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A BAYESIAN ANAIXSIS OF FINITE MIXTURES IN THE LISREL MODEL 
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In this paper, we propose a Bayesian framework for estimating finite mixtures of the LISREL model. 
The basic idea in out" analysis is to augment the observed data of the manifest variables with the latent 
variables and the allocation variables. The Gibbs sampler is implemented to obtain the Bayesian solution. 
Other associated statistical inferences, such as the direct estimation of the latent variables, establishment 
of a goodness-of-fit assessment for a Ix)sited model, Bayesian classification, residual and outlier analyses, 
are discussed. The methodology is illustrated with a simulation study and a real example. 
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1. Introduction 

In general, a finite mixture model arises with a population which is a mixture of M com- 
ponents with associated probability densities {fro, m = 1 . . . . .  M} and mixing proportions 
{rein, m = 1 , . . . ,  M}. Such a situation is very common in many areas of applied statistics such 
as statistical pattern recognition, classification and clustering; see the survey paper by Redner 
and Walker (1984), and the excellent book by Titterington, Smith and Makov (1985), among 
others. In the literature, a variety of statistical methods have been proposed to analyze finite mix- 
ture models. Examples include the method of moments (Day, 1969; Lindsay, 1989; Lindsay & 
Basak, 1993), Bayesian and quasi-Bayes methods (Crawford, DeGroot, Kadane, & Small, 1992; 
Diebolt & Robert, 1994; Richardson & Green, 1997; Robert, 1996; Smith & Makov, 1978), the 
discriminant analysis approach (Do & McI,achlan, 1984; Ganesalingam & McLachlan, 1981), 
and the maximum likelihood (Day, 1969; Itasselblad, 1966; Hathaway, 1985). 

On the other hand, models for establishing substantive theory in behavioral and social sci- 
ences usually involve causal effects and correlations among manifest variables and the latent 
variables that cannot be measured by one single operationalization. Structural equation model- 
ing (SEM) is an important method in finding the appropriate model and estimating the causal 
effects and the correlations, see Bentler (1983), Browne (1984), J0reskog (1978), and Yuan and 
Bentler (1997), among others. Now, SEM represents a widely used multivariate method in behav- 
ioral, health and social sciences; see for examples, Bollen and Long (1993), Byrne (1994), Hoyle 
(1995) and the references therein. ~llae most important factor accounting for the popularity of 
SEM is clearly due to the availability of the efficient computer softwares such as EQS (Bentler, 
1992) and LISREL VIII (JOreskog & SOrbom, 1996). Hence, a major trend of research in the 
field has been devoted to enlarge the scope of applicability of the LISREL model to non-standard 
situations; see for example, Lee and Pooh (1992), Muth6n (1989) and van Buuren (1997), among 
others. 

Recently, a few important contributions on the maximum likelihood (NIL) analysis of finite 
mixtures in structural equation models have been established. Jedidi, Jagpal and DeSarbo (1997a) 
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analyzed the finite mixtures of multivariate regression and simultaneous equation models; while 
Jedidi, Jagpal and DeSarbo (1997b) considered a general finite mixtures of structural equation 
models and discussed the problem of model selection. In the estimation, both of the above articles 
used the EM algorithm (Dempster, Laird & Rubin, 1977) by treating the allocation variables as 
missing data. Yung (1997) considered the finite mixtures in the confirmatory factor analysis 
model and implemented an approximate scoring algorithm and an EM algorithm to solve the 
likelihood equation. He concluded that the approximate scoring algorithm is better than his EM 
algorithm which treated the allocation variables and the latent factor scores as missing. Some 
aspects of the maximum likelihood estimation have also been given by Dolan and van der Maas 
(1998). In their application of the EM algorithm, Jedidi et al. (1997b), did not give standard errors 
estimates. Yung pointed out that if the components are not well-separated, the appropriateness of 
the approximate information matrix in getting standard error estimates is questionable. Under this 
situation, the Hessian matrix of the log-likelihood function, which requires heavy computation 
to evaluate, is recommended for estimating the standard error estimates. 

In this article, we propose a Bayesian approach as an alternative to the ML approach. Our 
development is based on finite mixtures in the well-known LISREL model. This complicated 
model is handled by augmenting the observed data of the manifest variables with the hypotheti- 
cal missing data that associated with the latent variables and the allocation variables. On the basis 
of conjugate type prior distributions, the well-known Gibbs sampler (Geman & Geman, 1984) is 
implemented to generate a sequence of observations from the appropriate joint posterior distri- 
bution. As we will see later, the proposed Bayesian approach gives the joint Bayesian estimates 
of the mixing proportions, means of the underlying components, structural parameters in the co- 
variance matrices, and direct latent variables scores corresponding to each individual. Standard 
errors estimates can be obtained easily. Still, obtaining point estimates is not the end of the our 
analysis. The simulated observations from the Gibbs sampler provide useful information for fur- 
ther statistical analyses such as the construction of confidence intervals, hypotheses testing, etc. 
To keep our presentation within a suitable length, we only discuss the issues on a goodness-of-fit 
assessment of a posited model, Bayesian classification, residual and outlier analyses in this paper. 

The paper is organized as follows. Section 2 describes the finite mixtures in the LISREL 
model. The Bayesian theory for analysis of this model is presented in section 3. Statistical anal- 
yses based on the simulated observations from the Gibbs sampler are discussed in section 4. To 
illustrate the proposed procedure, results obtained from a simulation study and a real example 
are reported in section 5. A discussion is given in section 6. Some technical details are given in 
the Appendices. 

2. Finite Mixtures in the LISREL Model 

Suppose that the distribution of the p x 1 random vector y is given by the probability density 
function of the form 

M 

f (ylO) = ~_~ remfm(Yll~m, 0m), 
m = l  

(1) 

where M is a given integer, rein is the unknown mixing proportion such that rein > 0 and re1 + 
" ' "  q- reM = 1.0, fm(Yll~m, am) is the multivariate normal density function with an unknown 
mean vector I~m and a general covariance structure Nm = Nm (am) that depends on an unknown 
parameter vector Ore, and 0 is the parameter vector that contains all unknown parameters in 
re,n, I~m and am, m = 1 , . . . ,  M. 

