the 
projections of the variables on this vector. 

Since each column in A pertains to a unit length factor, and each projected variable has now 
been normalized, the cosine of the angle between the i-th p:rojected variable and this first factor 
is ai 1, where ai 1 is the first loading of the i-th variable in the matrix A. 

If  the elements in the first column of A are large when compared to the other factors (so 
the first factor explains more variance than any of the other factors), the first factor has another 
important feature: all the factors of an orthogonal approximation to simple structure will lie more 
or less symmetrical ly around this first factor. If  the symmetry is perfect, the cosine of the angle 
between each factor and this first factor is (1/m) 1/2 (Landahl, 1938); it is smaller if  the oblique 
configuration of the axes is acute, and greater if  the oblique configuration of the axes is obtuse. 

Now it can be decided which variables are complex: variables with all loadings close to 
( l /m)  1/2 are the simplest in the pattern, while variables with all loadings close to 1 are the most 
complex. 

2.2. g~eighting Variables in the Pattern 

Let the r x r matrix W be a diagonal matrix. ~Ihe ttoii is a diagonal element of  W and its 
value is the weight of the i-th variable during the rotation procedure. Cureton & Mulaik  (1975) 
proposed that each weight should be computed using two expressions. I f  ai 1 is larger or equal to 
(1/m) 1/2, 

= ( a r c o s ( ( 1 / m ) V 2 )  - arcos(ai 1) ) 
Wii COS 2 \ arcos((1/m)a/2 ) arcos(O) -t-0.001. (5) 

If all is smaller than (1/m) 1/2, 

= \ arcos(O) a ~ ( a r c ° s ( a i a )  - arcos((1/m) 1/2) ) wii cos 2 _----------r~. - - - ~  arcos(0) + 0.001. (6) 



304 PSYCHOMETRIKA 

Variables with ail  values equal to ( l / m )  1/2 will have corresponding wii values of 1.001, 
while variables with all  values equal to 1 or 0 will have corresponding ttoii values of 0.001. 
Variables in the middle will have intermediate weight values. The most complex variables in A 
are the ones with least influence on the final position of the rotated factors. 

As the Weighting Procedure is based on Landahl 's  (1938) expression for orthogonal factors, 
the procedure may fail if the ideal factors are correlated. Cureton & Mulaik (1975) implicit ly sug- 
gested that their weighting procedure can be used when interfactor correlations are nonzero, since 
they used Weighted Varimax as an initial orthogonal rotation to Promax. Actually, the weighting 
procedure seems to give acceptable results when applied to highly oblique factors. Note that the 
maximum value of ttoii = 1.001 will be obtained by variables with complexity one in a pattern 
corresponding to perfectly orthogonal factors. As factors become more closely correlated, the 
values of all ttoii will usually decrease. In a correlated case, values ttoii will be small but more 
or less proportional to values ttoii in an orthogonal case. This means that the simplest variables 
will normally have larger wii values than the complex variables. In an extremely correlated case, 
all the complex variables will have values wii = 0 . 0 0 1 ,  whereas the simplest variables will have 
values that are small but still higher than 0.001. When rotating correlated factors, all the values 
of the product WA to be rotated will have small values, but this does not seem to be a problem 
when computing Direct Oblimin (Clarkson & Jennrich, 1988). 

2.3. Obliquely Rotat ing the Orthogonal  Weighted Pattern 

Once the weighting matrix W has been computed, the Direct Oblimin solution for the prod- 
uct WA is computed to obtain the r x m matrix V as 

V = oblimin(WA, g = 0) (7) 

where the matrix V is the Direct Oblimin pattern that has been weighted and reflected, and g is 
the parameter of the Direct Oblimin rotation. The r x m final oblique pattern A is computed as, 

A = H D - 1 W - 1 V .  (8) 

The m x m oblique transformation matrix T from the orthogonal pattern P is computed as, 

T = ( P ' P ) - I P ' A .  (9) 

So, 

A = PT, (10) 

and the m x m interfactor correlation matrix • is computed as, 

= T - 1 T  -1 ' .  (11) 

As Weighted Oblimin has been presented with the y parameter equal to zero, the rotation 
method that has been used here is Direct Quartimin (the simplest member of the Oblimin family). 
As results seems to be good when y = 0 (Jennrich, 1979), in this paper Weighted Oblimin will 
always be computed in this way. 

3. Simulation Study 

The main purpose of this study is to compare the performance of Weighted Oblimin with 
Direct Oblimin (Clarkson & Jennrich, 1988) and other rotation procedures that seem to perform 
well with complex solutions. The software used in this study was Matlab 4.0 (The Mathworks,  
1984). 
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The rotation procedures that are compared are: 

1. Weighted Varimax (Cureton & Mulaik, 1975) followed by Promax (k = 4) (Hendrickson 
& White, 1964): this rotation procedure was proposed by Cureton & Mulaik (1975). Here 
it will be called Weighted Promax. Varimax (Kaiser, 1958) rotation computed in Weighted 
Varimax was started from five random positions and care was taken to prevent any possible 
permutation effect (ten Berge, 1995). 

2. Promin (Lorenzo-Seva, 1999): this rotation procedure is based on Weighted Varimax (Cureton 
& Mulaik, 1975) followed by an oblique semi-specified Procrustes rotation (Browne, 1972; 
Meredith, 1977). Varimax rotation was computed as with Weighted Promax. 

3. Promaj (Trendafilov, 1994): this procedure consists of orthogonally rotating the pattern with 
Orthosim (Bentler, 1977) and then using an Oblique Procrustes rotation (see Trendafilov, 
1994, for more details). Here Promaj is applied in the same way. This procedure does not 
apply the Weighting technique proposed by Cureton & Mulaik (1975), and this makes the 
comparison quite interesting. Orthosim was started from five random positions. The algorithm 
for the Oblique Procrustes rotation is the one proposed by Browne (1972) but it is fully 
specified. 

