
PSYCHOMETRIKA--VOL. 59, NO. 3, 381--389 
SEPTEMBER 1994 

ON THE ESTIMATION OF POLYCHORIC CORRELATIONS AND THEIR 
ASYMPTOTIC COVARIANCE MATRIX 
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A general theory for parametric inference in contingency tables is outlined. Estimation of 
polychoric correlations is seen as a special case of this theory. The asymptotic covariance 
matrix of the estimated polychoric correlations is derived for the case when the thresholds are 
estimated from the univariate marginals and the potychoric correlations are estimated from the 
bivariate marginals for given thresholds. Computational aspects are also discussed. 

Key words: ordinal variables, polychoric correlations, maximum likelihood, asymptotic cova- 
fiance matrix. 

Theory and applications of structural equation models when some or all of the 
observed variables are ordinal have been considered by several authors, for example, 
Muthrn (1984), Lee and Poon (1987), Poon and Lee (1987), Lee, Poon, and Bentler 
(1990), Jrreskog (I990), and Aish and Jrreskog (1990). Typically the estimation of the 
model is done in two steps. The first step involves estimating polychoric, polyserial and 
other correlations for the observed variables or rather for the underlying response 
variables. The second step estimates the parameters of the model by weighted least 
squares using a weight matrix which must be a consistent estimate of the asymptotic 
covariance matrix of the correlations estimated in the first step. This paper considers 
only the first step and the case when all variables are ordinal. 

Lee and Poon (1987) and Poon and Lee (1987) assume underlying multivariate 
normality and estimate the polychoric correlations and the thresholds jointly by mini- 
mizing a single fit function (ML or GLS) based on all the sample proportions in the 
k-way contingency table, where k is the number of observed ordinal variables. This 
requires heavy computations involving the numerical evaluation of the multinormal 
distribution function. Muthrn (1984), Lee, Poon, and Bentler (1990), and J0reskog 
(1990) take a simpler approach and estimate the thresholds from the univariate mar- 
ginals and the polychoric correlations from the bivariate marginals. Thus, different 
parameters are obtained from different fit functions. This is the estimator to be inves- 
tigated here. 

Different formulas for the weight matrix have been given by Muthrn (1984, Equa- 
tion 22) and by Lee, Poon, and Bentler (1990, Equation 1 t). These involve matrices of 
the order of total number of parameters and may therefore be computationally cum- 
bersome particularly if the total number of categories is large. This paper gives a 
procedure for estimating the asymptotic covariance matrix of polychoric correlations 
which effectively eliminates the thresholds and therefore requires only a matrix of the 
order of number of estimated correlations. Since it is not necessary to store the raw 
data in memory, this procedure has the additional advantage of working well in large 
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samples and being feasible and relatively straightforward even on computers  with lim- 
ited memory.  

A general theory for parametric inference in contingency tables is given in section 
2. The estimation of  the polychoric correlations is considered in section 3. The asymp- 
totic covariance matrix of  the polychoric correlations is derived in section 4. 

General Theory  

Consider m mutually exclusive events occurring with probabilities ~r 1 , ,r 2, . . . ,  
*rm, where each ,h- a = 7 ra (0  ) is a function of  some parameters  0 = (01, Oz . . . .  , Ot) ,  

t < m, in some parameter  space. It is assumed that the 7ra(0) are positive, continuous,  
and differentiable functions of  0 and that Z 7T a (0 )  = 1 at every  point 0 of the parameter  
space. 