The following well-known LISREL model for the random vector y conditional on the ruth 
component is considered in this paper. The measurement equation of the model is given by 

y = ktm + Am~m + era, (2) 
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where #m is the intercept vector, Am is the p x q factor loading matrix, ~m is the random 
vector of latent variables, and em is the random vector of error measurements which is distributed 
according to N[0, ~m] and independent with ~m, where ~m is a diagonal matrix. Moreover, let 
~m (C1, r r. = ~m2) , the structural equation of the model, which describes the causal effects among 
the latent variables, is defined as 

~ml = l~m~ml + Fm~m2 + 3m, (3) 

where ~m 1 and ~m2 are ql x 1 and q2 x 1 subvectors of ~m respectively, am is a random vector that is 
-1 = ( I - I q m )  -1 independent with ~m, Hm and Fm are unknown parameter matrices such that Horn 

exists and IHOml is independent with Hm. Let the distributions of ~m2 and 3m be N[0, qb2m] and 
N[0, ~ m ] ,  respectively; where ~ m  is a diagonal matrix. The parameter vector Om contains the 
free unknown parameters in Am, Fire, Fro, qb2m, ~ m  and ~m. The covariance structure of ~m is 
given by 

[ - 1  T -1T -1 1 E~m = II°m(FmO~2mFm + qJ~m)(II°m) II°mFmO~2m 
T -1 T , (4) 

qb2m F m (H0m) qb2m 

and Em (Ore) = Am }2~m A T  + ~m.  Any of these unknown parameter matrices can be set invariant 
across components.  

The identification of the model is an important problem in the analysis. For special mod- 
els, the problem can be solved by imposing appropriate constraints on the unknown parameters. 
Based on substantive and theoretical considerations, these constraints may be defined by fixing 
certain parameters at preassigned known values or by imposing some linear or nonlinear con- 
straints among the parameters. For clear discussion of the statistical method, we assume that the 
identification problem has been taken care of by various methods (see, e.g., Jedidi et al. 1997a; 
JOreskog & S/3rbom, 1996) and the underlying LISREL model is identified. 

According to Redner and Walker (1984) and Yung (1997), three different types of ob- 
servations can be sampled from the following distinct schemes: (a) The observations {Yi, i = 
1 . . . . .  N} are sampled independently from the whole population. (b) For each m, predetermined 
Nm observations {Ymj, j = 1 . . . . .  Nm} are sampled from the m-th component separately and 
independently; hence N = N1 + . .  • + NM.  (c) As in Scheme (a), the component memberships 
of the observations are identified after being drawn, so that all Nm are observed. Data obtained 
from Schemes (b) and (c) can be analyzed as a mult iple-sample problem as described in LISREL 
VIII  (JOreskog & S0rbom, 1996), see also Lee and Tsui (1982). Under Scheme (a), the sample 
sizes of the components are unknown, hence the corresponding analysis is more difficult and 
has received the most attention in the literature. For brevity, we assume the observations are all 
obtained under the sampling Scheme Ca), but the proposed methodology can be extended easily 
to the general mixed sampling scheme by adding appropriate terms to the expressions. 

3. Bayesian Analysis  of the Model  

Let Oym be the vector of unknown parameters in Am and ~m, and O~m be the vector of 
unknown parameters in rim, Fro, qb2m and ~am. Let # ,  re, Oy and 0~ be the vectors that contain 
the unknown parameters in {#1 . . . . .  #M},  {rq . . . . .  rCM}, {Oyl . . . . .  OyM} and {0~1 . . . . .  O~M}, 
respectively; then 0 = (# ,  re, Oy, 0~ ). 

It is natural to introduce a group label zi for the ith observation Yi as a latent allocation 
variable,  and assume that it is independently drawn from the following distribution: 

p(z i  = m) = rCm, for m = 1 . . . . .  M. (5) 

Moreover, let Y = (Yl . . . . .  Yn) be the observed data matrix, X = (~1 . . . . .  ~n) be the matrix of 
latent vectors; and Z = (z l ,  . . . ,  zn) be the matrix of allocation variables. 
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In a standard Bayesian analysis, we require to evaluate the complicated posterior distribution 
p[O IY]. However, if Z is observed,- the component of every Yi can be identified and the mixture 
model becomes the familiar multiple group model. In addition, if X is observed, the LISREL 
model will become the linear simultaneous equation model which is also comparatively easy to 
handle. Hence, in our Bayesian analysis, the observed data Y will be augmented with the latent 
data X and Z in the posterior analysis. In the following, we will concentrate on p(O, X, ZIY), 
the posterior distribution of (0, X, Z) given Y. Since this distribution involves high dimensional 
integrals, direct evaluation of it is still intractable. Hence, a Gibbs sampler (Geman & Geman, 
1984) is used to generate a sequence of observations from p(O, X, ZIY), and the Bayesian so- 
lution is then obtained on the basis of this sequence of observations. The basic algorithm of the 
Gibbs sampler is briefly given as below. At the r-th iteration with current values 0 (r), X (r) and 
Z(r): 

Step (a): Generate (X (r+l), Z (r+l)) from p(X, ZIY, 0(~)); 

Step (b): Generate 0 (r+l) from p(O IY, X (r+l), Z(r+l)). 

Since p(X, ZIY, 0) = p(ZIY, 0)p(XIY, Z, 0), Step (a) can be further decomposed into the 
following two steps: 

Step (a.1): Generate Z (r+l) from p(ZIY, 0(r)); 

Step (a.2): Generate X (r+l) from p(XIY, 0 (r), Z(r+l)). 

Note that p(ZIY, 0) is simpler than p(ZIY, 0, X) and it does not involve X. 

3.1. ConditionaI Distributions 

Since 

it can be shown that 

I~I  n p(ZIY, 0) : p(zi  lYi, O) o( I-I  p(zi  I~)p(yi Izi, 0); 
i = l  i = l  

:rm fm (y/I/~m, era) 
p(zi = mlyi, O) = (6) 

f (y i lO)  

where fm (Yi libra, {Ira) is the probability density function of N[l~m, Nm (0m)]. Hence, simulating 
a Z from p(ZIY, 0 (r/) is not difficult. Because ~i are mutually independent and Yi are also 
mutually independent with given zi, we have 

n 

p(XIY, 0, Z) ~x p(YIX, Z,/~, Oy ) p(XIZ,  0~ ) = I-I  p(yi I~ i, zi, 1~, Oy ) p(~ i Izi, 0~ ). 
i=1 

- 1 T qj~ 1 Am ; it follows from the definition of the model that (also see Appendix Let fZm = E~m + A m 
A): 

- 1  T -1  p(~ilyi,  zi = m, i~, 0 r) ~ N [ ~  m Am ~ m (Yi -- tZm), ~ '2ml]  • (7) 

As a result, Step (a) can be completed on the basis of two simple and familiar distributions. 
As it stands, the conditional distribution p(O IY, X, Z) with given Y, X, and Z required in 