4. Direct Oblimin (g = 0) (Clarkson & Jennrich, 1988): this rotation procedure might fail 
frequently, as the study is mainly designed to rotate variables with complexities larger than 
one. However, it is interesting to show that Direct Oblimin might fail with some kind of 
patterns, whereas Weighted Oblimin still performs well. Direct Oblimin rotation was started 
from five random positions. 

5. Weighted Oblimin: this rotation was computed in the way described above, starting Direct 
Oblimin rotation from five random positions. 

3.1. Design of the Simulation Study 

As already observed, there is reason to suspect that Weighted Oblimin may fail if the factors 
are highly correlated or if a variable with complexity one cannot be found for each factor in the 
pattern. This simulation study tests Weighted Oblimin and the other rotation procedures taking 
into account both of these difficult situations. The steps of the study were the following: 

1. The orthogonal factor solutions were constructed on the basis of a known simple oblique 
pattern A and interfactor correlations matrix. 

2. Each solution was rotated from its orthogonal pattern using all the methods compared. 
3. The rotation procedures which can recover accurately the oblique pattern A were determined. 
4. The accuracy with which a rotation procedure recovers the oblique pattern A was determined. 

To construct the oblique pattern A, besides a number of zero loadings, the following load- 
ings were considered: 

1. Loadings a: taken in a uniform random manner between 0.80 and 1.00. 
2. Loadings b: taken in a uniform random manner between 0.50 and 0.69. 
3. Loadings c: taken in a uniform random manner between 0.30 and 0.49. 
4. Loadings d taken in a uniform random manner between 0.10 and 0.29. 
5. Loadings e: taken in a uniform random manner between 0.01 and 0.09. 

Using these loadings, seven kind of different Oblique Patterns A were constructed. These 
patterns are shown in Tables 1 and 2. For example, loadings a in Pattern 1 were all chosen in a 
uniform random manner, which means that it is unlikely that any of the loadings a are exactly 
equal but they are probably similar. The same is applied to loadings b, c, d and e in all patterns. 

Each kind of pattern attempts to test the rotation procedures in different situations: 
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TABLE 1. 
Patterns P1, P2 and P3 in the Study with Artificial Data 

Pattern P1 Pattern P2 Pattern P3 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

V1 a 0 0 a 0 0 b 0 0 
V2 a 0 0 0 a 0 0 b 0 
V3 a 0 0 0 0 a 0 0 b 
V4 a 0 0 b b 0 b b 0 
V5 a 0 0 e b c e b c 
V6 0 a 0 0 d b 0 d b 
V7 0 a 0 0 b b 0 b b 
V8 0 a 0 e c c e c c 
V9 0 a 0 c e b c e b 
V10 0 0 a b d d b d d 
V l l  0 0 a c c c c c c 
V12 0 0 a b d e b d e 

1. Pattern 1 (P1) is a very simple pattern. All the methods should give good results when rotating 

solutions of this type. However, it is interesting to see if Weighted Oblimin can be safely used 

with this kind of pattern. Note that the number of variables with significant loadings on each 

factor differs so that there are no symmetries in the data. 

2. Pattern 2 (P2) has three variables with complexity one, whereas all the other variables are 

complex variables. These three variables have larger loadings than those of the complex vari- 

ables. 

3. Pattern 3 (P3) has three variables with complexity one. Each of these variables has its sig- 

nificant loading on a different factor. All the other variables are complex variables like those 

found in pattern P2. However, the three simple variables have loadings similar to those of the 

complex variables. 

4. Pattern 4 (P4) has a structure similar to pattern P3, but with 20 variables and 5 factors. Like 

before, each variable with complexity one has the significant loading on a different factor. 

5. Pattern 5 (P5) is exactly like pattern P4, but variables 4 and 5 are complex variables, not 

variables of complexity one, and neither can factors 4 and 5 be associated to a single variable. 

Here Direct Oblimin and all the methods based on the weighting technique are expected to 

fail. No predictions can be made about the behavior of Promaj, as it is not based on this 

procedure. 

6. Pattern 6 (P6) is exactly like pattern P4, but variables 2, 3, 4 and 5 are complex variables, 

not variables of complexity one, and neither can factors 2, 3, 4 and 5 be associated to a 

single variable. As this is a more degraded kind of pattern, the performance of the rotation 

procedures should be worse than with patterns P4 and P5. 

7. Pattern 7 (P7) is exactly like pattern P4, but none of the variables have complexity one. This 

is a really difficult pattern, and none of the rotation procedures is expected to recover the 

Oblique Pattern A. 

Four kinds of interfactor correlations matrices qb were used in the study: 

1. Low correlated factors: all the off-diagonal elements were fixed to 0.20. 

2. Medium correlated factors: all the off-diagonal elements were fixed to 0.50. 

3. High correlated factors: all the off-diagonal elements were fixed to 0.70. 

4. Random correlated factors: all the off-diagonal elements were chose in a uniform random 

manner between 0.20 and 0.70. Each matrix qb was checked to be positive semidefinite. 
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Seven kinds of patterns A and four kinds of interfactor correlation matrices qb were studied, 
so there were 28 conditions in the study. Each condition was analyzed by five rotation procedures, 
and the 28 conditions were replicated 50 times. This means that 1,400 solutions were constructed 
and 7,000 rotations computed. 

3.2. Data Generation 

Once these oblique patterns A and interfactor correlation matrices • had been built, an 
orthogonal pattern P was computed for each pair of oblique pattern and interfactor correlation 
matrix. This was based on the factor analysis model, 

R = A ~ A  f + ~' = P t  f + qt = R* + qJ, (12) 

where R is a correlation matrix, R* is the reduced correlation matrix and q~ is the diagonal 
matrix of  unique variances, taken as I - Diag(R - PP') .  The reduced correlation matrix R* 
was constructed as R* = AdPA I and its eigendecomposition computed as R* = K A K  I. So the 
orthogonal pattern, which is related to the principal factors, was computed as P = KA 1/2. 

