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A unifying framework for generalized multilevel structural equation modeling is introduced. The 
models in the framework, called generalized linear latent and mixed models (GLLAMM), combine fea- 
tures of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a 
response model and a structural model for the latent variables. The response model generalizes GLMMs 
to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data 
can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level 
units in the higher-level units and missing data. A wide range of response processes can be modeled in- 
cluding ordered and unordered categorical responses, counts, and responses of mixed types. The structural 
model is similar to the structural part of a SEM except that it may include latent and observed variables 
varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be 
regressed on cluster-level latent variables. Special cases of this framework are explored and data from the 
British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical 
Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadra- 
ture in gllamm, a freely available program running in Stata. 

Key words: multilevel structural equation models, generalized linear mixed models, latent variables, ran- 
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Int roduct ion 

A m o n g  the mi les tones  in the deve lopmen t  of  statistical mode l ing  are undoub ted ly  the ad- 

vent  o f  comprehens ive  me thodo log ie s  for structural equat ion mode l ing  (e.g., J6reskog,  1973) and 

mult i level  ( regression)  mode l ing  (e.g., Goldste in ,  1986) and the concomi tan t  implementa t ion  in 

wide ly  available sof tware  such as L I S R E L  (JOreskog & SOrbom, 1989) and M L w i N  (Rasbash,  

Browne ,  Golds te in ,  Yang, Plewis ,  Healy, et al., 2000). A l though  deve loped  separate ly  and for dif-  

ferent  purposes ,  the mode l ing  approaches  have striking similari t ies.  Both inc lude  latent variables 

in the mode l s  in order  to induce,  and therefore  explain,  correlat ions among  the responses .  

Mult i level  regress ion  mode l s  are used  w h e n  the data structure is h ierarchical  with e l emen-  

tary units at level 1 nes ted  in clusters  at level 2, which  in turn may  be  nes ted  in (super)clusters  

at level 3, and so on. The latent variables,  or random effects, can be  in terpreted as unobse rved  

he te rogene i ty  at the di f ferent  levels inducing d e p e n d e n c e  among  all lower- level  units  in the same 

higher- level  unit.  Whe rea s  r andom intercepts  represen t  he te rogene i ty  b e t w e e n  clusters  in the 

gllamm can be downloaded from http ://www. gllamm, org. The paper was written while Sophia Rabe-Hesketh 
was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychia- 
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overall response, random coefficients represent heterogeneity in the relationship between the re- 
sponse and explanatory variables. 

Structural equation models are used when the variables of interest cannot be measured per- 
fectly. Instead, there are either sets of items reflecting a hypothetical construct (e.g., depression) 
or fallible measurements of a variable (e.g., calorie intake) using different instruments. The latent 
variables, or factors, can then be interpreted as the constructs, traits, or "true" variables, underly- 
ing the measured items and inducing dependence among them. The measurement model is some- 
times of interest in its own right, but relations among the factors or between factors and observed 
variables (the structural part of the model) often define the substantive model of interest. Al- 
though structural equation models with latent variables were mainly developed in psychometrics, 
it is worth noting that the same ideas are often used in biostatistics, where latent variables are used 
in regression models to take account of measurement error in the covariates (e.g., Plummer & 
Clayton, 1993; Carroll, Ruppert, & Stefanski, 1995). Latent variables are also used in biometrical 
genetics to represent shared genetic and environmental influences (e.g., Neale &Cardon,  1992). 

A synthesis of both methods, namely multilevel structural equation modeling, is required 
when the units of observation form a hierarchy of nested clusters and some variables of interest 
cannot be measured directly but are measured by a set of items or fallible instruments. Before 
contrasting different approaches it is useful to define three types of balance that may be required: 
(1) complete multivariate responses where there are no missing items for any unit (accidental or 
by design), (2) balanced multilevel designs where every unit at level l has the same number of 
units at level l- l ,  and (3) balanced covariates, which take on the same sets of values for each 
higher-level unit in a balanced multilevel design. An example of a balanced covariate is time in 
a longitudinal study if each unit contributes responses at the same sets of time points. 

Multilevel structural equation models could be specified using either multilevel regression 
models or structural equation models as the starting point. An advantage of using multilevel 
regression models is that none of the three types of balance will be required. This is because 
in multilevel regression modeling, multivariate responses are typically handled by treating the 
different variables comprising the multivariate response as level-1 units and the original units 
as level-2 clusters (e.g., Chapter 4 of Goldstein, 1995; Rijmen, Tuerlinckx, De Boeck, & Kup- 
pens, 2003). Incomplete multivariate responses then merely result in varying cluster sizes. Such 
unbalanced multilevel designs are typically handled by the estimation procedure, producing con- 
sistent estimators if responses are missing at random (MAR). Since level-1 covariates (e.g., time 
varying covariates in growth curve modeling) can be represented by a single covariate vector, 
unbalanced covariates pose no extra difficulties. Unfortunately, previous attempts to incorporate 
measurement models within the multilevel regression framework have rested on the unrealistic 
assumption that the measurement error variances are known (Goldstein, 1995) or that the factor 
loadings are known (Raudenbush & Sampson, 1999a,b; Raudenbush & Bryk, 2002). 

When structural equation modeling is instead taken as starting point, we note that some lim- 
ited multilevel structural equation modeling is possible using the traditional approaches where 
models are fitted to sample covariance matrices and sometimes means. This is achieved by treat- 
ing the highest level of the multilevel model as "level 1" and the combinations of all lower-level 
units as a high-dimensional multivariate response (e.g., Muthdn, 1997). For example, 4 variables 
observed at 3 time points on 2 twins from each of a large number of families could be modeled 
by letting the families be the "level 1" units and the responses for each family a 24-dimensional 
multivariate response. Obviously, this method can only be applied if there are not too many units 
at any of the levels apart from the highest, since the dimensionality of the response vector would 
otherwise become excessive. In addition, the method requires complete multivariate responses 
and balanced multilevel designs. Random coefficients can be included via factor models, but this 
is only possible if the corresponding covariates are balanced, thus requiring all three types of 
balance mentioned above. 
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Using the traditional approach to structural equation modeling, all three types of imbalance 
can be handled to some degree by multi-group analysis. However, a more flexible approach is to 
base parameter estimation on likelihood contributions from individual units (e.g., Arminger & 
Sobel, 1990) instead of sample covariance matrices and means from listwise samples. However, 
clusters with large numbers of lower-level units still pose problems due to excessive dimension- 
ality. For example, if the families in the above example were also nested in counties with up 
to 100 families per county, the multivariate response would be of dimension 2400, with many 
missing values for those counties contributing fewer than 100 families. 

Explicit two-level structural equation methodology has been developed to overcome the 
problem of large clusters. In the above example, county would be declared a "level 2" unit and 
family a "level 1" unit. For continuous responses or responses modeled by latent underlying 
variables, such multilevel structural equation models are typically defined by specifying separate 
models for the within-cluster and between-cluster covariance matrices (e.g., Longford & Muthdn, 
1992; Poon& Lee, 1992; Linda, Lee, &Poon, 1993; Muth6n, 1994; Lee & Shi, 2001) although 
Goldstein and McDonald (Goldstein & McDonald, 1988; McDonald & Goldstein, 1989) pro- 
pose a more general framework. There are six limitations to models specified via two separate 
conventional structural equation models. First, random coefficients cannot be included at "level 
2"' Second, random coefficients at the lower levels are not permitted if the corresponding co- 
variates are continuous or highly unbalanced. Third, the models cannot include large clusters at 
more than one level ("level 2") since this would render the dimensionality excessive. Fourth, this 
framework does not allow direct inclusion of regressions of "level 1" latent variables on "level 
2" latent variables. Such models must be specified in a roundabout way by using a large number 
of parameters and imposing a large number of nonlinear parameter constraints. We will return to 
this point later. Fifth, modeling the "level 1" covariance matrix presupposes that the responses 
are either continuous or can be viewed as generated by categorizing continuous underlying vari- 
ables. This accommodates models for dichotomous and ordinal responses, but not, for instance, 
Poisson and gamma models often used for counts and durations in continuous time. Finally, the 
typical specification of multivariate normality for underlying variables corresponds to a probit 
link and therefore rules out several useful links such as the log, logistic, and complementary 
log-log. 