In a random sample of  size N let n a be the observed f requency (count) of  event  a 
and let p a = n a / N  be the corresponding sample proportion.  Fur thermore ,  let p'  = (p  l ,  
P 2  . . . .  , P m ) ,  0 ' ( 0 )  = [ ' / r l ( 0 ) ,  7 r2 (0 ) ,  . . . , "n 'm(0) ] ,  and A o be the matrix of  order  m x 
t with elements (O~ri/O Oj).  Consider the fit function 

m 

F[p ,  ~(0) ]  = ~ pa[ ( ln  p~ - In 'h'a(0)] , ( l )  
a = l  

to be minimized with respect  to 0. I f  n a = 0, set Pa In P a  = 0 in (I). Minimizing F(0) 
is equivalent to maximizing the log likelihood function 

l n L  = 

m m 

E na In ~r~ (0) = N ~ ,  P a  In ~'o (0). 
a = l  a = l  

The gradient vector  and information matrix are 

o F  

" ~  = \ ' B ' a / \  0 0  / 
(2) 

E o = ~ \-~ / \-~-} \--~-] = A'0021A0,  (3) 

where D~ = diag [Trl(0), Ir2(0) . . . .  , ~ m ( 0 ) ] .  
Assume that p converges in probability to a't0 as N ~ ~.  Let  0o be the value o f  0 

that minimizes F [~0 ,  ¢r(0)] and assume that A 0 = Ao=oo is of  rank t. We say that the 
model holds if ~o = *r(00), which is the case considered here.  The noncentral  case 
when ,r 0 # ~r(00) will be considered in another  paper. Fur thermore ,  let t~ be the 
maximum likelihood est imator of  0, that is, the value of  0 that minimizes F[p ,  0(0)]. 
Then: 

1. l} is a consistent estimator of  00, 
2. N1/2(t~ - 00) is asymptotically distributed as 

N1/2(A~DolA0)-1A~Dol[  p -- 'rr(0o)], 

where D O = diag [Tq(0o), Ir2(0o), . . .  , Irm(0O)], 

(4) 
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3. If  the model holds, then N1/2(0 - 00) is asymptotically normally distributed 
with mean vector  zero and covariance matrix E0 -1 = Eol00 = (AbDo-lA0)- l .  

Fur thermore ,  let 0 be partitioned as 0 = (01,02),  where 01 is of  order  t l  and 02 is 
of  order  t 2, t I + t 2 = t, and let 00 = (010, 020). Assume that 02 is a c o n s i s t e n t  
estimator of  020 independent of 01 and let I~ 1 = (}1 (02) be the value of  01 that minimizes 
F[p,  ~(01, 02)], that is, 01 is a pseudo maximum likelihood estimator (Parke, 1986) of  
01 for given 02 = 02. Le t  Ao = [Alo, A20], where Alo = 0,r/00[ and A20 = O'tr/O0~ 
evaluated at 00. If Alo has rank tl then: 

4. N1/2(01 - 010) is asymptotically distributed as 

NI/2{(A'IoDolAIo)-IA' loDoI[p - a'r(00)] - (A' loDolAlo)-IA'10DolA20(02 - 020)} 

(5) 

and the two terms in (5) are asymptotically independent.  

Proofs of  these propositions are sketched in the Appendix. 

Estimation of Polychoric Correlations 

Observations on an ordinal variable are assumed to represent  responses to a set of  
ordered categories, such as a five-category Likert  scale. It is only assumed that a 
person who responds in one category has more of a characteristic than a person who 
responds in a lower category. 

Ordinal variables are not continuous variables and should not be treated as if they 
are. Ordinal variables do not have origins or units of  measurements.  Means, variances, 
and covariances of  ordinal variables have no meaning. 

It is common practice to treat numbers like l,  2, 3, 4, representing the ordered 
categories of  an ordinal variable as numbers on an interval scale and use a covariance 
matrix computed in the usual way to estimate a structural equation model. What is so 
bad with this is not so much that the distribution is non-normal; more importantly the 
distribution is not continuous: there are only four distinct values in the distribution. The 
use of  ordinal variables in structural equation models requires other  techniques than 
those which are used for continuous variables. 

For  an ordinal variable z, it is assumed that there is an underlying continuous 

variable z* which is normally distributed with mean/x z and variance Crz x . Muth6n (1984) 
call these underlying variables latent response variables. They  are not the same as the 
latent variables in the structural equation model. Assuming that there are rn categories 
on z, we write z = i to mean that z belongs to category i. The actual score values in 
the data may be arbitrary and are irrelevant as long as the ordinal information is 
retained. That  is, low scores correspond to low-order categories of  z that are associated 
with smaller values of  z* and high scores correspond to high-order categories that are 
associated with larger values of  z*. 