Randomly choosing the loadings of  the complex variables and the correlations between 
factors does not ensure that the diagonal elements of R* will have values smaller or equal to one 
and the off-diagonal elements smaller than one, hence that qJ is nonnegative. So, each pair of  
oblique patterns and interfactor correlation matrices was checked to verify that this was so. If  a 
pair led to a negative unique variance, the pair was discarded and a new oblique pattern and true 
interfactor correlation matrix built. The orthogonal pattern P computed for each A and qb pair 
was then obliquely rotated using all the rotation methods tested in the study. 

3.3. Success Criteria 

The main purpose of this first simulation study is to determine whether each rotation pro- 
cedure is able to recover accurately the proposed patterns A from their orthogonal patterns P. It 
was arbitrarily determined that an oblique pattern A would be considered as accurately recovered 
by a rotation procedure from the orthogonal pattern P, when the congruence of the columns of 
A with the corresponding columns of the oblique pattern was equal to or larger than 0.90 for 
all the columns in the pattern. Before computing the congruence coefficient (Tucker, 1951), the 
columns of the oblique pattern obtained by the rotation procedure were permuted and reflected, 
if necessary, to maximize the congruence with the oblique pattern A. The number of times that a 
rotation procedure recovered accurately the patterns A was taken as a success index. 

A second point of  interest is to see how well each rotation procedure recovers the oblique 
pattern A from the orthogonal pattern P. This was evaluated by determining the factor congru- 
ence, that is to say, the mean of the congruence of  the columns of  A with corresponding columns 
of  the rotated oblique pattern was computed. This congruence criterion (C) was computed as 

C = m -1 ~ 05(),i, Pti), 
i=1 

(13) 

where 05 denotes Tucker's (1951) congruence coefficient, ;~i is the i-th column of A, and ti is the 
i-th column of  the oblique transformation matrix T obtained by the rotation procedure tested. If 
necessary, the columns of  the oblique pattern obtained by the rotation procedure were permuted 
and reflected to maximize congruence with the oblique pattern A, so the values of  C are in the 
range of  [0, 1]. 

3.4. Results 

Table 3 shows the number of patterns accurately recovered by each rotation procedure in 
the 28 conditions after 50 replications of this study. 'll~e rotation procedure that recovered most 
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TABLE 3. 
Number of Solutions Recovered by Each Rotation Procedure 

309 

Direct Weighted Weighted 
Oblimin Promaj Promin Promax Oblimin 

~ = 0 . 2  
P1 50 49 50 50 50 
P2 50 47 50 50 50 
P3 1 27 50 46 50 
P4 2 33 50 50 50 
P5 2 12 25 25 16 
P6 0 2 12 2 0 
P7 0 0 7 2 0 

TotN 105 170 244 225 216 

d~ = 0.5 
P1 50 49 50 50 50 
P2 50 45 50 50 50 
P3 0 34 49 49 50 
P4 6 16 50 50 50 
P5 0 6 24 17 32 
P6 0 5 7 4 0 
P7 0 0 1 0 0 

Total 106 155 231 220 232 

qb = 0.7 
P1 50 47 50 50 50 
P2 50 37 50 50 50 
P3 0 36 50 48 50 
P4 17 3 50 50 50 
P5 1 0 21 6 35 
P6 0 0 3 1 0 
P7 0 0 3 0 0 

Total 118 123 227 205 235 

=RANDOM 
P1 50 47 50 50 50 
P2 50 45 50 50 50 
P3 1 33 49 47 50 
P4 7 16 50 49 50 
P5 0 6 27 19 11 
P6 0 6 11 3 1 
P7 0 3 6 0 0 

TotN 108 156 243 218 212 

TotN 437 604 945 868 895 

patterns was Promin (945 out of  1,400), followed by Weighted Oblimin (63.9%) and Weighted 

Promax (62.0%), whereas Promaj (43.1%) and Direct Oblimin (31.2%) were the procedures that 

recovered least. 

As can be seen in Table 3, the patterns of type P1 and P2 were well recovered by Direct 

Oblimin, Promin, Weighted Promax and Weighted Oblimin. Despite being based on the Weight- 

ing procedure proposed by Cureton & Mulaik (1975), the last three gave good results even with 

highly correlated factors. However, Promaj based on the Orthosim rotation seems to have prob- 

lems, particularly when rotating highly correlated factors. 
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Patterns of type P3 and P4 were well recovered by Promin, Weighted Promax and, particu- 
larly, Weighted Oblimin, which recovered most patterns. The performance of Promaj was rather 
poor with this kind of pattern, and that of Direct Oblimin was even poorer. 

Promin recovered 48.5% of the patterns of type P5, and was the rotation procedure that 
achieved best results with this kind of pattern. Weighted Oblimin recovered 47.0% of the patterns, 
whereas Weighted Promax recovered 33.5%. Once again, Promaj and Direct Oblimin performed 
poorly with this kind of pattern. 

When rotating patterns of type P6 and P7, all of the rotation procedures often gave unaccept- 
able results. Promin, Weighted Promax and Promaj did recover some of the patterns. Weighted 
Oblimin recovered only one pattern of type P6, and Direct Oblimin was not able to recover any. 

Whereas the performance of Promin, Weighted Promax and Promaj worsened as the indices 
of the inter-factor correlation matrix increased, the performance of Weighted Oblimin and Direct 
Oblimin seemed to improve slightly. So the correlation between factors did not seem to be a 
problem when applying Weighted Oblimin. Actually, the procedure that achieved best results 
when qb = 0.7 was Weighted Oblimin; it recovered 235 (out of 350) of the patterns. 

Table 4 shows the average values of success criterion C after 50 replications, for each type 
of pattern and for each of the rotation procedures tested. It also shows how many times each of 
the methods performed best (denoted as "freq.best") in terms of the success criterion C. All  the 
methods performed well when rotating P1 patterns. Weighted Oblimin is the rotation procedure 
that gave the best results when rotating P2, P3 and P4 patterns. Finally, Promin was the rotation 
procedure that gave best results when rotating P5, P6 and P7 patterns. It can also be seen that 
Weighted Oblimin was the procedure that performed best in 711 (out of 1,400) cases, Promin 
performed best in 35.4% of the cases, and the other procedures did so in 10.4%, or less, of the 
cases. 