In this paper we introduce a unifying framework for multilevel structural equation models. 
Our generalized linear latent and mixed modeling (GLLAMM) framework represents a general- 
ization of multilevel regression models or generalized linear mixed models and does not require 
balanced data in any of the three senses described above (see also Rabe-Hesketh & Pickles, 1999; 
Rabe-Hesketh, Pickles, & Skrondal, 2001a; Skrondal & Rabe-Hesketh, 2004). Maximum likeli- 
hood estimation is implemented in the software gllamm (Rabe-Hesketh, Pickles, & Taylor, 2000; 
Rabe-Hesketh, Pickles, & Skrondal, 2001b; Rabe-Hesketh, Skrondal, & Pickles, 2002) running 
in the widely available statistical package Stata (StataCorp, 2003). Unlike previous methodolo- 
gies, our framework allows 

• an arbitrary number L of levels, 
• automatic handling of data missing at random (MAR) and scope for modeling data not missing 

at random (NMAR), 
• unbalanced multilevel designs, 
• random coefficients of unbalanced covariates, 
• general factor structures (with "free" factor loadings), 
• regressions among latent variables (factors and/or random coefficients) varying at different 

levels, 
• a wide range of response processes including ordered and unordered categorical responses, 

counts, and responses of mixed types. 
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Unlike previous contributions that have focused mostly on estimation issues, a major additional 
focus is to explore the different types of multilevel structural equation model that are likely to be 
useful in different types of application. 

The outline of the paper is as follows. In the next section, we describe our modeling frame- 
work. We then explore multilevel structural equation models as special cases of the framework. 
Finally, we illustrate some of the ideas using an example. 

A General Framework for Multilevel Structural Equation Modeling 

We depart from the traditional multivariate framework for formulating factor and struc- 
tural equation models and adopt an essentially univariate approach. Al l  response variables for 
each unit are stacked in a single response vector with different variables distinguished one from 
another by a design matrix. In the next three subsections we outline the three parts of our frame- 
work: (1) the response model, (2) the structural model for the latent variables, and (3) the distri- 
bution of the latent variables. In the final subsection, we derive the marginal log-likelihood and 
describe our method of estimation and latent variable prediction. 

Response Model 

Conditional on the latent variables, the response model  is a generalized linear model speci- 
fied via a linear predictor, a link, and a distribution from the exponential family. 

Linear Predictor 

To simplify notation, we will not use subscripts for the units of observation at the various 
levels in this section• For a model with L levels and Ml latent variables at level I > 1, the linear 
predictor has the form 

L MI 

v = ~'x + ~ ~ "m~l(')A(')1z(')m m (1) 
I=2  m = l  

with the first element of A2 ) typically set to 1, that is, ~(1) = 1. The elements of x are explanatory 
variables associated with the fixed effects or regression coefficients,/3. The ruth latent variable 

at level l, rl~ ), is multiplied by a linear combination A2 ) 'z~ ) of explanatory variables z~ ), where 

12 / are parameters (usually factor loadings). 

Links and Distributions 

We will use ~(1) = (rill) . . . . .  rlQ1) I to denote the vector of latent variables at level I for 

a given level-I unit with corresponding vector of explanatory variables z (1) = (z] I)I, _(1) ~,~ • . . , 1 , M l  ) • 

Also define the vector of latent variables at all levels for a level-2 unit ~ = (~(2)~, . . . ,  ~(L)~)I 
with corresponding vector of explanatory variables z = (z (2)~, . . . ,  z(L)~) ~. The conditional ex- 
pectation of the response y given x, z, and ~ is "linked" to the linear predictor v via a link 
function g(.)  

g(E[ylx,  z, ~]) = v. (2) 

The specification is completed by choosing a distributional "family" for the conditional distri- 
bution of the response variable given the latent and explanatory variables• There are no latent 
variables at level 1, this level being reserved for the "error" of the chosen conditional distribu- 
tion. 
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The following kinds of response variable are among those accommodated by our frame- 
work: 

1. C o n t i n u o u s  responses:  An identity link and a normal distribution are usually assumed: 

y = v + ~ ,  

with f (e) = (2Jrc~2)-l /2exp(-e2/(2c~2)).  The conditional density becomes 

f ( y l x ,  z, B) = o ' - l q ) ( 1 ) o ' - l ) ,  (3) 

where ~b denotes the standard normal density. Heteroscedasticity can be modeled as 

log(~)  = o /z  (1), (4) 

where c~ is the standard deviation of e, t~ are parameters, and z (1) covariates. 
2. Ord ina l  a n d  d i c h o t o m o u s  re sponses  a n d  d iscre te  t ime  durat ions:  To allow the generalized 

linear model  framework to be applied to ordinal responses, Equation (2) is usually modified 
to a cumulat ive  form 

g ( P r ( y  <_ ys lx ,  z, ~q) ) = Xs - V, s =  1 . . . . .  S - l ,  

where Ys, s = 1 , . . . ,  S are the response categories and xs, s = 2 , . . . ,  S - 1 with 0 = xl < 
• . .  < x s - 1  are t h resho lds  to be estimated. A multinomial distribution is invariably assumed 
together with a logit, probit, or complementary log-log link. 

Alternatively, the models can be defined using the concept of an underlying continuous 
response y*, 

y*  = V + ~ * ,  

with ordinal and dichotomous responses generated via a threshold model: 

Y = Ys i f  Ks_ 1 < y*  < Ks, K 0 = - o o ,  K 1 = 0, Ks = o o .  

The logit, probit, and complementary log-log links correspond to specifying f ( e )  = 
e x p ( - e ) [ 1  + e x p ( - e ) ]  -2,  f ( e )  = ( 2 z c ) - l / 2 e x p ( -  ½e2), and f ( e )  = exp(e - e x p ( e ) ) ,  respec- 
tively. If  the variance of e is identifiable, scaled versions of these densities, corresponding to 
scaled links, can be used. The conditional distribution becomes 

f (y  = y~,lx, z, ~q) = F(c~-l[tCs - v]) - F(c~- l [ tCs_ l  - v]), (5) 

where F is a cumulative distribution function and c~ is a scale parameter that can be modeled 
as in (4). The parallel regression assumption can be relaxed by allowing the thresholds to 
depend on covariates. 

Grouped or interval censored continuous responses can be modeled in the same way by 
constraining the threshold parameters to equal the limits of the censoring intervals. By allow- 
ing unit-specific right-censoring, this model can be used for discrete t ime durations. Another 
approach to discrete time durations is to model the probabilities of "surviving" each time 
interval using models for dichotomous responses. The logit link then corresponds to a con- 
tinuation ratio model  and the complementary log-log link to a proportional hazards model  in 
continuous time; see Rabe-Hesketh, Yang, and Pickles (2001) for a review. Other models for 
ordinal responses, such as the adjacent category logit model, can be specified as special cases 
of the multinomial logit model for polytomous responses in (7). If identified, overdispersion 
can be modeled by including a random intercept at level 1. 
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Counts and durations in continuous time: The response model for counts (nonnegative inte- 
gers) is typically specified via the log link and the Poisson distribution corresponding to 

and 

in E[ylx,  z, ~] = v, 

[exp(v)] ~' 
f ( y  = six, z, ~) - - - e x p ( - e x p ( v ) ) .  (6) 

s! 