Step (b) of the Gibbs sampler is very complicated; however, this difficulty can be overcome by 
assuming the following mild conditions on the prior distribution of 0. Clearly, the prior distri- 
bution of the mixing proportion rc can be assumed to be independent with the prior distribu- 
tions of/~, Oy and 0~. Like many Bayesian analyses (see, among others, Arminger & Muth6n, 
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1998; Shi & Lee, 1998) the prior distribution of the mean vector # can be assumed to be in- 
dependent with the prior distributions of the parameters 0y and 0~ in the covariance structures. 
Moreover, when X is given, the parameters i n  Oym = {Am, ~m} are the only parameters in- 
volved in the linear regression model (2) with the manifest variables in y; while the parameters in 
O~m = {rein, Fro, dP2m, ~m} are the parameters involved in the other simultaneous equation model 
(3) with the latent variables. Hence, for convenience, we assume that the prior distributions of 
0y and 0~ are independent. Hence, p(O ) = p(re, #,  Oy, 0~ ) = p(re ) p ( #  ) p(Oy ) p(O~ ). Moreover, 
from the definition of the model and the properties of X, Z and 0, we have p(ZI0) = p(Zlre), 
p(X, YIZ, 0) = p(YIX, Z, #,  Oy)p(XlZ, 0~). As a result, the joint distribution of all these ran- 
dom quantities can be expressed as 

p(O, Z, X, Y) = p(O)p(ZlO)p(X,  YIZ, 0) 

= p(re)p(#)p(Oy)p(O~)p(Zlre)p(YlX,  Z, # ,  Oy)p(XlZ, 0~). (8) 

The prior distribution of re can be taken as the symmetric Dirichlet distribution; that is, 
re ~ D(o~, . . . ,  o~) with probability density function given by 

F (Mc~) c~ c~ 
P(re) = F(o~)M rel " ' ' reM, 

M nm where F(.) is the Gamma function. Since p(Zlre) c~ []m=l re,~ , it follows from (8) that the full 
conditional distribution for the weights in re remains Dirichlet in form: 

M 

p(rel') c, p(re)p(zlre) c, I-I re~m+~, (9) 
m = l  

where nm is the total number of i such that zi = m. Thus, P(rel') is distributed as D(a  + 
nl . . . . .  a + riM), see Gelman, Carlin, Stern and Rubin (1995). 

Let Ym and Xm be the respective submatrices of Y and X, such that all the ith column with 
zi ¢ m are deleted. It is natural to assume that for m /= m z, (#m, Oym, Oesm) and (#m' , Oym/ , Oesm/) 
are independent. Hence, from (8), we have 

M 

p (# ,  0y, 0~lY, X, Z) (x I - I  P(#m)p(Oym)p(Oesm)P(YmlXm' [dim, Oym)p(XmlOesm), (10) 
m = l  

and we can treat (10) separately with each m. With Z given, the original complicated problem 
of finite mixtures reduces to a much simpler multi-sample problem. If  there are no cross-group 
constraints, the analysis can be carried out separately with each individual sample. The EM 
algorithm (Jedidi et al. 1997a, 1997b) and the AS algorithm in Yung (1997) also have this feature. 

According to the suggestions given in Raiffa and Schlaifer (1961), Lindley and Smith 
(1972), Lee (1981), and Broemeling (1985), the following commonly used conjugate type prior 
distribution can be used in situations where we have rough ideas about the hyper-parameters: 

!O(#m) ~ g[#o ,  No], p(~mk 1) ~ F[O~0k, flOk], 

p(Aymkl~flmk) ~ N[Aomk, ~flmkHOmk], fork  = 1 . . . . .  p, (11) 

where F[o~ok, ~?ok] is the Gamma distribution with a shape hyper-parameter o~0k > 0 and a scale 
hyper-parameter/?Ok > 0 (see Zellner, 1971), and Aymk is a rink x 1 row vector that contains the 
unknown parameters in the k-th row of Am. The scalars O~0k, /?Ok and #o, the vector AOmk, and 
the matrices ttOmk and No are the hyper-parameters whose values are assumed to be given. For 
k 7 ~ h, it is assumed that (~mk, Aymk) and (g'mh, Aymh) are independent. It has been pointed out 
by the above cited work that the conjugate type prior distributions are sufficiently flexible in most 
applications; and for situations with a reasonable amounts of data available, the hyper-parameters 
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scarcely affect the analysis. In practice, the values of the hyper-parameters can be chosen on the 
basis of prior information obtained from previous experience or some preliminary data analyses. 

To identify the covariance model, some appropriate elements in Am may be fixed to pre- 
assigned known values. To cope with this situation, let Cym = (Cmkj) be the index matrix 

q 
such that Cmkj = 0 if '~mkj is known and Cmkj = 1 if ,kink j iS unknown, rink = ~ j = l  Cmkj; 

Xmk = (~,~k* . . . . .  ~/£'~'*) be a submatrix of Xm = (~/~ . . . . .  ~]m) such that all the j- th row with 

Cmkj = 0 are deleted; and Y~k = (Ymki1' " ' "  Ymkinm) with 

q 
Y*ki, = Ymki~ --/.Cmk -- ~.,;.mkj~J (l -- Cmkj). 

j=l 

T -1 -1 Let ~2mk = (Ho~k + XmkXmk) , Vmk = ~2mk[H~SmkAOmk + XmkYmk], and ~mk = fi0k + 
• --1 T T - 1  T - 1  2 (YmkYmk -- V;~k S2mk Vmk + A0mkH~kA0mk). Then, it can be shown that (see Appendix A) 
f o r k =  1 . . . . .  p, 

P(?'mk [Ym, Xm, ktm) "~ F[nm/2 + otOk, flmk], 

P(ArmklYm, Xm, '~b.z;t, /~m) ~ N[Vmk, Omk~2mk], (12) 

P(/~mlYm, Xm, Am, "Pro) ~ N[ (Eo  1 + f/m q/ml)-I (f/m~IJn~l'B'm q- ~]ol/~o), (]~o 1 -]- Y/mqJn~l)-l], 

where Ymk = g'~2, and B m =  Y-~i:zi=m (Yi -- Am~i) /nm with ~-,i:z~=m denotes the summation 
with respect to those i such that zi = oz. 

Consider the conditional distribution of ()~m that is proportional to p(Xm IO~m)p(O~m). Let 
T T Xm = (X~, r Xm, 2) where X,n,1 and X,r~,2 are the submatrices of Xm corresponding to ~ml 

and ~m2, respectively. Since the distribution of ~m2 only involves ~2m, we have p (Xm,2 IOta) = 
p(Xm,21 ~2m). Moreover, it is assumed that the prior distribution of ~2m is independent with the 
prior distribution of A~m = (rim, Fro) and ~Pem. It follows that 

p(XmlO~m)p(O~m) (x [p(Xm,l ]Xm,2, A~m, q%~)p(A~m, q~m)][p(Xm,2l~2m)P(Cb2m)]. 

Hence, the marginal conditional densities of (A~m, q2~m) and ~2m can again be treated sepa- 
rately. 