3.5. Conclusion 

When a variable with complexity one can be found for each factor in the pattern (patterns 
of type P1, P2, P3 and P4 in the study), Weighted Oblimin gave good results even with highly 
correlated solutions. With this type of pattern, Weighted Oblimin seemed to perform better than 
any of the other rotation procedures tested. Even though Promin and Weighted Promax are based 
on Cureton & Mulaik 's  (1975) weighting procedure, they do not seem to give such good results 
as Weighted Oblimin. It can be concluded that, with this kind of pattern, Direct Oblimin rotation 
helps the weighting procedure to be more effective. 

The results of Weighted Oblimin were bad when a variable with complexity one could not 
be found for each factor in the pattern. With this kind of pattern only Promin, Weighted Promax 

TABLE 4. 
Mean of Congruence Index for Each Rotation Procedure Across Replications and ¢~ Conditions 

Direct Weighted Weighted 
Oblimin Promaj Promin Promax Oblimin 

P1 1.00 0.99 1.00 1.00 1.00 
P2 0.99 0.97 0.99 0.98 1.00 
P3 0.90 0.94 0.98 0.96 1.00 
P4 0.93 0.94 0.99 0.98 1.00 
P5 0.91 0.91 0.96 0.94 0.95 
P6 0.85 0.90 0.91 0.89 0.90 
P7 0.84 0.89 0.90 0.87 0.88 

Freq.best 29 146 495 19 711 
(2.07%) (10.42%) (35.36%) (1.36%) (50.79%) 
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and Promaj gave some good results but only on a few occasions. Finally, Promaj gave rather poor 
results when rotating complex patterns, and Direct Oblimin gave good results only when rotating 
the simplest kind of pattern. 

4. Analysis of Thurstone's 26 Box Problem 

To study the performance of Weighted Oblimin when rotating complex variables, the pattern 
matrix for Thurstone's 26 Box Problem (1947) was rotated. The unrotated pattern analyzed is 
the one given by Cureton & Mulaik (1975). To construct the 26 variables, a collection of thirty 
random boxes were measured by Tlmrstone. ~I2ae three dimensions, x, y and z, were recorded 
for each box. Then a list of 23 arbitrary variables was designed using nonlinear combinations 
of the three dimensions measured. The formulas used by Thurstone are shown in Table 5. The 
correlation matrix between the 26 variables, including x, y and z, was computed and factored 
to retain three factors. The orthogonal pattern obtained was used as a test to assess whether a 
rotation procedure can recover the truly simple pattern that is expected. 

The orthogonal pattern was obliquely rotated by Weighted Oblimin with g = 0 and using 
five random starts. The solution obtained is shown in Table 5 with absolute elements larger than 
0.30 set in bold face. The correlation between components 1 and 2 is 0.33, between components 
1 and 3 it is 0.35 and between 2 and 3 it is 0.36. For comparison, Table 5 also displays the 
pattern obtained by Cureton & Mulaik (1975) from Weighted Promax rotation with k = 4. For 

TA~3 LE 5. 
The Orthogonal Unrotated Pattern and the Oblique Patlerns Rotaled by Each Method in the 26 Box Problem 

Weighted Oblimin Weighted Promax 

Variables F1 F2 F3 F1 F2 F3 

x 0.99 -0.01 -0.02 0.95 -0.03 -0.04 
y -0.07 0.98 0.02 0.04 0.89 0.05 
z -0.07 0.03 1.00 0.06 0.04 0.90 
xy 0.56 0.68 -0.04 0.60 0.60 -0.03 
xz 0.55 -0.00 0.67 0.61 -0.02 0.58 
yz -0.15 0.62 0.65 0.00 0.57 0.61 
x2y 0.78 0.41 -0.00 0.79 0.35 -0.02 
xy 2 0.31 0.85 0.01 0.36 0.76 0.03 
x2z 0.76 - 0.03 0.43 0.78 - 0 . 0 4  0.36 
xz 2 0.39 0.00 0.88 0.48 0.00 0.78 
y2z -0.16 0.78 0.45 --0.01 0.72 0.43 
yz 2 -0.14 0.43 0.80 0.01 0.40 0.74 
x / y  0.86 --0.86 0.03 0.74 -0.80 --0.02 
y /x  --0.86 0.86 --0.03 --0.74 0.80 0.02 
x / z  0.87 0.04 --0.85 0.73 0.01 --0.79 
z/x  --0.87 --0.04 0.85 -0.73 --0.01 0.79 
y/z  -0.08 0.91 -0.85 -0.08 0.82 --0.73 
z/y  0.08 -0.91 0.85 0.08 --0.82 0.73 
2x + 2y 0.46 0.75 -0.03 0.51 0.67 -0.02 
2x + 2z 0.51 -0.04 0.71 0.58 -0.04 0.62 
2y + 2z -0.13 0.62 0.64 0.02 0.57 0.59 
(x 2 + y2)1/2 0.45 0.74 -0.03 0.50 0.66 -0.02 
(x 2 + z2) 1/2 0.48 -0.02 0.70 0.55 -0.03 0.62 
(y2 + z2)1/2 -0.11 0.62 0.61 0.04 0.57 0.56 
xyz 0.35 0.49 0.46 0.45 0.44 0.43 
(x2 + y2 + z2)1/2 0.32 0.54 0.48 0.35 0.49 0.45 
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this solution, the correlation between the components are 0.25, 0.25 and 0.27. Both solutions 
seem to agree with the original constituting rules used to construct the data, and there are no 
important differences between them. However, the solution obtained by Kiers (p. 574, 1994) 
from Simplimax with p = 27 agrees slightly better than the one obtained by Weighted Oblimin 
or Weighted Promax. 

5. 35 Hyper-box Problem in a Four-Dimensional  Hyperspace 

The 26 Box Problem is a very special problem, because of its symmetries: the nonlinear 
combination functions of the variables are constructed to take into account all the combinations 
(for example, variables xy,  xz  and yz). In addition, because the example data are three dimen- 
sional, complex variables can only run from complexities two to complexities three. 