The Poisson distribution can also be used for modeling durations in continuous time. If  a 
piecewise exponential model is assumed, with constant hazards for intervals of time, each 
observed duration contributes a product of terms of the form of (6) to the likelihood, namely, 
one term for each interval it exceeds (e.g., Clayton, 1988). If  the hazard changes at each 
event time, this is equivalent to Cox regression. Overdispersion can be handled by random 
intercepts at level 1. Unlike models for dichotomous and ordinal responses, models for counts 
cannot be written as latent response models. 
Polytomous responses, rankings and pairwise comparisons: For such "comparative" re- 
sponses we consider a latent response model of the form 

ya* = Vs + es, 

where s = 1, 2 , . . . ,  S denotes unordered categories. For a polytomous response, 

Y = Y s  if y* > y ~ ,  'v'~, ~ 7~s. 

If  es is specified as Gumbel (extreme value of Type I), f (es )  = exp( -es  - exp(-es) ) ,  the 
conditional probability becomes 

f ( y  = y~.lx, z, ~q) ---- exp(vs) exp(ve) , (7) 
g = l  

a multinomial logit. This distribution can also serve as a building block for conditional dis- 
tributions of rankings (Skrondal & Rabe-Hesketh, 2003a). In pairwise comparison data, the 
dichotomous preference indicators for pairs of alternatives can be modeled using probit or 
logit regression (e.g., Takane, 1987; B~Sckenholt, 2001). 
Mixed responses: Different links and distributions can be specified for different responses. 
This allows modeling of left- or right-censored continuous responses by specifying an iden- 
tity link and normal distribution for uncensored responses and a scaled probit link (with scale 
equal to the residual standard deviation of the uncensored responses) and binomial distri- 
bution otherwise. Mixed responses are common in selection models (e.g., Heckman, 1979) 
where selection is typically dichotomous but the response of interest is often not. An extension 
to multilevel selection models is treated in Skrondal, Rabe-Hesketh, and Pickles (2002). Other 
examples are covariate measurement error problems, for example, logistic regression with 
measurement errors in a continuous covariate (Rabe-Hesketh, Pickles, & Skrondal, 2003; 
Rabe-Hesketh, Skrondal, & Pickles, 2003; Skrondal & Rabe-Hesketh, 2003b). In structural 
equation models with several latent variables, the measurement models for different latent 
variables may require different links and/or families. Finally, composite links can be useful 
for specifying proportional odds models for right-censored responses, for handling missing 
categorical covariates and many other model types; see Skrondal and Rabe-Hesketh (2004b). 

Skrondal and Rabe-Hesketh (2004a) discuss latent variable models with all these response 
types and present applications from various disciplines. 
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Structural Model for the Latent Variables 

The structural model for the latent variables has the form 

n = B n  + Fw + 5, (8) 

where B is an M x M parameter matrix, M = E l  Ml, w is a vector of Q covariates, F is an 
M x Q parameter matrix, and ~ is a vector of M errors or disturbances. Note that (8) resembles 
single-level structural equation models (e.g., Muthdn, 1984). The important difference is that the 
latent variables may vary at different levels in our framework. Each element of ~ varies at the 
same level as the corresponding element of ~. 

We do not allow latent variables to be regressed on latent or observed variables varying at 
a lower level, since such specifications do not appear to make sense. Furthermore, our current 
implementation is confined to recursive models, not permitting feedback effects among the latent 
variables. The two restrictions together imply that the matrix B is strictly upper diagonal if the 
elements of ~(~) are permuted appropriately, since the elements of ~ = (~(2)i, . . . ,  ~(L)I)~ are 

arranged in increasing order of I. 

Distribution of the Latent Variables 

The structure of the latent variables is specified by the number of levels L and the number 
of latent variables Ml at each level. A particular level may coincide with a level of clustering in 
the hierarchical dataset. However, there will often not be a direct correspondence between the 
levels of the model and the levels of the data hierarchy. For instance, in factor models items will 
be treated as units at level 1 and subjects as units at level 2. For the models, "unit at a level" and 
"latent variable at a level" are defined as follows: 

• a unit at level 1 is an elementary unit of observation, 
• a unit k at level I > 1 is a cluster of level-1 units, 

.. (/-1) 
• the level-1 units in cluster k at level l > 1 fall into ,t k subsets representing units at level 

l - l ,  
• a latent variable rl (1) at level I varies between the units at level I but not within the units, 
• the units at level I are conditionally independent given the latent variables at levels l + 1 and 

above and any explanatory variables. 

The distribution of the disturbances ~ needs to be specified if a structural model is used; 
otherwise we must specify the distribution of ~. Here the basic assumption is that latent variables 
at the same level may be dependent, whereas latent variables at different levels are independent. 
In this article it is further assumed that the latent variables at level 1 have a multivariate normal 
distribution with zero mean and covariance matrix £ l ,  although other multivariate distributions 
could be used. Alternatively, the distribution could be left unspecified by using nonparametric 
maximum likelihood estimation (e.g., Laird, 1978; Heckman & Singer, 1984; Rabe-Hesketh, 
Skrondal, & Pickles, 2003). 

The Marginal Log-likelihood 

The likelihood of the observed data is the likelihood marginal to all latent variables. Let 0 

be the vector of all parameters including the regression coefficients/3, the factor loadings ~2),  
m = 1, . . . ,  Ml, l = 2, . . . ,  L, the nonduplicated elements of the covariance matrices li;l, the 
threshold parameters xs, s = 2 , . . . ,  S - 1 for ordinal responses, and the parameters o~ for mod- 
eling level-1 heteroscedasticity. The number of free parameters in 0 will be reduced if constraints 
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are imposed. Further define Y(1) to be the response vector and X(1) to be the matrix of explana- 
tory variables [with rows (x I, z I, z (1)~, w~)] for all level-1 units belonging to a particular unit 
at level I. Let y and X be the response vector and matrix of explanatory variables for all units. 
Substituting the structural model into the response model, giving the reduced form, defines the 
conditional distribution of the responses given the latent and explanatory variables. The corre- 
sponding conditional density (or probability) of a response of a level-1 unit will be denoted as 
f(1) (Y(1)IX(I), 5(2+); 0), where ~(l+) = (~(1)~ . . . . .  ~(c)~)i. The form of this density is implied 
by Equations (3), (5), (6), or (7), depending on the response process. 