Following a standard Bayesian procedure, see also Arminger and Muthdn (1998); Shi 
and Lee (1998); we consider a conjugate type prior distribution for ~2m with p(cb~ -1) 
W[Ro, Po, q2], where W[.,., .] denotes the Wishart distribution with probability density func- 
tion proportional to (see Zellner, 1971) 

[Roi-Po/2[~221(Po-q2-l)/2exp(--ltrRoldP21), 

in which Po and the positive definite matrix Ro are the given hyper-parameters. It can be shown 
that (see Appendix A): 

T RO1), nm (13) P( gP2ralXm,2) "~" lW[(Xm,2Xm,2 + q- Po, q2], 

where I W[.,., .] denotes the inverted Wishart distribution with probability density function pro- 
portional to (see Zellner, 1971) 

,Xm,2Xm, 2T q_ RO 1 ,(nm+po)/2l~2ml-(nm+po+q2+l)exPl_~trdP2m(Xm,2Xm,2q_Rol)].l -1 T 

Similarly as before, the prior distributions of (~Pamk, A~mk) are taken as: 

p (@a-lk) ~ V [~0ek,/30ek l, P (A~mkl'@emk) ~ N [A0~mk, Oemk So~mk], (14) 
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where k = 1, . . . ,  ql, A~mk is a r~mk × 1 row vector that contains the unknown parameters in 
the kth row of A~m; ce0~k, fi0ak, A0~mk and Ho~mk are the given hyper-parameters. For h ¢ k, 
(Oamk, A~mk) and ('(~amh, A~mh) are assumed to be independent. To handle the fixed known 
parameters, let C~m = (Qmkj)  be the index matrix associated with A~m and similarly defined 
as before, X*e be the submatrix of Xm such that all the j th  row corresponding to Qmkj = 0 

, e  i I * into * 
deleted; and Xlmk = ( % , i n k , " ' ,  ~l,mk ) with 

i s *  is " " 
~l,me = ~l,mk -- E ) ~ m k J  ~ j  (1 - Qmkj) .  

j= l  

Then, it can be shown that for k = 1 , . . . ,  ql, 

p (A~mk lXm,  gZ~mk) ~ N[v~,~k, g'a,zk~2amk] 

and 

P(Vamk IXm, fi) ~ F [ n m / 2  + ceOak, fia.zk], (15) 

-1  y *  y * T ] - i  -1 , , 
where Vamk = ~£ri t ,  ~2amk = (HO~mk + ~-mk~-mk. , Vamk = ~2amk[HO~mkAO~ml: + XmkXlmk], 
and 

9-1[y*Tv.~lmk.~lmkY* V3mk~-23mkV3mkT - 1  fiamk = fiO,~k + -- + Ar~-mkH,;~lkaO~mk)..,, ., ,,~ 

Finally, it is noted that the conditional distributions given in (9) through (15) are familiar and 
simple distributions. The computational burden required in simulating observations from them 
is light, and the algorithm is rather efficient. Some derivations of  these conditional distributions 
are presented in the Appendix A. 

3.2. Remarks  

i. Labeling the components is an important issue in the estimation of  finite mixtures. Because 
our whole model is invariant with respect to permutation of the labels m = 1, . . . ,  M; for 
identifiability, it is important to adopt an unique labelling. Without loss of generality, we 
assume that the 1,1~ < "-- < I~M1, where #ml is the first element of  the mean vector 
#m.  Thus the joint prior distribution of # is subject to the above inequality constraints. 
According to the procedure given in Richardson and Green (1997), to preserve this constraint 
in the Gibbs sampler {#m> m = 1 . . . . .  M}, the full conditional is used only to generate a 
proposed observation. The proposed observation is accepted as a simulated observation only 
if the constraint is satisfied. 

ii. It has been pointed out (see Diebolt & Robert, 1994; Roeder & Wasserman, 1997) that us- 
ing fully noninformative prior distributions may lead to improper posterior distributions in a 
mixture context. So, most of the existing Bayesian analysis on mixtures of  the normal dis- 
tribution used the conjugate type prior distributions (see, e.g., Roeder & Wasserman, 1997). 
This is one of the motivations for our selection of  the coniugate prior distributions in the 
present analysis. 

iii. For the mixture model, it may be desirable to impose some simple constraints on the pa- 
rameters in 0. For example, it may be interesting to see whether Am, A~m, OP2m, q% and 
%,~ are invariant across all components in the model. Our methodology developed here can 
be extended to handle simple constraints by some minor modifications in defining the prior 
distributions and in deriving the conditional distributions. 

iv. For brevity, we do not introduce model to the mean vector. Extension of the proposed 
methodology to models with mean structures requires to incorporate in the Gibbs sampler 
an additional component that is induced by the corresponding additional parameters in the 
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mean structure. This can be done without much difficulty. Also, for brevity, the distribution 
of ~m2 is taken to be N[0, ~2m]. However, this assumption can be relaxed with the follow- 
ing minor modification of the proposed Gibbs sampler algorithm. Let ~m2 be partitioned 

into ( ~ r ,  ~m2e(2)rC: , where ~m2e(1) consists explanatory variables such as professional affilia- 

tion or gender which may be observed directly, and e(2) is a latent vector with distribution bin2 

e(1) will be treated as observed data, and only e(2) N[0, ~2mJ'm(2)~ Then in the Gibbs sampler, ~m2 ~m2 

is required to be simulated. The estimation of Fm and m ~2)~" will be the same as described in ~ 2 m  
section 3.1. 

4. Statistical Analyses 

4.1. Bayesian Es t imates  

It has been shown (Geman & Geman, 1984; Geyer, 1992) that under mild conditions and for 
sufficiently large j ,  say J,  the joint distribution of (0 (J), X (J), Z (J)) converges at an exponential 
rate to the desired posterior distribution [0, X, ZIY]. Hence, [0, X, ZIY] can be approximated by 
the empirical distribution of {(0 (t), X (t), Z (t)) : t = J + 1 . . . . .  J + T} where T is chosen to give 
sufficient precision to the empirical distribution. The convergence of the Gibbs sampler can be 
monitored by the "estimated potential scale reduction (EPSR)" values as suggested by Gelman 
and Rubin (1992). To obtain a more nearly independent sample, observations may be collected 
in cycles with indices t = J + c, J + 2 c , . . . ,  J + T c  for some spacing c (see Gelfand & Smith, 
1990). In most practical applications a small c will suffice for many statistical analyses such as 
getting estimates of the parameters and standard errors, see Zeger and Karim (1991), Albert and 
Chib (1993). 

For brevity, let {(0 (t), X (t), Z(t)), t = 1 . . . . .  T} be the random observations of (0, X, Z) 
generated by the Gibbs sampler from [0, X, ZIY]. The joint Bayesian estimates of 0, allocation 
variables in Z and the latent factors in X can be obtained easily via the corresponding sample 
means of the generated observations as follows: 

T T T 

t = l  t = l  t = l  

(16) 

Clearly, these Bayesian estimates are consistent estimates of the corresponding posterior means, 
see Geyer (1992). It is rather difficult to derive analytic forms for the covariance matrices 
Var(0 IY) and Var(~ i IY). However, their consistent estimates can be obtained as follows: 

T 

Var (~-OIY) = (T - 1) -1 ~-~(0 (t) - 0) (0  (t) - g)T,  

t = l  

(17) 

T 

Var (~-~/IY) : (T - 1) -1 E ( ~  i(t) -- U ) ( ~  i(t) -- ~i)r ,  
t = l  

i =  1 , . . . , n .  