To study an asymmetric situation as well, a new data sample based on the Box Problem was 
generated and rotated. This example is a four-dimensional hyper-box problem. A collection of 
100 four-dimensional hyper-boxes in a four-dimensional space were virtually computed using 
Matlab 4.0 software (1984). For the virtual computing of the boxes, the distribution of the four 
dimensions (x, y, z and v) was normal and had an arbitrary mean of 30 and an arbitrary standard 
deviation of 10. The correlation between the four-dimensional matrix was arbitrarily taken. This 
correlation matrix is shown in Table 6. 

Once the 100 hyperboxes had been virtually generated, 68 nonlinear combinations of the 4 
variables (x, y, z and v) were computed following the kind of nonlinear combinations used by 
Thurstone (1947) in his 26 box problem. Of the 72 resulting variables, a sample of 35 was chosen: 
the four simplest variables (x, y, z and v), one variable with maximum complexity ((x 2 ÷ y2 + 
Z 2 q- V2)1/2), and 30 random variables of the other 67 variables built as nonlinear combinations, 
with complexities two, three or four. The final sample of variables in the example is shown in 
Table 7. The correlation matrix between the 35 variables was computed and analyzed to retain 
four factors. The factor extraction method applied was Principal Components.  

The orthogonal pattern obtained was rotated using Weighting Oblimin (g = 0 and five 
random starts), Weighted Promax (k = 4) and Simplimax. The Varimax (Kaiser, 1958) rotation 
computed in Weighted Promax was started from five random positions and care was taken to pre- 
vent any possible permutation effect (ten Berge, 1995). When computing Simplimax, the values 
p = 5 0 , . . . ,  60 were chosen, and one rational start and ten random additional starts were used. 
The optimal function values were 0.000133, 0.000152, 0.000174, 0.000192, 0.000216, 0.090567, 
0.164463, 0.235717, 0.307372, 0.383568 and 0.451825. As a large jump in the function values 
occurs after the 5th analysis, the solution corresponding to p = 54 was taken as the best solution. 

Table 7 shows the orthogonal pattern after the factor extraction and the oblique pattern 
obtained by Simplimax. 

Table 8 shows the rotated pattern obtained by Weighted Oblimin and the rotated pattern 
obtained by Weighted Promax. 

Simplimax, Weighted Oblimin and Weighted Promax seem to provide a pattern that agrees 
with the nonlinear combinations used to build the variables in the solution. In fact, the patterns 
obtained by Simplimax and Weighted Oblimin agree perfectly with the original constituting rules 

TABLE 6. 
Arbitrary Inter-Dimension Correlation Matrix for the Generation of the 4 Dimensions in the 35 Hyper-Box 
Problem 

x y z v 

x 1.00 0.24 0.26 0.25 
y 0.24 1.00 0.35 0.30 
z 0.26 0.35 1.00 0.31 
v 0.25 0.30 0.31 1.00 
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TABLE 7. 
The Orthogonal Pattern and Simplimax Pattern in the 35 Hyper-Box Problem 
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Orthogonal Pattern Simplimax 

Variable F1 F2 F3 F4 F1 F2 F3 F4 

x 0.64 - 0 . 5 8  0.11 - 0 . 4 9  1.00 -0 .01  0.00 0.00 
y 0.71 0.33 - 0 . 6 2  - 0 . 0 7  0.00 1.00 0.00 0.00 
z 0.72 - 0 . 1 9  0.08 0.66 0.00 0.00 1.00 0.00 
v 0.65 0.52 0.54 - 0 . 1 6  0.00 0.00 0.00 1.00 
xy 0.86 - 0 . 1 6  - 0 . 3 3  - 0 . 3 6  0.64 0.63 0.00 0.00 
xv 0.81 - 0 . 0 4  0.41 -0 .41  0.64 0.00 -0 .01  0.63 
yv 0.84 0.53 - 0 . 0 4  - 0 . 1 4  0.00 0.62 0.00 0.62 

xz 2 0.85 - 0 . 3 9  0.11 0.34 0.41 0.01 0.81 -0 .01  

x2z 0.82 - 0 . 5 5  0.12 - 0 . 1 2  0.82 0.01 0.40 -0 .01  

yz 2 0.85 - 0 . 0 2  - 0 . 1 8  0.50 0.00 0.40 0.79 0.00 
xyv 0.93 0.13 0.02 -0 .33  0.46 0.46 0.00 0.46 
yzv 0.93 0.30 0.00 0.20 - 0 . 0 0  0.45 0.45 0.45 

xy2z 0.93 - 0 . 0 4  - 0 . 3 5  0.02 0.34 0.67 0.34 0.00 

xy2v 0.92 0.21 - 0 . 2 0  - 0 . 2 6  0.34 0.67 0.00 0.34 

x2zv 0.90 - 0 . 2 8  0.29 -0 .15  0.68 0.01 0.33 0.34 

xyz 2 0.93 -0 .21  - 0 . 1 2  0.26 0.33 0.34 0.67 0.00 

x2yz 0.92 - 0 . 3 5  -0 .11  - 0 . 1 2  0.68 0.34 0.33 0.00 

yz2v 0.92 0.16 0.03 0.36 -0 .01  0.33 0.65 0.33 

y2zv 0.91 0.33 - 0 . 2 0  0.12 0.00 0.65 0.33 0.33 

yzv 2 0.89 0.40 0.18 0.09 0.01 0.33 0.33 0.68 
y/x 0.04 0.74 - 0 . 5 8  0.34 - 0 . 8 1  0.82 -0 .05  -0 .01  
v/x 0.00 0.89 0.35 0.28 - 0 . 8 1  0.00 0.00 0.82 
z/y 0.02 - 0 . 4 6  0.61 0.64 0.00 - 0 . 8 8  0.87 0.00 
v/y - 0 . 0 5  0.15 0.98 - 0 . 0 7  0.00 - 0 . 8 5  0.00 0.84 
z/v 0.07 - 0 . 6 0  - 0 . 3 9  0.70 0.00 0.00 0.86 - 0 . 8 5  
2z + 2v 0.84 0.20 0.38 0.31 0.00 0.00 0.62 0.62 
2x + 2y + 2z 0.96 - 0 . 2 0  - 0 . 2 0  0.05 0.47 0.46 0.46 0.00 
2x + 2z + 2v 0.93 -0 .11  0.34 0.01 0.47 -0 .01  0.46 0.46 
2x + 2y + 2v 0.93 0.13 0.02 - 0 . 3 4  0.47 0.46 0.00 0.47 
2y + 2z + 2v 0.93 0.30 0.01 0.20 -0 .01  0.33 0.33 0.66 
(x 2 + y2)1/2 0.86 - 0 . 1 6  - 0 . 3 2  - 0 . 3 6  0.64 0.63 0.00 0.00 