We will denote the multivariate normal density of the latent variables at level I as h (1) (~(1); 0). 
The marginal likelihood is constructed recursively. The conditional density of the responses of a 
level-/unit,  conditional on the latent variables at levels I + 1 and above, is: 

f(1)(y(1)lX(1) ' ~([l+l]+); O) = f h(l)(~(l); O) I-I f ( l-1)(y(l-1)lX(l-1) '  ~(/+); O)d~(/)' (9) 

where the product is over all level l-1 units within the level I unit. The total marginal likelihood 
is the product of the contributions from all highest-level units, 

y, X) = I - I  f(L)(y(L)IX(L) ; 0). (10) ~(0; 

The gl lamm program maximizes the numerically integrated marginal log-likelihood using 
a Newton-Raphson algorithm. For given parameter values, the multivariate integral over the 
latent variables ~(1) is evaluated by integrating over Ml independent standard normally distributed 
latent variables v (1) with ~(1) = Clv(1), where Cl is the Cholesky decomposition of ]~l. Letting 
v (l+) = (v (1)~, . . . ,  v(C)~) ~, the integral can be approximated by Cartesian product quadrature as 

f h(/)(~(/); O ) I - I  f(/-1)(Y(/-1)lX(/-1) ' 5(/+); O)d~(/) 

= 

"~" ~ 2"grMl''" ~ -~ 2"grl I'-I f(l-1)(Y(l-1)[X(l-1) ' 0@1 . . . . .  O@Ml , v([l-]-l]-]-); 0), 
rMl rl 

where ~b(.) is the standard normal density and rCr and C~r are quadrature weights and locations, 
respectively. Standard Gauss-Hermite  quadrature rules can be used, but a superior approach is 
to use adaptive quadrature, which essentially places the locations where the integrand is con- 
centrated. The method exploits the fact that the integrand is proportional to the posterior density 
of the latent variables, which is approximately multivariate normal for large cluster sizes (see 
Rabe-Hesketh, Skrondal, & Pickles, 2004). Apart from improving parameter estimation, adap- 
tive quadrature also provides better empirical Bayes predictions of the latent variables, which 
are produced by numerical integration for all latent variables along with posterior standard de- 
viations as one step of the algorithm. Multiple integrals can be evaluated more efficiently using 
spherical instead of Cartesian product quadrature. For details of our implementation of adaptive 
quadrature, see Rabe-Hesketh, Skrondal, and Pickles (2002, 2004). 

An advantage of estimation using quadrature is that accuracy can be assessed by comparing 
solutions with different numbers of quadrature points. Since adaptive quadrature is derived by 
assuming approximate normality of the posterior density of the latent variables, it tends to work 
well for continuous responses, large counts, and large clusters, precisely where standard quadra- 
ture often works poorly (Lesaffre & Spiessens, 2001). However, the normality approximation 
may be crude for small clusters of dichotomous responses, a problem compounded when the pre- 
dicted probabilities are close to 0 or 1, which is common for high intraclass correlations. We have 
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carried out an extensive simulation study for dichotomous responses with a large range of cluster 
sizes and intraclass correlations. The performance of adaptive quadrature was found to be good 
in all cases, with larger numbers of quadrature points required for more difficult situations (Rabe- 
Hesketh, Skrondal, & Pickles, 2004). Comparing gllamm with other software (using, e.g., IGLS, 
PQL, MCMC, and quadrature) for continuous, dichotomous, ordinal, and polytomous responses, 
counts and rankings, good agreement was found between parameter estimates, standard errors, 
and log-likelihood values (Rabe-Hesketh, Pickles, & Skrondal, 2001b; Rabe-Hesketh, Skron- 
dal, & Pickles, 2002). The exceptions were cases where simulation or parametric bootstrapping 
demonstrated that PQL produced biased estimates in contrast to quadrature (Rabe-Hesketh, Pick- 
les, & Skrondal, 2001b; Dohoo, Tillard, Stryhn, & Faye, 2001; Rabe-Hesketh, Toulopoulou, & 
Murray, 2001). 

Special Cases of Multilevel Structural Equation Models 

In the first subsection we develop multilevel factor models. Conventional factor and Mul- 
tiple Indicator Multiple Cause (MIMIC) models are expressed as models within the framework 
in order to familiarize the reader with the notion of using dummy variables for specifying multi- 
variate models for a univariate response vector. This provides the starting point for our multilevel 
extensions. In addition to standard multilevel factor models, we suggest more structured "vari- 
ance components factor models," which represent useful building blocks for multilevel structural 
equation models discussed in the second subsection. Here, a structural model is specified for la- 
tent variables varying at different levels and measured by either same level or lower level items. 
In the final subsection we first show how conventional multilevel random coefficient models (for 
unbalanced covariates) can be specified using the response model in our framework. The model 
is then extended by including both latent responses and latent covariates. All models can be com- 
bined with any of the links and distributions described earlier. It should be noted that the special 
cases do not exhaust the model framework but are chosen to explore types of model structure 
that may prove useful in multilevel modeling. 

Multilevel Factor Models 

Factor models can be specified by using dummy variables to associate particular factor 
loadings with particular responses. To introduce notation, first consider a conventional single- 
level factor model with up to I items i observed on units j .  Define dummy variables for the 
items 

{~ i f i = h  , i = l  I . . . . .  (11) 
dih = otherwise 

placed in the dummy vector di = (dil . . . . .  dii) I with the ith element equal to 1 and all other 
elements equal to 0. A multidimensional factor model can be defined as 

M2 
Vij = ~1di q- ~ ~1(2) :t (2)I~(2) (12) 

~lmj "~m ° m i  , 
m = l  

where h~ 2) is a vector of the nonzero factor loadings for the ruth common factor tim j ~  (2) and 8m(2)i 
is the subvector of di corresponding to the items loading on the factor. For example, if items 2 

"R(2) (di2, di5)', and and 5 load on factor 1, ~(e) contains the second and fifth elements of d i ,  Oli ~ l i  z 

A~ e) = ()re1,)v51). The traditional way of writing the model in (12) for continuous, ordinal, or 
dichotomous data is (e.g., Muthdn, 1984) 

:g 
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* is an /-dimensional vector of underlying continuous responses for unit j ,  A is the where yj 
I x M2 matrix of factor loadings, ~j  are common factors, and ej unique factors. 

In our framework there is no explicit term for the unique factors because the level-1 vari- 
ability is implicit in the distribution family of the chosen generalized linear response model. If  
identified, the unique factor variances can be allowed to differ between items with var(eij) = ~r/2 

by introducing heteroscedasticity at level 1 using (4) with z (1) = d i .  Conditional dependence 
between pairs of items can be induced by additional latent variables at the cost of increasing 
the dimensionality of integration. For categorical responses, multivariate conditional response 
probabilities can be specified directly using interaction parameters (e.g., Harper, 1972; Hage- 
naars, 1988). 

Before considering how unobserved heterogeneity at the cluster level could be incorporated 
in factor models, we briefly consider three ways in which observed heterogeneity is traditionally 
incorporated: MIMIC models, MIMIC models with direct effects, and multi-group factor models. 

A MIMIC model (e.g., JOreskog & Goldberger, 1975) has the response model in (12) with 
structural model 

i,](2) = FWj + [!2) 
J W " 

In the MIMIC approach, item bias results if explanatory variables have direct effects on the items, 
in addition to their indirect effects via the common factors (Muthdn, 1985). To accommodate the 
direct effect of an explanatory variable wq on item h, the fixed term fiI+l (dihWq) c a n  be included 
in the response model for Vij. 

Multiple group factor models (e.g., JOreskog, 1971) can be specified using 

G G Mh2 

= qmhj Amh ~,°mhi Ugh), 
h=l h=l m=l 

where g indexes group, g = 1 , . . . ,  G. Here, in contrast to MIMIC models, the number of 
common factors Mg2 and their covariance matrices can also differ between groups. 

In the multilevel setting, with units j nested in clusters k, one possible way of modeling 
unobserved heterogeneity at the cluster level is analogous to a MIMIC model. Instead of observed 

variables w, unobserved cluster-level variables ~)~ affect the items via the factors aq(2) 
jk 

M2 
Vijk = ~tdi  q- ~ .(2) ~t(2)t~(2) 

"lmjk m mi 
m=l 

•1(2) r(2) jk = B*~lk 3) + ~jk ' (13) 

where B* is an identity matrix, representing the part of the B matrix of Equation (8) that relates 
the unit-level common factors to the cluster-level common factors, so that 

7 / ( 2 )  ~ (3) r (2 )  ( 1 4 )  
mjk = tlmk -}- bmjk" 

We will call this type of multilevel factor model, where a common factor defined through factor 
loadings at the unit level varies at higher levels, a variance components factor model. In the uni- 
dimensional case, this model represents an obvious generalization of item response theory (IRT) 
models useful if, for example, children's mean latent abilities vary randomly between schools 
(see, e.g., Fox & Glas, 2001). Such a model is illustrated in path diagram form in Figure l(a). 