The connect ion between z and z* is 

z =i¢=> ~gi-I < Z *  B~ 7" i ,  i =  1, 2, . . .  , m, 

where 

TO = - - o %  ,7"1 < ,r2 < " " " < T i n -  1 ,  ' r m  = + 0 %  
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are parameters called threshold values. If there are m categories, there are rn - 1 
threshold parameters. 

2 Since only ordinal information is available about z*, the mean/z z and variance or z 
are usually not identified and are therefore set to zero and one, respectively. However, 
when the same ordinal variable is measured one or more times, as in longitudinal or 
panel studies and in multigroup studies, it is possible to estimate the means and vari- 
ances of these variables (relative to a fixed origin and scale) by specifying the thresholds 
to be the same for the same variable over time and/or groups. In the following we 

assume that ~z = 0 and that o -2 = 1. Otherwise, replace r i  (z) by (~'i (z) - i ~ z ) / o -  z in what 
follows. 

Consider k ordinal variables z l  . . .  , z k  with m],  m2, • . .  , mk categories, 
respectively. Altogether there are m i - k + k ( k  - 1)/2 parameters to be 

estimated, namely the thresholds (zl~q) ' ~.2~), T~)-1), g = 1, 2, k, and the " ' ' ~  mg " ' * ,  

polychoric correlations P g h ,  h < g .  The parameters are usually estimated from the 
univariate and bivariate marginal likelihoods, that is, the thresholds are estimated from 
the univariate marginal distribution and the polychoric correlations from the bivariate 
marginal distributions for given thresholds; see Olsson (1979), Muthrn (1984), and 
Jrreskog and Srrbom (1988). The univariate and bivariate marginal likelihoods all have 
the general form given in the previous section. 

Olsson (1979) considered the case k = 2 and studied two methods for estimating 
the parameters: 

i. Estimate the thresholds and the polychoric correlation jointly from the bi- 
variate marginal distribution. 

ii. Estimate the thresholds from the univariate marginal distribution and then the 
polychoric correlation from the bivariate marginal distribution for given 
thresholds. 

In both methods, an iterative procedure must be used to estimate the parameters. 
Practical experience suggests that the two methods give almost identical estimates. 
Method ii. is computationally simple and is used most often in practice. This is the 
method considered here. Method i. would have the disadvantage that different esti- 
mates of thresholds for one variable may be obtained from different pairs of variables 
where this variable is included. 

The model for the univariate marginal of variable g is 

= q ~ ( u ) d u ,  (6) 
! ( 9 )  
J " / ' a  - 1 

where 4ffu) is the standard normal density function. The parameter vector is 

o = = g),  g) ) ' " " " ' rag--| " 

Application of the general theory gives the maximum likelihood estimator ~'g of ,rg 
with asymptotic covariance matrix ~ g a / N ,  say. The maximum likelihood estimator is 
given explicitly as 

~(g) = qb- l (p lg)  + p(9)  + . . .  + p ( g ) ) ,  a = 1 , . . . ,  m 9  -- 1, 

where ~-1  is the inverse of the standard normal distribution function, and where p i  (g) , 

i = I, 2 . . . . .  m a, are the sample proportions in the univariate marginal distribution 
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of variable g. Obviously, since p/(g) converges in probability to the corresponding 
population proportion rr/(g) , ~'(a) is consistent. 

According to Proposition (b), rrg is asymptotically linear in the proportions pg of 
the univariate marginal distribution of variable g. Let Ag be the matrix of order mg x 
mg - 1 (here illustrated with mg = 5): 

1 - - t ~ l  t~) 2 0 

Ag = - 4 ' 2  4'3 , 
0 --~3 ~4 
o o - 4 ,  

where $i = ~b(r/(g)), and let D~r be the diagonal matrix D~r = diag (Tr(g) , 7r2 (g) . . . .  , 
1r(mg)), both matrices evaluated at 00. Then rrg ~ ( A b D ~ I A g )  -1  . . . .  1_ aglJ*r Pg = B~pg, 
say. 