(x 2 + y2 + z2)1/2 0.96 -0 .21  - 0 . 1 9  0.05 0.46 0.46 0.46 0.00 

(x 2 + Z 2 + v2) 1/2 0.93 --0.12 0.34 0.01 0.47 -0 .01  0.47 0.46 

xyzv 1.00 0.03 0.04 -0 .01  0.36 0.37 0.36 0.37 
(x 2 + y2 + z 2 + v2)1/2 1.00 0.03 0.05 - 0 . 0 2  0.37 0.36 0.37 0.37 

u sed  to cons t ruc t  the  data.  Here ,  W e i g h t e d  P r o m a x  seems  to h a v e  some  s l ight  p rob l ems ,  par t ic-  

u la r ly  w h e n  r ecove r ing  some  load ings  tha t  shou ld  b e  zero in the  ro ta ted  pa t te rn  and  the  h igh  

load ings  of  the  four  s imples t  var iables .  

The  in te r fac tor  cor re la t ion  mat r ices  ob ta ined  b y  W e i g h t e d  Ob l imin ,  W e i g h t e d  P r o m a x  and  

S i m p l i m a x  are s h o w n  in Table  9. 

This  h y p e r - b o x  s tudy was rep l i ca ted  50 t imes.  Each  t ime  the  var iab les  were  chosen  as ex- 

p l a ined  above.  Hence ,  it was  gua ran t eed  that  four  var iab les  had  complex i ty  one  and  one  var iab le  

h a v e  complex i t i e s  four, wh i l e  30 var iab les  were  taken in a u n i f o r m  r a n d o m  m a n n e r  f rom the  

o ther  67 var iab les  bui l t  as non l inea r  c o m b i n a t i o n s  wi th  complex i t i e s  two,  th ree  or four. The  cor- 

re la t ion  ma t r ix  b e t w e e n  the  35 var iab les  was  c o m p u t e d  and  ana lyzed  to re ta in  four factors.  The  
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TABLE 8. 
The Patterns Rotated by Weighted Oblimin and by Weighted Promax in the 35 Hyper-Box Problem 

Weighted Oblimin Weighted Promax 

Variable F1 F2 F3 F4 F1 F2 F3 F4 

x 1.01 0.00 --0.02 -0.01 1.13 -0.08 -0.16 -0.06 
y -0.02 1.00 0.02 --0.01 --0.08 1.06 -0.03 -0.03 
z -0 .02 --0.01 1.01 0.00 --0.09 -0.10 1.10 -0.02 
v --0.01 0.00 0.00 1.00 -0.04 -0.08 -0.11 1.10 
xy 0.63 0.64 0.00 --0.01 0.67 0.63 -0.13 --0.07 
xv 0.63 --0.01 --0.01 0.63 0.68 -0.11 --0.17 0.66 
yv --0.02 0.61 0.01 0.62 --0.08 0.60 --0.09 0.66 

xz 2 0.40 --0.01 0.81 --0.01 0.39 -0.12 0.83 --0.04 
x2z 0.81 --0.01 0.40 --0.01 0.88 --0.11 0.32 --0.06 

yz 2 --0.02 0.39 0.81 0.00 --0.10 0.34 0.86 --0.03 
xyv 0.45 0.46 0.00 0.47 0.46 0.42 --0.14 0.47 
yzv -0.03 0.44 0.46 0.45 -0.10 0.39 0.43 0.48 

xy2z 0.32 0.67 0.35 -0.01 0.29 0.65 0.30 -0.05 

xy2v 0.32 0.68 0.01 0.34 0.31 0.67 -0.11 0.33 

x2zv 0.67 --0.01 0.34 0.34 0.72 --0.12 0.23 0.33 

xyz 2 0.32 0.33 0.68 --0.01 0.29 0.26 0.68 --0.05 
x2yz 0.67 0.33 0.34 --0.02 0.70 0.27 0.26 --0.07 

yz2v --0.03 0.32 0.67 0.33 --0.10 0.25 0.67 0.34 

y2zv --0.03 0.65 0.35 0.33 --0.11 0.63 0.31 0.34 

yzv 2 --0.03 0.32 0.34 0.66 --0.09 0.26 0.28 0.71 
y/x --0.84 0.80 0.04 0.00 --0.99 0.91 0.11 0.02 
v/x -0.84 0.00 0.02 0.82 -0.96 0.00 0.05 0.94 
z/y 0.00 -0.88 0.87 0.00 0.00 -1.02 0.99 0.01 
v/y 0.01 -0.85 -0.02 0.86 0.05 -0.97 -0.07 0.96 
z/v -0.01 -0.01 0.86 -0.85 -0.04 -0.02 1.03 -0.95 
2z + 2v -0.02 -0.01 0.62 0.62 -0.08 -0.11 0.61 0.67 
2x + 2y + 2z 0.45 0.45 0.47 -0.01 0.44 0.40 0.42 -0.05 
2x + 2z + 2v 0.45 0.00 0.46 0.46 0.46 -0.12 0.38 0.47 
2x + 2y + 2v 0.46 0.46 0.00 0.47 0.47 0.42 -0.15 0.47 
2y + 2z + 2v -0.02 0.44 0.47 0.45 -0.10 0.39 0.43 0.47 
(x 2 + y2)1/2 0.64 0.63 0.00 -0.01 0.67 0.62 -0.12 -0.06 

(x2 + y2 + z2)1/2 0.45 0.45 0.47 --0.01 0.45 0.40 0.42 -0.05 

(x 2 -1- z 2 q- v2) 1/2 0.45 0.00 0.46 0.46 0.46 -0.12 0.38 0.47 
xyzv 0.35 0.36 0.38 0.37 0.33 0.29 0.30 0.36 
(x 2 + y2 + z 2 + v2)1/2 0.36 0.36 0.37 0.36 0.34 0.29 0.29 0.36 

factor extraction method applied was t~incipal Components. Thus, 50 orthogonal patterns were 

obtained. 