Following the conventions of path diagrams, circles represent latent variables and rectangles 
observed variables. The nested frames represent the nested levels; variables located within the 
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cluster k (3) 
'tj1 

unitj ~ ~ , _  (~2) 

cluster k ( ~  
"ij~ ~ 3 ) j j ~ 3 )  

uni ;  
(a) (b) 

FIGURE 1. 
(a) A variance components factor model and (b) a general two-level factor model. 

outer frame labeled "cluster k" vary between clusters and have a k subscript and variables also 
inside the inner frame labeled "unit j "  vary between units and have both the j and k subscripts. 
We have enclosed in circles only those latent variables that are interpretable as latent covariates 
or latent response variables. Latent variables serving as residuals, disturbances, or random ef- 
fects (not enclosed in circles) are referred to as ff only if  they correspond to disturbances in the 
structural model. Arrows connecting latent and/or observed variables represent linear relations 
except for arrows to observed responses, which represent possibly nonlinear relations depending 
on the link functions. Level-1 variability is represented by a short unlabeled arrow pointing at the 
observed response. Unlike conventional measurement models for continuous responses where 
the arrow represents an additive error term, the arrow could represent, for instance, binomial  or 
Poisson variability depending on the response distribution. 

The analogue to item bias, where unobserved cluster-level variables have a direct effect on 

particular items h, can be modeled by including a cluster-level unique factor, ~ (3) "~ for that tlM3+l,kUth 
i tem in the model  for Vij k. The unobserved heterogeneity analogue to multiple group analysis is 
latent class analysis (e.g., Clogg, 1995), which will not be discussed further in this article. 

A general two-level factor model with unique factors at both unit and cluster levels can be 
defined as 

M2 M3 I 
Vij k = ~1di q_ ~ ~(2) /L(2)t~(2) q_ ~-~ ~(3)/L (3)t~(3) q_ ~-~ (3) _,. 

"lmjk'~m Vmi "lmk'~m Vmi , 2  tlM3+m,katm. 
m=l m=l m=l 

(15) 

The latent variables in the last sum are mutually independent unique factors at the cluster level 
and are independent of the cluster-level common factors in the second sum. An example of this 
type of model  with a single factor at both levels, Me = M3 = 1, is given in path diagram form 
in Figure l(b).  For continuous responses or responses that can be modeled using an underlying 
normal response Yi*jk, the general model  in (15) corresponds to allowing completely different 

factor models for the within and between cluster covariance matrices, 1~1 and ]~e, where the 
/ -d imensional  vector of responses is modeled as 

Y~k ~ N ( ~ k ,  1~1) 

txk ~ N(tx,  I~2), 

and /x and/xk are intercepts (e.g., Longford & Muth6n, 1992; Poon & Lee, 1992; Longford, 
1993; Linda, Lee, & P o o n  1993; Muthdn, 1994; Lee & Shi, 2001). 
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The variance components factor model in (13) and (14) results if  M2 = M3, ~t (2) = ~t (3) 
and the unique factors are omitted. It is surprising that this much simpler model is hardly ever 
considered in the multilevel structural equation modeling literature, since it is a special case with 
an intuitive interpretation analogous to MIMIC models. 

As mentioned in the introduction, specification of multilevel structural equation models via 
separate structural equation models for the within and between cluster covariance matrices is 
often cumbersome. For example, incorporating a direct effect of a cluster-level latent variable on 
a unit-level latent variable as in Figure l(a)  requires the set-up in Figure l(b),  where the factor 
loadings in the within and between model  are constrained equal and the unique factor variances 
in the between model  are constrained to 0. Estimating the corresponding regression coefficient 

b (in a model  where it is identified), requires nonlinear constraints of the form A~3)- = bA~2),- 
which can be imposed via "phantom" variables (Rindskopf, 1984). 

Multilevel Structural Equation Models 

In addition to being of interest in their own right, multilevel factor models can represent 
measurement models within a structural equation model. In multilevel structural equation mod- 
els, there are several ways of specifying regressions of factors on latent or observed explanatory 
variables. Consider for simplicity the case of a single cluster-level observed covariate wk. If  a 
unidimensional version of the multilevel factor model in (15) is used for the response, the regres- 

,~ . ~ ( 2 ) ~ ( 2 )  ~ ( 2 )  
sion part of the reduced form becomes (a) u l u , k ^ 1 % i  if the unit-level common factor qUk is 

,~ . . ( 3 ) ~ ( 2 )  13] regressed on wk, (b) L ' 2 w k ^ 1 % i  if the cluster-level common factor rl is regressed on wk, (c) 

b . ~(2)~(2) _ ,~ . ~(3)~(3) if  both the unit and cluster-level common factors are regressed on 1 tOkA 1 Oli ~-  U 2 U ; k A  1 Oli 
wk, where bl  and b2 are elements of B. These models are not equivalent and case (c) can be esti- 
mated to distinguish between effects on the cluster and unit-level factors. However, if  a variance 
components factor model  is used for the latent response, the reduced form terms due to regres- 

sions of the unit or cluster-level latent variables are identical, since A~ 2)" = A~ 3)," greatly sim- 
plifying model specification. The same issues apply to latent covariates, which may themselves 
be regressed on observed covariates. In order to limit conceptual and notational complexity, we 
will in the sequel confine the explicit development to unidimensional variance components factor 
models. 

Latent response and explanatory variables can vary at different levels. For example, predic- 
tors of pupils '  performance may include a class-level latent variable teachers'  experience and 
a school-level latent covariate such as headmaster 's  attitude. The response model will therefore 
typically include responses varying at different levels. In this section we illustrate different mul- 
tilevel structures for latent covariates assuming that the latent response variables vary at the unit 
level. Similar structures could also be specified for latent response variables. Two kinds of mul- 
tilevel structural equation models are discussed, models where the latent covariates are either 
measured by same-level or lower-level items. 

Latent Covariates Measured by Same-Level Items 

Consider first a model  where the latent covariate varies at the cluster level. Al l  responses are 
stacked into a single response vector y and a single response model specifies the measurement 
models for all latent covariates and response variables. We therefore find it convenient to use sub- 
scripts R and C for terms corresponding to responses and covariates, respectively. Where  these 
subscripts are sufficient to uniquely label different dummy vectors and factor loading vectors, we 
will omit the (1) superscript. Let 8Ri be the dummy vector for the items measuring the unit level 



SOPHIA RABE-HESKETH, ANDERS SKRONDAL, AND ANDREW PICKLES 179 

latent response and 6ci the dummy vector for the items measuring a cluster-level covariate. A 
typical model might then be 

The first term of the response model accommodates the part of the mean structure not specified 
through the structural model for the latent variables. The second term represents the measurement 
model for the latent response variable and the third term represents the measurement model for 
a cluster-level covariate In the structural model, the unit-level latent response variable qFjk is 

( 3 )  regressed on the latent cluster-level covariate qck and on another cluster-level latent variable 

q g i ,  representing a random intercept that is uncorrelated with the latent covariate. In addition, the 
unit-level latent response variable is regressed on a unit-level covariate W R j k  and the cluster-level 
latent covariate is regressed on a cluster-level covariate wck. We have omitted latent variables 
on the left-hand side of the structural model that are not regressed on other latent or observed 
variables ( q f i  in this case) and will continue to do so in the sequel. The model is shown as a 
path diagram in the upper left panel of Figure 2, where we have labeled the paths in the structural 

Equation (16) 

1/11 

unit i 

Equation (1 8) 

(3) cluster k 
V R  

EG unit i I 

Equation (17) 

,-\ ,,, cluster k 

EG unit i I 

Equation (19) 

(3) cluster k 
V R  

FIGURE 2. 
Path diagrams for structural equation models with latent covariates at different levels. 
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model except if the coefficient is set to 1. Further latent covariates could be added where latent 
covariates at the same level could be mutually correlated. 