Hence, the standard error estimates can be obtained conveniently by the Gibbs sampler algo- 
rithm. Theoretically, since they are coming from the sample covariance matrix of a sufficiently 
large number of random observations from the appropriate posterior distribution of the parameter, 
the effect of poor separation of components may not be as serious as in the maximum likelihood 
estimation. But, we need further theoretical or empirical evidence to draw more definite conclu- 
sion. Other statistical inferences on 0 or ~i, such as deriving the confidence intervals and the 
statistics for hypothesis testing can be achieved based on the simulated observations as well (see, 
e.g., Besag, Green Higdon & Mengersen, 1995; and Gilks, Richardson & Spiegelhalter, 1996). 
In small samples, the posterior distributions, especially for rrm, may be nonsymmetric. Under 
these situations, it may not be possible to construct confidence intervals. 
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4.2. Posterior Predictive p-Value 

Assessing the plausibility of a proposed model is always fundamental in data analysis. 
Based on the idea of posterior predictive assessment given in Rubin (1984) and Meng (1994), 
Gelman, Meng and Stein (1996) proposed an approach for model diagnosis in a Bayesian frame- 
work. It has been shown that (see Gelman et al., 1996, and the references therein) this approach 
is computationally and conceptually simple, and is very useful for a wide variates of complicated 
situations. Further, the required computation is a byproduct of the common Bayesian simula- 
tion procedure such as the Gibbs sampler. Hence, this procedt~e is applied here to establish a 
goodness-of-fit assessment for the posited model under the null hypothesis Ho that the true pop- 
ulation model is a M mixtures of the LISREL model as defined in (2) and (3). The posterior 
predictive p-value for our situation is defined as 

PB = Pr {o(yrePl0 , X, Z) > D(YIO, X, Z)IY, No}, 

= f I {D(yrePI0, X, Z) > D(YIO, X, Z)} p(yrep, 0, X, ZIY, Ho)dyrePdOdZdX, 

where I(.)  is an indicator function, yrep denotes a replication of Y and D(.I.) is a discrepancy 
variable. The probability is taken over the following joint posterior distribution of (yrep, 0, X, Z) 
given Ho and Y: 

p(yrep, 0, X, ZIY, Ho) = p(yrePl0, X, Z)p(0, X, ZIY). 

The discrepancy variable is taken as 

M 
D(yrePl0 , X, Z)  = ~ ~ (y~ep _ # m  - -  A m ~ i ) T * m l ( y ~  ep - -  # m  - -  A m ~ i ) ,  

m=l i:zi = m  

where the distribution of D(yrePl0, X, Z) is chi-square with pn degrees of freedom. The poste- 
rior predictive p-value based on this discrepancy variable is given by 

(Y) = f ~ O(YlO, x ,  z)} p(o, x,  zIY) dOdZdX. p/~ 

By the Rao-Blackwell theorem (see Mood, Graybill & Boes, 1974) 

Var I{D(yreP[O, X, Z) > D(YIO, X, Z)} 

>_ Var E[I{D(yrePlO, X, Z) > D(YI0, X, Z)}10, X, Z] 

= Vat g{X2(pn)  > D(YI0, X, Z)}. 

Thus, to obtain an estimate with smaller variation, we propose to use the following Rao- 
BIackwellized type estimate of PB (Y): 

T 

t=l  

The computation of/3B(Y) is straightforward, since D(YIO (t), X (t), Z (t) can be calculated in 
each iteration of the Gibbs sampler and the tail-area probability of x 2 distribution can be obtained 
in any standard statistical software. A too small (or too big) PB (Y), say less than 0.05 (or larger 
than 0.95), indicates the inadequacy of the posited model. See Gelman et al. (1996), and Meng 
(1994) for more detailed discussions about the theoretical and practical aspects of the posterior 
predictive p-value. 
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4.3. Bayesian Classification 

Apart from their role in facilitating computation, the allocation variables in Z also form a 
coherent basis for classification of the observations. Classification can either be addressed on a 
within-sample basis or a predictive basis. Using the 'percentage correctly classified' loss function 
(see Richardson & Green, 1997), the Bayes classification of an existing observation Yi and a new 
observation y* are respectively given by 

2i = argmaxm{Pr(zi = relY)} and 2" = argmaxm{Pr(z* = relY, y*)}. 

The posterior probabilities {Pr(zi = mlyJ ;  m = 1 . . . . .  M} can be directly estimated via the 
sample mean of the observations generated by the Gibbs sampler: 

T 
Pr(zi = r e l Y )  ~ T -1 E I(z}t) = F/l). 

t=l 

Predictive classification addresses the question of  classifying a new observation y*. Let the 
corresponding allocation variable be z*, the Bayes classification requires to compute Pr(z* = 
m IY, y*). Inclusion of  the additional datum theoretically changes the posterior distributions, and 
it seems that the simulation process should be rerun %r each new y*. This is obviously imprac- 
tical. So, we employ the following approximation: 

Pr(z* = relY, y*) = f , ( z ,  =  lo, y*)p(OIY, y*)dO ~ f p(z* = mlO, y*)p(OlY)dO; 

and estimate the last integral by the following sample average of the generated observations from 
the Gibbs sampler procedure: 

T Fjr(t). t, * (t) M )1 Pr(z* = r e l Y ,  y * ) ~  T - 1 E L ~  (, / E=,J, '> • 

t=l j= l  

4.4. Residual and Outlier Statistics 

The problem of residual and outlier analyses is thoroughly studied and reviewed by Barnett 
and Lewis (1984), Hawkins (1980), and Cook and Weisberg (1982), among others. Chaloner 
and Brant (1988) developed some Bayesian outlier statistics for the linear model based on the 
posterior distribution of the unobserved error terms. The residual estimates are the posterior 
means of the unknown random errors. For the normal linear model Yi = xT~ + q,  where Yi 
is the observed data, xi is the covariate, and ei is the residual with distribution N[0, a2];  the 
posterior probability POS(i; K) = Pr(l~i I / a  > K IY) is called the posterior outlier statistic for 
a fixed constant K. This constant may be chosen to be a familiar number such as 2.0, 3.0 or 
qD -1 (0.5 + 0.5(0.95)1/"), where qD(.) is the standard normal distribution function. It provides a 
formal method for identification of  outliers in normal linear model. 