Let a]Fah be N times the asymptotic covariance matrix of ia and ih- Then: 

al]g h = B ' g T t g h B  h ,  (7) 

since Cov (Pg '  Ph) = ~gh --  ~g' t ' t fh ,  and B~'rrg = 0, where ~gh is a matrix of population 
probabilities of the bivariate marginal distribution of variables g and h and "trg and 'IT h 
are vectors of population probabilities of the univariate marginal distributions of vari- 
ables g and h. Equation (7) holds for g # h. It holds for g = h as well, if "ffgh in (7) is 
interpreted as D~,. 

The model for the bivariate marginal of variables g and h is 

f~" fd ~' "n'a(gh)(0) = q~2(U, V; p g h ) d u d v ,  (8) 
(g) I .  (h) 

J T a -  I J ' r b -  I 

where ~bz(u, v; p) is the density function of the standardized bivariate normal distri- 
bution with correlation p. The parameter vector is 

0 = 0gh = '), A . h), • . , ,,,,-i . . . . . .  r ~ _ l ,  O a h )  = ( x g ,  X h ,  O ~ h ) ,  

(9) 

consisting of the thresholds for the two variables and the polychoric correlation Pgh. 
To maximize the bivariate likelihood, the fit function 

m g  m h  

F(p, rr a, rrh)= ~ 
a = l  b=l  

p ( g h ) t l n  D ( g h )  - -  In  7r (gh)~ ab ~ t a b  ab i ,  (10) 

is minimized with respect to p for given ig and rr h . Here p(ag h) are the sample propor- 
tions in the bivariate marginal distribution for variables g and h. The value of p that 
minimizes F is the estimate 0gh of the polychoric correlation p(0). This estimate sat- 
isfies the equation 

g(P, :rg, zth) = O, ( l l )  

where g = OF/Op. 
Application of (5) shows that 

(bah - Pub(O)) -- tr EaCh (Pgh  --  ~rgh)]  + ~'g (gh) (~g  _ ,r(0)) + [3~ ( g h ) ( ~  h --  'r(h0)), (12) 
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where otg h is a matrix of order mg x m h ,  and  [{(gh) and 13h (gh) are vectors of order 
mg - 1 and m h -- 1, respectively, and Pgh and ~gh are  matrices of sample proportions 
and probabilities of the bivariate distribution of variables g and h. Since Pgh, 7rg, and 
rr h are asymptotically normal, it follows that Pgh is asymptotically normal. Proposition 
(d) states that the first term is asymptotically independent of the other terms. 

A typical element of otg h is 

(gh) = D-I _ _  ab ~.(gh) , (13) 
ab Cg P gh 

and typical elements of 13(gh) and I~h (gh) are 

m~ mh 1 O*r (gh) O*r (gh) 
ab ab 

f l ( g ' h ) =  D - 1 2  2 71.(gh ) o 7 } g  ) , (14) gl 
a = 1 b = 1 ab OVg 

m u mh 1 07r (gh) O'a "(ah) 
ab ab 

fl(j.gh)= D-I ~ 2 7.f(gh ) O,.r(h) , 
a = 1 b = 1 ab OPgh 

(15) 

where 

mu mh 1 [t~'l'l " (gh) \  2 
D = -  . 

a=l  =1 7tab 

These quantities are to be evaluated at 00. The required derivatives are given by 
Olsson (1979). 

Let Ug h = tr  (ot'yhPgh). This is asymptotically uncorrelated with ~g and ~h, sO that 
(12) represents the regression of Pgh on rrg and rr h with residual Ug h . It does not follow, 
however, that ug h is asymptotically uncorrelated with ~i for i # g and i # h, despite 
the fact that Pgh does not depend on ~i. Therefore, although (12) can be used to derive 
the asymptotic variance of Pgh, it can not be used directly to obtain the asymptotic 
covariance between different polychoric correlations. 

Equation (12) can be developed further, however. Since rrg and ~h are asymptot- 
ically linear in pg and Ph, respectively, which in turn are linear in Pgh, it follows that 
Pgh is asymptotically linear in Pgh. 