Now consider a latent covariate that varies at the unit level instead of the cluster level and 
has a cluster-level component of variation. Letting ~Ri and ~ci represent the dummy vectors for 

the items measuring the latent response variable rl~e~k and the unit-level latent covariate rl~k, 
respectively, the model is constructed as 

i I:E o o 
Cjk 

J J 

[ ~  (2) 
tlRjk 

1 o]  ,& 
0 0 1 o.. (3) 

IlRk 
°..(3) 
qCk 

[~.(2) I 

The latent response variable rl'~Jk~'~ is regressed on the latent covariate rl(TJk'~ and has a cluster-level 
random intercept qRk'~ (3) The latent*'~ covariate rl(C2j)k has a component of variation~a rl(3 )Ck at the cluster 
level. The measurement model for the latent covariate is therefore a variance components factor 
model as in (13) and (14). A path diagram for this model is shown in the upper-right panel of 
Figure 2. Fox and Glas (2003) use both cluster and unit-level latent covariates in a model with 
an observed response variable. However, their model does not include a cluster-level component 
of variation for the unit-level latent covariate. 

Latent Covariates (Contexts) Measured by Lower-Level Items 

Effects of ecological contexts are often of scientific interest in multilevel settings. An ex- 
ample is school climate, which is reflected in individual pupils' attitudes. In a variance compo- 
nents factor model for items measuring these attitudes, the school-level latent variable can be 
interpreted as school climate and could be included as a predictor of, for example, individual- 
level ability. The response model coincides with that of Equation (17) and the structural model 
is 

,G  o o 
lb14]  /gJk 
0 1 ~ (3) 

IlRk 
(3) 

qCk 

[~.(2) 1 
o y22  cjk 

where b14 represents the effect of school climate, rl (3) Here an effect b12 of the pupil 's own Ck" 
attitude @~/k has also been included. A path diagram for this model is shown in the lower-left 
panel of Figure 2. 

Another possibility is to consider the effect of deviations of pupils' latent attitudes from 
the school means. The notion of such centered effects is common in sociological research, for 

r (2) represents such a centered instance, when studying relative deprivation. In the model above ~Cjk 
latent variable since it is the error term of the regression of pupils'  attitude on their schools'  mean 

attitudes. However, ~ cannot be included as a regressor in our framework. We can get around 
this problem by using the following specification: 
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(2) 

tl(R2j)k 0 0 b13 1 h i4  ~ (2) jr_ g l l  0 ttORj k Jr- bRjk 
°..(2) = 0 0 1 0 1 qC2jk 0 V22 WCjk r(2) ' 
qCUk ~ (3) >CUk 

tIRk 
~1(3) 

Ck 
(19) 

c(2)j ~ (2) where var(~ k) = 0. Here the latent variable qC2jk acts as the disturbance of the regression 
2 )  ;.(2) 

for ~lIcijk since the variance of SCUk, which is required by the framework, is set to zero. hi3 
(2) ~) 

therefore represents the effect of the centered latent covariate, qCUk takes the place of ~l k in 
the response and structural model  (18). A path diagram for this model is shown in the lower-right 
panel of Figure 2. 

Raudenbush and Sampson (1999b) use latent variables to represent the neighborhood-level 
contexts or "ecological constructs" physical  and social disorder. Items reflecting physical  and 
social disorder (level 1) are measured at the housing block level (level 2) within neighborhoods 
(level 3). A three-level model  is developed where correlated random intercepts at level three rep- 
resent the ecological constructs of interest. However, their models do not include factor loadings 
(one parameter i tem-response models are used at level 1) or regressions among latent variables. 

The models described in this subsection have assumed that a reflective (not a formative) 
measurement model  (e.g., Bollen, 1989) applies for the context. If  this assumption is appropriate, 
it would generally be problematic to substitute sumscores or factor scores for the latent variables 
(Skrondal & Laake, 2001), an approach often adopted in multilevel modeling. 

Multilevel Structural Equation Models with Random Coefficients 

Observed Response Variable 

A conventional multilevel regression model  can be specified as 

L ml 
vi ~ ,x i  jr_ ~ ~ (1) (1) = tlbmZbm, 

/=2 m=l  

where we have suppressed all observation indices except i. Here there is one observed variable 

(1) and the corresponding factor loading a(1) is set to 1 so that _(1) for each latent variable rib m "~bm Lbm 

MI 
(1) (1) (I/ (1) 

tlbmZbm = ~llb Z b • 
m=l  

We now add a unit-level latent covariate. Stacking the response and the items measuring 
the covariate in a single response vector and using dummy vectors ~Ri = dir for the response 
(assumed to be in position i = r)  and di for all items, the model can be written as 

L 
~,(2)~i a v - ,  (I)/~ (1)~ , 

Vi = [ l I (x id ir )  Jr- ' lc  "~c'-'i -}- 2..., I"lb ~'Zb air) .  (20) 
/=3 

The first and third terms represent the multilevel regression model  for the response variable with 
the lowest-level random effects now at level 3 since the units form level 2 and the items level 1. 
The second term represents both the measurement model  for the latent covariate rl~ ) -  and the 
regression of the response variable on the latent covariate with regression coefficient )~cr. The 
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Equation (20) Equation (21) 

cluster k (3) 
7/c 

7] b2(3) 7]b~3) 

cluster k 

unitj  

(3) 
't]~ 3) 7JR 

FIGURE 3. 
Random coefficient models with latent covaxiate (left panel) and latent response variable (right panel). 

scale of the latent covariate is that of the first i tem (since)vc~ = 1). The latent covariate may have 
a component of variation at level 3 (or higher) which can be specified in the structural model as 

tl(c 2 ) =  bl2tl(c 3) q- ~(c 2), b12 = 1. 

A path diagram of this model for L = 3 with a single random coefficient is shown in the left panel 
of Figure 3. The random coefficient is represented by a latent variable having an arrow pointing 
from it to the path representing the corresponding fixed coefficient, a convention previously used 
in Pickles, Pickering, Simonoff, Meyer, Silberg, & Maes (1998). 

Further variables measured with error, including higher-level covariates or "contexts," can 
be added to the model using possibly correlated latent variables at levels 2 and higher. However, 
in the present framework, a latent covariate cannot have a random coefficient since F in the 
structural model  is a matrix of constant parameters. This feature has been included in a model by 
Fox (2001). 

If  the variable z~'~ associated with the ruth random coefficient at level I varies at a level lower 
than I (as in the path diagram), °..(5 qbm can be interpreted as a conventional random coefficient. How- 

(1) (5 represents a heteroscedastic random • ~ (5 varies at the same or higher level than I, r]bmZbm ever, l I  Zbm 
intercept at level I. A random intercept whose variance depends on several covariates =(5 can be Lbm, 
modeled using (5 - ( 5 '  (5 rlbm^bm Zbm. Similarly, a heteroscedastic random coefficient for a covariate _(5 Z, bm 
can be modeled using (5 - (5' ~ (5 (5, v~) rlbmabm tZbmVm ), where are the variables inducing heteroscedasticity. 