In structural equation modeling, residuals and outliers are usually discussed in the sense 
that an estimated covariance term differs significantly from the empirical covariance term. As a 
complementary method, we now extend the approaches of  Chaloner and Brant (1988), Albert and 
Chib (1995), Chaloner (1991), and Weiss (1994) to the finite mixtures in the LISREL model. The 
essential idea is to define the residual as an unobserved random error and a particular observation 
whose residual is far from the corresponding expected value may be regarded as an outlier. The 
posterior probability can be directly estimated by using the observations {(0 (t), X (t), z(t)), t = 
1 . . . . .  T} generated by the Gibbs sampler. The ith observation is regarded as the outlier if the 
corresponding posterior probability is large. Informal identification of certain cases as outliers is 
usually suggested by the plots of residuals (see Weiss & Lazaro, 1992). More details are given 
as below. 
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Let e~ _-1/2~ = grmj  t Y i j  - -  # m j  - -  A m j ~ i ) ,  it can be seen from (2) and (3) that e~ can be treated 
as the standardized residual when conditional on zi = m.  An informal identification of outliers 
can be obtained by plotting the sample mean ~*j of e~ against i. The corresponding posterior 

outlier statistic is given by POSe (i, j ;  K) = Pr(l~l > KIY). The method described above for 
detecting univariate outliers requires the computation of n (p q- q) posterior outlier statistics in a 
data set. Computationally, this can be a moderate burden. An alternative way is to introduce the 
multivariate outlier statistics. For example, the following statistic 

POSe(i; Ki)  = Pr(¢*T ¢ * > K i l Y ) ,  (19) 

where e/* = (e*i . . . . .  e,p)T and Ki is some fixed constant, can be used. Conditional on the 

parameters, zi and ~i; e , T e ,  is distributed as a X2(p) distribution. So, it makes sense to choose 

Ki to be X2(p; 1 - q) for q = 0.01 or 0.05, where X2(p, 1 - q) is the 100(1 - q) percentile of 
)~ 2 (p). Another useful approach is to consider a single value summary measure of POSe (i, j ;  K);  
for example, we can introduce the following statistics: 

P 

POSe(i, + ;  K) = ~-~POSe(i, j ;  K), 
j = l  

POSe(i, max; K) = max POSe(i, j ;  K). 
i<_j<_p 

Again, observations with large POSe values can be identified as outliers. Finally, we can investi- 
gate the QQ plot of ~*j to check the assumption of the normality; and apply the above analyses 
with ~ and 3i. 

5. A Simulation Study and An Example 

5.1. Simulat ion Study 

Results of a simulation study will be presented to give some ideas on the performance of the 
proposed Bayesian approach. The data set is generated from a mixture of two LISREL models 
defined in (2) and (3). Each model involves six manifest variables which are related with three 
latent factors ~ml = @1), ~(2)), and ~m2 = ~(3) for m = 1, 2. The population values of the 
elements in A1, A2, II1 and II2 are taken as: 

[1.0 0.8* 0.0 0.0 0.0 0.0 I I 0 001 [ 2 001 A T = A T =  0.0 0.0 1.0 0.8* 0.0 0.0 , F I I =  F I 2 =  
0.0 0.0 0.0 0.0 1.0 0.8* 0.5* ' - 5* " 

In the estimation, the one's and zero's are treated as fixed known parameters, while the param- 
eters with asterisks are treated as unknown parameters. The true population values of the other 
unknown parameters are given by: ~1 = ~2 = (1.0), #1 = 0.0 x ./6, #2 = 2.0 x ./6, 0i i  = 
02i = 0.8 for all i = 1 . . . . .  6, Oaik = Oa2k = 1.0 for all k = 1,2, Fi = [0.6,0.6] r ,  F2 = 
[0.6, -0 .6 ]  r ,  where ./6 is a 6 x 1 vector with all elements equal to 1. The following two designs 
with various mixing proportions are considered: {zq = 0.5, zr2 = 0.5}; and {zO = 0.3, zr2 = 
0.7}. For each design, we have a 2-mixtures of LISREL model with 40 unknown parameters. 
Sample sizes n = 400 and 800 were selected, and 100 replications were completed for each 
combination. 

Two Bayesian estimates with the following prior distributions were obtained via our ap- 
proach: (I) Estimates based on conjugate priors with hyper-parameters {Aomk, A0~mk} fixed at the 

true values; c~ = 1, #o = Y, Go = Sy/2 ,  Po = 5, Ro  I = [5.0], c~ok = c~o~k = 10,/?ok = flock = 8 
for all k; Homk = I and Ho~mk = I for all m and k, where y and Sy are the sample mean and the 
sample covariance matrix of the simulated data. This can be regarded as a situation with good 
prior information. (II) Estimates based on conjugate priors with hyper-parameters {Aomk, A0~mk } 
equal to 2.0 times the true values; other hyperparameters are fixed at the same values as in (I). 
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The starting values of the unknown parameters are given by: :rl = zc2 = 0.5, qbl = qb2 = 

2.0, /~1 = 0.0 × J6,/*2 = 3.0 × ,/6, @li = ~2i = 1.2 for i = 1 . . . . .  6, 1balk = lba2k = 1.2 
for k = 1, 2, F1 = [1.0, 1.0] r ,  ]72 = [1.0, - 1 . 0 ]  T, and Al i j  = A2ij = 0.0 for all the unknown 
parameters in As and A2. We first conducted a few test runs as a pilot study to obtain some idea 
about the number of  the Gibbs sampler iterations in getting convergence. We found that in all 
these runs, the Gibbs sampler converged in about 500-1000 iterations, where the ESPR values 
(Gelman & Rubin, 1992) are less than 1.2. So, for the 100 replications in the simulation, random 
observations were collected after J = 1000 iterations. Then, a total of  an additional 3000 obser- 
vations were collected to produce the Bayesian estimates and their standard error estimates via 
(16) and (17). On the basis of  the 100 replications, the mean and the standard derivations (SD) 
of  the estimates, as well as the mean of  the standard errors estimates (SE) were computed. More-  
over, the bias which is the difference of  the true parameter and the mean of the corresponding 
estimates, and the root mean squares (RMS) between the estimates and the true values based on 
the 100 replications were computed. The results for :rl = 0.5 are reported in Tables 1 and 2; to 
save space, the similar results with :rl = 0.3 are not reported. Here, the sums of  the RMS across 
the estimates are presented in the last row. We have the following findings from these tables: 
(i) As expected, Bayesian estimates with more accurate priors are better, but the differences are 
not significant. Hence, it seems that the requirement of accurate hyperparameters values is not 
crucial in the Bayesian analysis. This agrees with the results in the Bayesian literature, see, for 
example, Lindley and Smith (1972). (ii) Both Bayesian estimates are reasonably accurate. (iii) 
As expected, increasing the sample size improves the accuracy of the estimates and reduces the 
differences between the two types of Bayesian estimates. (iv) In most cases, the SE values are 
slightly smaller than the SD values. As pointed out by Dolan and van der Maas (1998), this minor 
difference may due to the difference in the model that featured in the simulation study. However, 
the SE and SD values are quite close to each other, this indicates that the standard error estimates 
produced by the proposed procedure are reasonable. 

Al l  computations are performed using a Sun Enterprise 4000 server. For N = 400, the 
average computing time over the four designs with different zc and prior distributions is about 
292 minutes for 100 replications; while for N = 800, the corresponding average computer t ime 
is about 640 minutes. 