For each orthogonal pattern, an oblique true simple pattern was computed. As the positions 

for the expected zero loadings were known in each orthogonal pattern, 50 semispecified targets 

were built (where the specified values were the loadings expected to be zero values). Each orthog- 

onal pattern was rotated by oblique semi-specified Procrustes rotation (Browne, 1972; Meredith, 

1977) using its own semi-specified target matrix. The oblique rotated patterns obtained were 

considered as true simple patterns. 

The 50 orthogonal patterns were also rotated using Weighted Oblimin, Promaj, Weighted 

Promax and Promin. All the rotation procedures were computed as described above. Finally, 

the success criterion C and the root mean square of the residuals (RMSR) between the patterns 
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TABLE 9. 
Interfactor Correlation Matrices Obtained by Weighted Oblimin, Weighted Promax and Simplimax in the 35 
Hyper-Box Problem 

Weighted Oblimin Weighted Promax 

F1 F2 F3 F4 F1 F2 F3 F4 

F1 1.00 0.27 0.32 0.33 1.00 0.38 0.47 0.45 
F2 0.27 1.00 0.29 0.28 0.38 1.00 0.38 0.41 
F3 0.32 0.29 1.00 0.34 0.47 0.38 1.00 0.42 
F4 0.33 0.28 0.34 1.00 0.45 0.41 0.42 1.00 

Simplimax 

F1 F2 F3 F4 

F1 1.00 0.35 0.24 0.30 
F2 0.35 1.00 0.26 0.31 
F3 0.24 0.26 1.00 0.24 
F4 0.30 0.31 0.24 1.00 

obtained by each rotation procedure and the corresponding true simple patterns were computed. 
Table 10 summarizes the results. 

It can be observed that the oblique patterns which are most similar to the true simple pattern 
are the ones obtained by Weighted Oblimin, and that Promin and Weighted Promax give good 
results as well. Promaj seems to perform poorly with these data samples. 

6. Rotation of Empirical Data 

To study the performance of Weighted Oblimin with empirical data, the oblique solution 
given by Stankov, Roberts & Spilsbury (p. 278, 1994) was analyzed. These authors analyzed a 
correlation matrix of 22 variables by factor analysis. Three factors were retained using maximum 
likelihood factor extraction: crystallized intelligence (Gc), fluid intelligence (Gf) and short-term 
acquisition and retrieval function (SAR). An orthogonal pattern was rotated by Direct Oblimin 
(Stankov et al., 1994), to obtain the oblique pattern and the interfactor correlation matrix shown in 
Table 11. These matrices were used to compute the orthogonal pattern from which the Weighted 

TABLE 10. 
C and  R M S R  Indices Between the True and  the Rotated Pattern (Replications = 50) 

Weighted Weighted 
Promaj Promin Promax Oblimin 

C 
Mean 0.8354 0.9885 0.9904 0.9993 
Std 0.0665 0.0035 0.0031 0.0004 
Best 0.9281 0.9948 0.9966 0.9997 
Worse 0.6602 0.9792 0.9805 0.9977 

RMSR 
Mean 0.2719 0.0804 0.0645 0.0142 
Std 0.0718 0.0148 0.0111 0.0033 
Best 0.1483 0.0525 0.0398 0.0090 
Worst 0.4498 0.1110 0.0962 0.0231 



316 PSYCttOMETRIKA 

TABLE l l. 
Factor Pattern and Interfactor Correlalion Matrices Obtained by Direct Oblimin and Weighted Oblimin 

Direct Oblimin Weighted Oblimin 

Tests Gc Cf SAR Gc Gf SAR 

1 .-Information 0.85 -0.18 -0.04 0.82 -0.06 0.02 
2.-Digit Span 0.07 0.06 0.66 0.04 0.24 0.61 
3.-Vocabulary 0.96 -0.16 -0.04 0.93 -0.02 0.02 
4.-Arithmetic 0.37 0.(i) 7 0.25 0.35 0.19 0.24 
5.-Comprehension 0.90 -0.04 -0.03 0.87 0.10 0.01 
6.-Similarities 1t.66 0.05 -0.02 0.64 0.15 0.00 
7.-Picture Completion 0.33 0.38 0.28 0.32 0.51 0.22 
8.-Picture Arrangement 0.09 0.53 0.18 0.09 {).60 0.10 
9.-Block Design -0.02 0.74 0.07 -0.01 0.77 -0.04 

10.-Object Assembly 0.10 0.78 0.07 0.11 0.83 -0.04 
11 .-Digit Symbol -0.21 0.66 0 .11  -0.19 0.67 0.00 
12.-General Information 0.60 0.15 -0.02 0.59 0.24 -0.02 
13.-Letter Series -0.08 0.67 0.27 -0.07 0.74 0.15 
14.-Concealed Words -0.03 0.30 -0.03 -0.02 0.30 -0.07 
15.-Digit Span Forward 0.05 0.10 0.43 0.03 0.22 0.39 
16.-Digit Span Backward 0.02 0.08 0.23 0.01 0.14 0.20 
17.-Esoteric Analogies 0.57 0.18 0.20 0.55 0.33 0.18 
18.-Cattell's Matrices 0.20 0.50 0.00 0.21 0.54 -0.06 
19.-Word Associations 0.14 0.42 -0.20 0.15 0.40 -0.24 
20.-Letter Counting 0.01 0.25 0.30 0.00 0.33 0.24 
21.-Synonym Vocabulary 0.58 0.00 0.22 0.55 0.15 0.22 
22.-Crowder's Memory Span 0.07 -0.29 1.00 0.02 -0.03 0.97 

Interfactor Correlations 

Gc 1.00 1.00 
Gf 0.19 1.00 0.04 1.00 
SAR 0.30 0.31 1.00 0.25 0.19 1.00 

Oblimin (y = 0 and five random starts) was computed. The oblique pattern and the interfactor 
correlation matrices obtained by Weighted Oblimin are also shown in Table 11. 