Latent Response Variable 

If  the response variable is latent instead of observed and measured by multiple items, a 
multilevel random intercept model with a single random coefficient at level 3 can be specified as 

rl(R 2 )=T 'wR+b]nR+~(R  2), b l = l .  (21) 

The second term in the response model represents the measurement model  for the latent response 

variable rl~ ~).~ The structural model defines a random intercept model for the latent response 
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variable where ~qR is a vector of random intercepts at levels l = 3 . . . . . . .  Since the random 

coefficient term rl~3)Zb cannot be included in the structural model, it is included in the response 
(3) i -  (3) i 

model as % ~tb(~RiZb) = tlb Zb~tR6Ri by imposing the constraint Ab = AR. The model is 
shown in the right panel of Figure 3 for the three-level case with one observed covariate wR 
in the structural model. Further random coefficients or covariates measured with error can be 
included in a straightforward manner. 

Finally, models can include regressions between factors and random coefficients. For ex- 
ample, headmasters' attitude, measured by a number of items and represented by a factor at the 
school level, may affect the random slope of pupils' progress over time. Let items i be nested in 
occasions t nested in pupils j nested in schools k and all responses stacked into a single response 
vector where dir is the dummy variable for the pupil-level outcome and and 6ci is the dummy 
vector for the headmaster-level items. The model can then be written as 

(2) ~ d ' (3),i  ~ 
Vitjk = [~tXitjk -]- tl (R2]kdir + t l N k t Z b t j k  ir)  -]- t lCk~tCOci  

~) ,~ ~(3)  ,~ ~ ( 3 ) . r ( 2 )  
I~] k z Ul3tiCk -~- Ul4t iRk __ bRjk  ' b14 = 1 

7/(2) ,~ ~ (3) b25rl~3). ;.(2) bjk = u23tICk -]- = 1. " bbjk,  b25 

The second and third terms of the response model specify a growth curve model for pupils' 
(2) ~ (2) 

outcome with a random intercept q R j k  and slope qbjk of time Zbtjk at the pupil level. The last 

term specifies the measurement model for headmasters' attitude tl(3) In the structural model, Ck" 
the pupil-level random intercepts and slopes are regressed on headmasters' latent attitude. In 

addition, there are school-level random effects ~ (3) and ~ (3) for the intercept and slope, which tI Rk tlbk 
may be correlated. Note that these random effects could alternatively be included directly in 

~(3),4 ' (3)~ d ' ;.(2) ;.(2) the response model as ,Rk~,~r and rlbk tZbtjk Jr). The disturbances ~Rjk and ~bjk may also be 
correlated. The model is shown as a path diagram in Figure 4. The first diagram uses an arrow 
pointing at a path to represent the random coefficient. This diagram is appropriate for a balanced 
or unbalanced covariate Zbtjk whereas the second diagram assumes that the covariate takes on the 
same (three) values zat for each unit. The second diagram uses the conventional path diagram 
representation of random intercepts and coefficients. Here the factor loadings for the random 
intercept would be set to 1 and those for the random coefficient to the times zb~, zb2 and zb3. 
Alternatively, one of the factor loadings could be estimated to allow for nonlinear growth (e.g., 
McArdle, 1986; Meredith & Tisak, 1990). 

In the above example a random coefficient and intercept were regressed on a factor, but 
factors could also be regressed on random coefficients. More complex structural models could 
be specified in which random coefficients and/or factors at different levels can be predictors, 
intervening variables or responses. 

Application 

Respondents in the British Social Attitudes Survey Panel 1983-1986 (Social and Commu- 
nity Planning Research, 1987) 1 were asked whether or not abortion should be allowed by law 
under the following circumstances: 

• the woman decides on her own she does not wish to have the child [woman] 
• the couple agree that they do not wish to have the child [couple] 
• the woman is not married and does not wish to marry the man [marriage] 

1Data were supplied by the UK Data Archive. Neither the original data collectors nor the archive are responsible 
for the present analyses. 
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(3) / • I 
"OR 

clusterk [ umtj  [ t imet 

cluster k unitj 

FIGURE 4. 
Level 2 random intercept and slope regressed on level 3 latent covariate. (a) general representation (b) representation 

for balanced covaxiate. Correlations between the the random effects r]~ )'~ and r]}, ~)'~ or between ~_~z)'" and ~_~2)- would be 
indicated by curved double-headed arrows. 

• the couple cannot afford any more children [financial] 
• there is a strong chance of a defect in the baby [defect] 
• the woman's  health is seriously endangered by the pregnancy [risk] 
• the woman became pregnant as a result of rape [rape] 

The data have a multilevel structure with panel waves nested in individuals nested in polling 
districts. There were 14143 responses to the seven items over the four panel waves from 734 
individuals in 57 polling districts. The multilevel design was highly unbalanced with 49% of 
subjects responding to at least one item in all four panel waves, 12% in three waves, 13% in two 
waves and 25% in one wave. Unit nonresponse was therefore common, but if an interview took 
place, item nonresponse occurred in only 7% of cases. We will not explicitly model  unit or i tem 
nonresponse and therefore assume that responses are missing at random (MAR). 

Previous multilevel analyses of these data have used raw sumscores or scores constructed 
from item response models as response variable (Knott, Albanese, & Galbraith, 1990; Wiggins, 
Ashworth, O'Muircheartaigh,  & Galbraith, 1990). However, using such constructed scores as 
proxies for latent variables has been demonstrated to be highly problematic,  leading to biased 
standard errors and often to inconsistent parameter estimates (Skrondal & Laake, 2001). Hence, 
we use multilevel factor models with a logit link for the dichotomous items. We used the change 
in deviance to choose between competing models. Each model is fitted a number of times using 
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adaptive quadrature with different numbers of quadrature points per dimension to ensure reliable 
results. 

Initially, we focus on between subject heterogeneity and subsequently also include hetero- 
( 3 )  geneity between polling districts. It is plausible that in addition to a "general attitude" factor qajk 

measured by all items, there may be an independent "extreme circumstance" factor rl~k r e p r e -  

s e n t i n g  people's additional inclination to be in favor of abortion when there is a strong chance 
of a defect in the baby, a high risk to the woman, or where the pregnancy was a result of rape. 
Using indices i for item or situation (level 1), t for time (level 2), j for subject (level 3) and k for 
polling district (level 4), the two-factor model can be written as 

(22) 

where 6El is a vector of dummy variables for the three extreme situations. A unidimensional 
factor model appears to be inadequate since removing the extreme circumstance factor increases 
the deviance by 207.7 with 3 degrees of freedom. 

Since there are repeated responses for each subject and item, item specific unique factors 
can be included at the subject level: 

7 

' tUmjk~ tm,  J 
m = l  

(23) 

°..(3) where the latent variables are mutually independent. The unique factors qUmjk  in the last term 
can be interpreted as heterogeneity between subjects in their attitudes to specific items, inducing 
additional dependence between responses over time not accounted for by the common factor. 
Evaluation of the log-likelihood for this model requires integration over nine dimensions at level 
3. To reduce the dimensionality of integration, the items i can be treated as level 2 units so that 
time becomes level 1 and the model is reparameterized as 

(24) 

Here the last term in (23) that evaluates to rI(3), for item i has been replaced by rI(2). )~ui Utjk Uuk  " 
(3) are treated as separate latent variables for the items, i = 1 , . . . ,  7, rl(g2]jk Whereas the qgijk 

is a single latent variable with different realizations for different items i. The purpose of AN 
is to allow the unique factor variances to differ between the items. The models are equivalent 

( 3 )  ~ ( 2 )  . . 
since both tluij k and tluijk,~Ut vary between items, are uncorrelated across items, and have item- 
specific variances. The advantage of (24) is that a nine-dimensional integral at level 3 has been 
replaced by a one-dimensional integral at level 2 and a two-dimensional integral at level 3. It 
is often possible to reduce the dimensionality of integration by reparameterization (e.g., Rabe- 
Hesketh & Skrondal, 2001). Adding unique factors at the subject level to the two-factor model 
decreases the deviance by 12.6, a small change for seven additional parameters. 