5.2. An Example on "Job" and "Homelife" 

A small portion of  the ICPSR data set collected in the project W O R L D  VALUES SURVEY 
1981-1984 AND 1990-1993 (World Value Study Group, ICPSR Version) is analyzed in this 
example. The whole data set was collected in 45 societies around the world on broad topics 
such as work, the meaning and purpose of  life, family life and contemporary social issues. As 
an illustration of  our proposed method, only the data obtained from the United Kingdom with 
sample size 1484 were used. Eight variables in the original data set (variables 116, 117, 180, 132, 
96, 255, 254 and 252) that related with respondents '  job  and homelife were taken as manifest 
variables in y = (3A . . . . .  yS) r ,  see Appendix B. These variables were measured in a 10 points 
scale and hence were treated as continuous in this illustration. For brevity, observations with 
missing data were deleted and the remaining sample size is 824. The data set was first analyzed 
with a regular LISREL model with three latent variables which can be roughly interpreted as 
"job satisfaction, ~1 (1)", "homelife, ~2 (1)" and "job attitude, ~2 (2)". The specification of the 
parameter matrices in the LISREL formulation are given by: H = 0, g'a = Oa, F = (vii, r21), 

L F)vll )v21 0.0 0.0 0.0 0.0 0.0 0.0] Lq ~2aFq~aa q)22]q)121 
A T =  |0 .0  0.0 )v32 )v42 )v52 0.0 0.0 0.0 , (I)2= 

0.0 0.0 0.0 0.0 0.0 )~63 ) ,73  ~.s3 

and % = diag(lbell  . . . . .  loess). To identify the model, )Vll , )v32 , and )v63 w e r e  restricted at 1.0, 
and all the zero elements in A and the off diagonal elements of ~ were also fixed. From the 
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TABLE 1. 
Summaa'y statistics for Bayesian estimates (I) with 7r I = 0.5 

N = 400 N = 800 

Para. Bias  SE SD RMS Bias SE SD RMS 

re 1 = 0.5 0.01 0.05 0.04 0.05 0.01 0.03 0.03 0.03 

rr 2 = 0.5 0.01 0.05 0.04 0.05 0.01 0.03 0.03 0.03 

qb I = 1.0 0.09 0.24 0.25 0.26 - -0 .07  0.17 0.19 0.18 

~ 2  = 1.0 0.08 0.21 0.21 0.23 - -0 .06  0.15 0.16 0.16 

bt l (1)  = 0.0 0.03 0.16 0.15 0.16 0.01 0.11 0.11 0.11 

# 1 ( 2 )  = 0.0 0.05 0.14 0.13 0.15 0.01 0.10 0.10 0.10 

pt l (3 ) = 0.0 0.05 0.19 0.18 0.20 0.01 0.14 0.13 0.14 

tJ1(4) = 0.0 0.06 0.16 0.16 0.18 0.01 0.13 0.12 0.13 

/~1(5) = 0.0 0.02 0.14 0.13 0.14 - -0 .00  0.11 0.10 0.11 

t~1(6) = 0.0 0.04 0.13 0.13 0.14 0.00 0.09 0.09 0.09 

/~2(1) = 2.0 0.02 0.13 0.12 0.13 0.00 0.08 0.09 0.08 

# 2 ( 2 )  = 2.0 0.01 0.10 0.11 0.10 0.00 0.09 0.08 0.08 

# 2 ( 3 )  = 2.0 - -0 .02  0.14 0.14 0.14 0.00 0.09 0.09 0.09 

# 2 ( 4 )  = 2.0 --0.01 0.12 0.12 0.12 0.00 0.08 0.08 0.08 

# 2 ( 5 )  = 2.0 0.03 0.11 0.12 0.12 0.00 0.08 0.08 0.08 

# 2 ( 6 )  = 2.0 0.02 0.10 0.11 0.10 0.00 0.08 0.08 0.08 

O~I(1)  = 1.0 - -0 .09 0.13 0.18 0.16 - -0 .09  0.12 0.14 0.16 

0~1(2)  = 1.0 - -0 .09 0.13 0.19 0.16 - -0 .08  0.15 0.15 0.16 

~ 2 ( 1 )  = 1.0 --0.11 0.14 0.18 0.18 - -0 .08  0.12 0.14 0.15 

~ 2 ( 2 )  = 1.0 - -0 .12  0.15 0.19 0.19 - -0 .07  0.14 0.16 0.15 

g ' l ( 1 )  = 0.8 0.06 0.12 0.15 0.14 0.06 0.10 0.12 0.12 

g '1(2)  = 0.8 --0.03 0.09 0.12 0.10 - -0 .02  0.08 0.10 0.09 

g '1(3)  = 0.8 0.06 0.13 0.16 0.14 0.03 0.09 0.13 0.09 

g '1(4)  = 0.8 --0.01 0.10 0.13 0.10 - -0 .02  0.08 0.10 0.08 

q-'l (5) = 0.8 0.09 0.11 0.15 0.14 0.06 0.11 0.12 0.13 

q q ( 6 )  = 0.8 --0.03 0.09 0.12 0.09 --0.01 0.09 0.09 0.08 

q-'2(1) = 0.8 0.05 0.12 0.15 0.13 0.05 0.11 0.12 0.13 
vP2(2 ) = 0.8 0.00 0.10 0.12 0.10 0.00 0.09 0.10 0.08 

4 2 ( 3  ) = 0.8 0.03 0.12 0.16 0.13 0.04 0.12 0.13 0.11 

tP2(4 ) = 0.8 0.01 0.09 0.13 0.(i)9 0.00 0.08 0.11 0.08 

q '2(5) = 0.8 0.06 0.12 0.15 0.14 0.04 0.10 0.11 0.10 

tP2(6 ) = 0.8 0.00 0.10 0.12 0.10 - -0 .02  0.08 0.09 0.08 

A1(2 ,  1) = 0.8 0.07 0.09 0.12 0.11 0.06 0.08 0.09 0.10 

A1(4 ,  2) = 0.8 0.04 0.08 0.10 0.08 0.02 0.06 0.07 0.07 

A1(6 ,  3) = 0.8 0.11 0.15 0.17 0.18 0.08 0.13 0.12 0.15 

A2(2 ,  1) = 0.8 0.03 0.09 0.11 0.09 0.04 0.08 0.08 0.09 

A2(4 ,  2) = 0.8 0.01 0.07 0.08 0.07 0.02 0.05 0.06 0.06 

A2(6,  3) = 0.8 0.08 0.12 0.14 0.14 0.07 0.09 0.10 0.12 

FIl(2,  1) = 0.5 0.01 0.16 0.16 0.16 0.04 0.12 0.11 0.12 

F I ( 1 ,  1) = 0.6 0.06 0.19 0.18 0.20 0.03 0.12 0.12 0.12 

F1(2,  1) = 0.6 0.06 0.24 0.23 0.24 0.04 0.15 0.15 0.16 

FI2(2, 1) = - 0 . 5  - 0 . 0 2  0.17 0.18 0.17 - 0 . 0 2  0.12 0.11 0.12 

F2(1,  1) = 0.6 0.10 0.15 0.16 0.18 0.03 0.11 0.10 0.11 

F2(2,  1) = - 0 . 6  - 0 . 1 1  0.21 0.24 0.24 - 0 . 0 4  0.14 0.15 0.15 

R M S  6.22 4.73 
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TABLE 2. 
Summary statistics for Bayesian estimates (II) with yr I = 0.5 