When comparing both oblique patterns, it can be seen that the main difference is that the 
loadings of the second factor are usually larger when rotateA by Weighting Oblimin, whereas the 
loadings of the first and the third factors are usually smaller. The simplicity index (Bentler, 1977) 
for the oblique pattern obtained by Direct Oblimin was 0.9773, whereas the simplicity index 
for the oblique pattern obtained by Weighted Oblimin was 0.9891. Thus, the simplest oblique 
pattern was obtained by Weighted Oblimin. So, the weighting procedure (Cureton & Mulaik, 
1975) might improve the performance of Direct Oblimin when rotating simple solutions. 

Since the aim of this study is to discuss the differences between both rotation procedures in 
the analysis of real data sets, a substantive interpretation is not given here. For a more detailed 
explanation see Stankov et al. (1994). 

7. Discussion 

Cureton & Mulaik (1975) proposed a weighting procedure to allow Varimax (Kaiser, 1958) 
to reach simple solutions when variables in the solution have complexities larger than one. If the 
solution is expected to be factor correlated, they suggested prerotating the solution orthogonally 
by Weighted Varimax and taking this orthogonal solution as a starting point for Promax (Hen- 
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drickson & White, 1964). This rotation procedure has been called Weighted Promax here. The 
present paper shows that the weighting procedure proposed by Cureton & Mulaik (1975) can 
be applied to Direct Oblimin (Clarkson & Jennrich, 1988), and can provide good results. This 
procedure is denoted as Weighted Oblimin. 

Weighted Oblimin has been tested in different complex data sets. Whereas Direct Oblimin 
(Clarkson & Jennrich, 1988) failed to find a good approximation to a simple solution in these 
data, Weighted Oblimin frequently obtained the expected simple solution. Weighted Oblimin 
also performed as well as, or better than, the Weighted Promax proposed by Cureton & Mulaik 
(1975) and other rotation procedures such as Promaj (Trendafilov, 1994) and Promin (Lorenzo- 
Seva, 1999). It should be said that Weighted Oblimin occasionally fails as well, but seems to give 
particularly good results when a variable with complexity one can be found for each factor in 
the pattern, even with complex, highly-correlated solutions. With this type of pattern, Weighted 
Oblimin seemed to perform better than any of the other rotation procedures tested. For example, 
Promin and Weighted Promax, that are based on Cureton & Mulaik's weighting procedure, do 
not provide such good results as Weighted Oblimin. It can be concluded that, with this kind 
of pattern, Direct Oblimin (Clarkson & Jennrich, 1988) rotation helps the weighting procedure 
to be more effective. The circumstances in which Weighted Oblimin seems to provide good 
results actually can be considered the most common ones when analyzing real data. So Weighting 
Oblimin can be considered appropriate for practical purposes. 

Weighted Oblimin fails when a variable with complexity one cannot be found for each factor 
in the pattern. However, all of the rotation procedures tested with this kind of pattern performed 
poorly, with Promin (Lorenzo-Seva, 1999) giving best results. Only Simplimax (Kiers, 1994) is 
a rotation method that is expected to deal successfully with this kind of configuration, though it 
is more complex to use than Weighted Oblimin or Promin. 

Cureton & Mulaik (1975) warned that the main drawback of the weighting procedure is 
that it may fail if the solution is highly oblique. However, in the studies carried out in this pa- 
per Weighted Oblimin did not seem to fail when rotating such highly correlated factors. These 
authors also noted that the weighted procedure could modestly improve Varimax (Kaiser, 1958) 
when rotating complex data and also simple data. It could also be expected when applied to 
Direct Oblimin (Clarkson & Jennrich, 1988). A rather simple real data set was analyzed with 
both Weighted Oblimin and Direct Oblimin, and the simplest oblique pattern was obtained by 
Weighted Oblimin. Therefore, the weighting procedure (Cureton & Mulaik, 1975) might improve 
the performance of Direct Oblimin when rotating simple solutions. 

Jennrich (1979) advised to compute Direct Oblimin with the parameter y set to zero. Then 
the rotation criterion computed is Direct Quartimin, the simplest member of the Oblimin family. 
However, the parameter y could have other values, (see for example, Crawford, 1975; Jennrich, 
1979; or Clarckson and Jennrich, 1988), and the rotation criterion computed would change. As 
Jennrich (1979) pointed out that the best performance of Direct Oblimin is obtained when y = 0, 
his advice has been followed when computing Weighted Oblimin, so the rotation criterion applied 
is Weighted Quartimin in fact. However, the weighted procedure proposed by Cureton & Mulaik 
(1975) could be computed followed by Direct Oblimin with other y values. Browne & Du Toit 
(p. 294, 1992) found that Direct Oblimin Varimax (Crawford, 1975) gave a slightly better fit than 
Direct Quartimin when applied to an example data set, but as the authors noted the differences 
were negligible in fact. 

A new data set analogous to the 26 Box Problem (Thurstone, 1947) has been presented: 
the 35 Hyper-box Problem. The associated orthogonal pattern can be used to test other rotation 
procedures. It could be added that to have a standard library of patterns with complex structures, 
whose source features are well understood, could be useful for testing the performance of new 
extraction and rotation procedures. As an anonymous reviewer pointed out, to build such a library 
of test patterns could be well received. 

As Direct Oblimin (Clarkson & Jennrich, 1988) is already implemented in the main statis- 
tical software packages, Weighted Oblimin should also be easy to implement. However, a Win- 
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dows 95 program (WOblimin) can be obtained from the author at the following e-mail address: 
uls @ fcep.urv.es. 
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