Introducing district-level latent variables in addition to subject-level latent variables, the 
common factors can be allowed to vary between polling districts, giving two-dimensional vari- 
ance components factor models. Allowing the general attitude factor to vary between districts 
decreases the deviance by 8.2 with one extra parameter whereas the deviance decreases by only 
3.2 for the extreme circumstance factor. The retained model is therefore the response model 
in (24) plus the structural model 

/(3) ~ (4) ~_ r(3)  
Gjk = tIGk bGij" 
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TABLE 1. 
Estimates for the Multilevel Variance Components Logit Factor Model 

Fixed Part 
Intercepts: 

woman 
couple 
marriage 
financial 
defect 
risk 
rape 

Random Part: Subject level 
Factor loadings: 

woman 
couple 
marriage 
financial 
defect 
risk 
rape 

Common factor variance: 

Random Part: District level 
Common factor variance: 

Log-likelihood 

-0.83 (0.14) 
-0.17 (0.15) 
-0.28 (0.16) 
-0.01 (0.14) 

3.79 (0.27) 
5.90 (0.56) 
4.82 (0.39) 

General Extreme 
1 0 
1.13 (0.08) 0 
1.21 (0.09) 0 
1.01 (0.08) 0 
0.78 (0.09) 1 
0.73 (0.13) 1.53 (0.26) 
0.72 (0.11) 1.23 (0.21) 
5.22 (0.67) 3.30 (0.80) 

0.36 (0.17) 0 

-5160.9 

Including unique factors at the district level increases the dimension of integration at level 4 from 
1 to 8. The dimensionali ty cannot be reduced by reparameterization in this case. We therefore 
included each unique factor separately, but the changes in deviance were small. 

Estimates for the retained multilevel variance components logit factor model are given in 
Table 1. These were obtained using adaptive quadrature with 10 points per dimension which gave 
very similar results to 8 and 5 points per dimension. As expected, the intercepts for the extreme 
circumstance items were much larger than for the others due the larger prevalence of endorsing 
these items. Both a general attitude and extreme circumstance factor were required at the subject 
level. Only the general attitude factor appeared to vary at the polling district level, but with a 
relatively small variance. 

Concluding Remarks 

A unifying framework for multilevel structural equation modeling has been developed. The 
framework handles various response processes including continuous, censored, grouped, ordinal, 
dichotomous, and unordered polytomous responses, as well as counts and durations in continu- 
ous or discrete time. All  kinds of imbalance (missing data, unbalanced multilevel designs, and 
unbalanced covariates) are accommodated.  Furthermore, explicit  selection models can be incor- 
porated if the assumption of data missing at random (MAR) is untenable. The framework allows 
an arbitrary number of hierarchical levels to be specified and structural relations among factors 
and/or random coefficients at different levels to be included. Important special cases of the gen- 
eral framework were outlined and potential applications described. However, these models in no 
way exhaust the possibilities of the framework. 

As in conventional structural equation modeling, it is necessary to impose identification re- 
strictions on the parameters of models within the framework. Unfortunately, the generality of 
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the model framework exacerbates the complexity of identification analysis and prohibits deriva- 
tion of general identification conditions. Identification must thus proceed on a case by case basis. 
Fragile identification, where the model is technically identified but identification hinges on scarce 
information, should be avoided (e.g., Rabe-Hesketh & Skrondal, 2001). 

We have developed a maximum likelihood approach for estimating all models in the frame- 
work. This is implemented in a freely available program gllamm, which runs in the general 
purpose statistical package Stata (StataCorp, 2003). gllamm also produces empirical Bayes pre- 
dictions of all latent variables with corresponding standard errors and can be used to simulate 
responses from a model. If there are many latent variables gllamm can be slow, but the number 
of latent variables can often be reduced by reparameterization as shown in our application. 

Other currently available approaches tend to be limited to continuous responses, certain 
model and data structures, and rely on ad hoc estimation procedures. Perhaps the simplest ap- 
proach is to first estimate separate structural equation models for the clusters and then obtain 
the between-cluster covariance matrix of the parameter estimates (e.g., Chou, Bentler, & Pentz, 
2000). However, all parameters, including factor loadings, are in this case treated as random 
with unconstrained covariance matrix, severely limiting the types of multilevel structural equa- 
tion model that can be formulated. Furthermore, parameter estimation is fragile for small clus- 
ters; the method does not provide proper standard errors and the properties of the estimators 
are unknown. A better approach for continuous responses is implemented in Mplus (Muthdn 
& Muthdn, 1998; Muthdn, 2002), which fits models to estimated within and between cluster co- 
variance matrices. This yields a maximum likelihood estimator in the case of balanced multilevel 
designs (Muthdn, 1989) and a consistent so-called MUML estimator in unbalanced multilevel de- 
signs (Muthdn, 1989, 1994). However, missing data are not permitted except if they are handled 
by multi-group analysis. Goldstein (1995) suggests an alternative two-stage method. First, the 
within and between (residual) covariance matrices are estimated using conventional multilevel 
regression modeling, which handles unbalanced data. Second, structural equation modeling is 
performed based on these covariance matrices. This approach has some intuitive appeal for mod- 
els where the covariance matrices represent sufficient statistics. Although the estimators are con- 
sistent, the statistical properties of the two-stage method are generally unknown. Hox (2002) 
gives a useful overview of most of these ad-hoc approaches. 

Methods based on separate models for the within and between covariance matrices suffer 
from the six limitations discussed in the introduction, although the first two of these are ad- 
dressed in ongoing work (Asparouhov & Muthdn, 2004) which is implemented in Mplus. Some 
multilevel models with structural relations among latent variables can be estimated in HLM 5 
(Raudenbush, Bryk, & Congdon, 2000) but only for the case of known factor loadings. The cur- 
rent version of MLwiN includes Markov Chain Monte Carlo (MCMC) methods for multilevel 
factor models with continuous responses (Goldstein & Browne, 2002). 

Other estimation methods for more general models have been suggested but are not gen- 
erally available in software. For continuous data, maximum likelihood estimation has been pro- 
posed for unbalanced multilevel designs with missing items (Longford & Muthdn, 1992), for 
example using an EM algorithm (Raudenbush, 1995; Lee & Tsang, 1999) or a generalization of 
the iterated generalized least squares algorithm (Yang, Pickles, & Taylor, 1999; Yang & Pick- 
les, 2004). An EM algorithm for unbalanced continuous two-level data has recently been im- 
plemented in EQS (e.g., Liang & Bentler, 2003). For binary data, MCMC methods have been 
proposed by Ansari and Jedidi (2000) and Fox and Glas (2001). BUGS can be used to estimate 
general models by MCMC (Spiegelhalter, Thomas, Best, & Gilks, 1996), although model speci- 
fication and monitoring of stationarity require some expertise. 

The framework discussed in this paper does not include models with discrete, nonnormal 
or "nonparametric" latent variables. Such models are discussed in Skrondal and Rabe-Hesketh 
(2004) and can be estimated in gllamm. Currently the structural model cannot include simultane- 
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ous effects or interactions between latent and observed variables and the linear predictor cannot 
include products of latent variables. Such extensions would be useful for example for specifying 
models with random coefficients for latent covariates and/or random intercepts with randomly 
varying variances. Our framework encompasses a very large range of multilevel structural equa- 
tion models and we are only beginning to understand the scope of multilevel structural equation 
modeling. 
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