Let 

I'gh = Otgh + Bg~(ggh)l'h + lg~'h (gh)B~, (16) 

where lg is a column vector of order mg with all elements equal to 1. Then 

bgh ~ t r  (F'ghPgh). (17) 

Gunsj6 (1994) gives a more direct derivation of an expression for Pgh which can be 
shown to be equivalent to (17). 

Asymptotic Covariance Matrix 

The estimated thresholds and polychoric correlations are all asymptotically linear 
in the sample proportions of the univariate and bivariate marginal distributions as 
shown in section 3. Since these proportions are linear in all the sample proportions of 
the k-way contingency table, it follows that the joint distribution of all the estimated 
parameters is asymptotically normal. 
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Let 

"~ : ( ; r l ,  ~ '2 ,  " ' "  , ~ 'k ) ,  

be the vector of all estimated thresholds, and let 

b : ( /921 ,  / 9 3 | ,  /932,  /941,  /~42,  /943,  " ' "  , [ ) k , k - 1 ) ,  

be the vector of estimated polychoric correlations. Our objective is to find the asymp- 
totic covariance matrix of ~. Using (17), this is obtained as 

mg mh mi mj 

NACov ( fggh,  fgij) = ~ 2 ~ ~ . a  b'v(gh)N COV X~.ab(n(yh), l"cdn(iJ)'~a(iJ)'lcd . (18) 
a = l  b = l  c = l  d = l  

To evaluate (18), note that 

N C o v  (p(gbh) , n(iJ)~ = _ ( g h i j ) _  ~r(gh)Tr(iJ) 
~" cd j " abcd ab cd " 

where ~r Oh0) are the probabilities of the four-way contingency table for variables g, h, abcd 
i, j ,  which can be estimated consistently by the corresponding sample proportions 

p(ghO? However, as shown in the next section the four-way contingency tables need not abcd" 
be obtained. Let 

mg mh 

tog h = ~ ~--~ "v(gh)71"(gh) "~b ab • (19) 
a = l  b = l  

Then 

mg mh mt mj 

N a C o v ( f g g h ,  p i j )  = ~ ~ ~ 
a = l  b = l  c = l  d = l  

which may be estimated as 

T ( gh ) 7 I. ( ghij), v ( ij) 
ab abcd I c d  --  OOghtOiJ ' (20) 

mg mh mi mj 

E s t [ N a C o v ( ~ g h ,  /~ij)]= ~ ~ ~ ~ ~a(gh)n(ghij)'~(iJ) ^ ^ -ab ~'abcd 1ca -- ~°gh~°iJ, (21) 
a = l  b = l  c = l  d = l  

w h e r e  ~(a~ h) and &gh are (16) and (I9) evaluated at 0g h = (rrg, Xh, Jbgh). Equations (20) 
and (21) hold for every pair of variables gh and ij with g ~ h and i ~ j .  

Computational Aspects 

The asymptotic covariance matrix can only be estimated from a large sample. 
However,  all the computations can be done without storing the raw data in memory. 
The following procedure works with samples of unlimited size. 

Instead of storing the raw data in memory, one can store all the univariate and 
bivariate contingency tables, which can be obtained by reading the raw data once. All 
parameter estimates can be obtained quickly from these contingency tables. After each 
bivariate likelihood has been maximized, the estimates of etg h , ~gh) ,  a n d  ~(h gh) are 
computed. Since this is done for each bivariate contingency table separately, these 
quantities can be stored in the same space for all contingency tables. Then f'gh is 
computed and saved in the same space as the bivariate contingency table Pgh. Finally, 
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fog h is computed. This is a scalar for each contingency table. The asymptotic covari- 
ance matrix, which is of order k ( k  - 1)/2 x k ( k  - 1)/2, is then computed as follows. 

Let K,,ghi j = 1 / N ,  i f z ~  = a ,  Z~,h = b ,  z~,i = c ,  z~,j = dand  Kwhi j  = 0, otherwise, 
where z ~ is the score fore case v on variable g in the raw data. Then, the first term of 
(21) is 

N 
^, (gh) ,¢, (ij) 

E K vghi j ) ,ab  Tcd . 
v = l  

Thus, this is obtained by reading the raw data a second time and for each case multi- 
plying ~/~h) and Ycd ^ (01 for all combinations of g, h, i, j and cumulating over all cases in 
the data. The second term in (21) is simply -&gh &ij. 

Appendix 

Sketches of proofs of Propositions 1 through 4 follows. 

1. Consider F[p,  0(0)] and F[Tr o, 0(0)] as functions of 0. Since F[p,  "rr(0)] 
converges uniformly in probability to F i f o ,  rr(0)] and F[~0,  ~r(0)] has a 
unique minimum at 00; 6 must converge to 0o. 

2. Expanding OF/O0 at 0 around 0o to linear terms, equating this to 0, and 
solving for 6 - 00 gives the required result. 

3. If the model holds, xr(00) = *to. Result (2) then shows that 1~ - 0o is asymp- 
totically linear in p - *r0. Since p - a'r 0 is asymptotically normal with mean 
vector zero and covariance matrix Do - *r0'rr~), the result follows by noting 
that AbDolxro = 0. 

4. Writing A o = [Alo, A20], where Alo = 0xr/001 and A20 = 0~/00~, the first 
derivative o f f (01 )  = F[p, xr(01, 02)] is 

Of = _A,loO~l p = -A'loD~rl[p - xt(01, 02)]. 
001 

61 must therefore satisfy 

.~,'~oI)~I[P - ~((Jl, 02)] = 0, (22) 

where Ale and l)~ are A10 and D~. evaluated at [01, 02]- Using the identity 

p - ~ ( 6 1 ,  0 2 )  = [P - xr(01o ,  0 2 ) ]  - [xr ( ( ) l ,  0 2 )  - ~ ( 0 1 o ,  0 2 ) ] ,  

it is seen that (22) is equivalent to 

h'lol)~l[xr(61, 02) - xr(01o, 02)] = h ' lOb~l[p - xr(01o, 02)]. (23) 

By Taylor expansion, 

fit(l)1, 02 )  -- 'rf(010, 02)  =" A1 ,({)1 - 01o) ,  (24)  

if'/(010, 02)  -- "Jff(010, 020) ----- A2.(02 - 02o), (25)  

where A1. is Alo evaluated at [07, 02] with 07 between 0! and 01o and where 
A2. is A2o evaluated at [01o, 0~] with 0~ between 02 and 02o. Substituting (24) 
and (25) into (23), gives 

A'IOI)~IA1,({)I - 0to) = A~oI)~l(p - Xro) - f i k ~ o l ) ~ - l A 2 , ( 0 2  - -  020), (26) 
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Equa t ion  (5) fol lows f rom (26) by  not ing that  p l i m ( , ~ ' l o f ) ~ l A l , )  = 

A i 0 D o l A 1 0 ,  p l im(A ' lo[ )~  1) = A~0Do 1 , a n d p l i m ( A ' l o f ) ~ l A 2 . )  = A~0D0-1A20 
and that  Ai0D0-lAt0 is nonsingular .  A1, and A2, can be es t imated  consis-  
tent ly  by  -~10 and ,~20, respect ively ,  so that  a l inearized vers ion o f  the p s e u d o  
m a x i m u m  likelihood es t imator  is 

6~ (02) = ( 3 - ' l o I ) ~ A ~ o ) - ~ , i A o l ) ~ p  - ( ~ " ~ o f i ~ A t o ) - ~ A ' ~ o f ) ~ 1 3 " 2 o 0 2  • (27) 

In  a more  general  context ,  Pierce  (1982, sect ion 4) shows  that  the two  te rms  
in (27) are asympto t ica l ly  independent ,  because  02 is cons is tent  and the first 

te rm in (27) is the m a x i m u m  likelihood es t imator  01(020) o f  010 that  wou ld  be 
obta ined  if 02 was  k n o w n  and equal  to its popula t ion  value.  
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