N = 400 N = 800 

Para. Bias  SE SD RMS Bias SE SD RMS 

Jr 1 = 0.3 0.01 0.05 0.04 0.05 0.01 0.04 0.03 0.04 

7r 2 = 0.7 - 0 . 0 1  0.05 0.04 0.05 - 0 . 0 1  0.04 0.03 0.04 

qb 1 = 1.0 - -0 .14  0.23 0.25 0.27 - -0 .08  0.20 0.19 0.21 

qb 2 = 1.0 - -0 .18 0.18 0.20 0.26 - -0 .12  0.16 0.15 0.20 

/~1(1) = 0.0 0.04 0.13 0.15 0.14 0.01 0.13 0.11 0.13 

/~1(2) = 0.0 0.05 0.14 0.14 0.15 0.02 0.12 0.10 0.12 

/~1(3) = 0.0 0.06 0.20 0.19 0.21 0.03 0.15 0.13 0.15 

/~1(4) = 0.0 0.06 0.18 0.17 0.19 0.04 0.13 0.12 0.13 

/~1(5) = 0.0 --0.01 0.14 0.14 0.14 0.01 0.10 0.10 0.10 

/~1(6) = 0.0 0.03 0.14 0.13 0.14 0.02 0.10 0.09 0.10 

/~2(1) = 2.0 0.00 0.13 0.13 0.13 0.02 0.09 0.09 0.09 

/~2(2) = 2.0 - -0 .00 0.11 0.12 0.11 0.01 0.08 0.08 0.08 

/~2(3) = 2.0 --0.03 0.12 0.14 0.13 - -0 .02  0.10 0.09 0.10 

/~2(4) = 2.0 --0.03 0.11 0.12 0.12 - -0 .02  0.07 0.08 0.07 

/~2(5) = 2.0 0.05 0.13 0.12 0.14 0.02 0.08 0.08 0.08 

/~2(6) = 2.0 0.01 0.10 0.11 0.10 0.03 0.08 0.08 0.09 

O/~I(1) = 1.0 --0.11 0.16 0.18 0.20 - -0 .07  0.12 0.15 0.14 

0~1(2)  = 1.0 - -0 .12  0.15 0.18 0.19 - -0 .06  0.13 0.15 0.14 

~/~2(1) = 1.0 --0.11 0.13 0.18 0.17 - -0 .09  0.11 0.14 0.14 

~/~2(2) = 1.0 - -0 .09 0.14 0.20 0.17 - -0 .09  0.14 0.16 0.17 

4 1 ( 1  ) = 0.8 0.08 0.12 0.15 0.15 0.06 0.10 0.13 0.12 

4 1 ( 2  ) = 0.8 - -0 .02  0.10 0.13 0.10 0.00 0.08 0.10 0.08 

4 1 ( 3  ) = 0.8 0.08 0.13 0.16 0.15 0.04 0.10 0.13 0.11 

4 1 ( 4  ) = 0.8 --0.03 0.10 0.13 0.10 --0.01 0.08 0.10 0.08 

4 1 ( 5  ) = 0.8 0.11 0.12 0.15 0.17 0.08 0.12 0.12 0.14 

4 1 ( 6  ) = 0.8 - -0 .04  0.10 0.12 0.11 - -0 .02  0.08 0.09 0.08 

4 2 ( 1  ) = 0.8 0.06 0.11 0.15 0.12 0.04 0.11 0.12 0.12 

4 2 ( 2  ) = 0.8 --0.03 0.09 0.13 0.10 --0.01 0.08 0.10 0.08 

4 2 ( 3  ) = 0.8 0.02 0.11 0.16 0.12 0.03 0.11 0.13 0.11 

4 2 ( 4  ) = 0.8 - -0 .00 0.09 0.13 0.09 --0.01 0.09 0.10 0.09 

4 2 ( 5  ) = 0.8 0.09 0.11 0.15 0.14 0.08 0.11 0.11 0.13 

4 2 ( 6  ) = 0.8 - -0 .02  0.11 0.12 0.12 --0.01 0.09 0.09 0.09 

A1(2,  1) = 0.8 0.09 0.11 0.13 0.14 0.04 0.09 0.10 0.10 

A1(4,  2) = 0.8 0.03 0.08 0.10 0.09 0.03 0.06 0.07 0.07 

A1(6,  3) = 0.8 0.16 0.19 0.18 0.24 0.09 0.11 0.13 0.14 

A2(2,  1) = 0.8 0.07 0.10 0.11 0.13 0.04 0.07 0.08 0.08 

A2(4,  2) = 0.8 0.03 0.08 0.09 0.08 0.02 0.05 0.06 0.05 

A2(6,  3) = 0.8 0.13 0.14 0.16 0.20 0.09 0.10 0.11 0.14 

FII(2, 1) = 0.5 0.02 0.15 0.17 0.15 0.02 0.11 0.12 0.11 

F I (1 ,  1) = 0.6 0.10 0.17 0.19 0.20 0.06 0.12 0.13 0.13 

F1(2,  1) = 0.6 0.15 0.23 0.24 0.27 0.06 0.15 0.16 0.16 

FI2(2, 1) = - 0 . 5  0.02 0.17 0.18 0.17 0.01 0.12 0.12 0.12 

F2(1,  1) = 0.6 0.12 0.17 0.18 0.21 0.06 0.13 0.12 0.14 

F2(2,  1) = - 0 . 6  - 0 . 1 4  0.20 0.26 0.25 - 0 . 1 2  0.16 0.17 0.20 

y~ R M S  6.66 4.99 
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maximum likelihood solution obtained via the regular LISREL VIII (Ji3reskog & Si3rbom, 1996) 
program, the chi-squared goodness of fit statistic was equal to 34.46 with 16 degrees of freedom. 
The corresponding p-value is about 0.008. Hence, the model fit statistic is significant at 0.05 
level. However, this conclusion may be misleading since there might be more than one single 
component involved. 

This data set was reanalyzed via a 2-mixtures of the LISREL model, where the model for 
each component is defined as above. The total number of unknown parameters is 62. Bayesian 
estimates of the structural parameters and direct estimates of the factor scores were obtained 
via the Gibbs sampler. The following hyper-parameters were selected: o~ = 1, #o = Y, ~o = 

Sy/2.0, po = 5 a n d R o  1 = 512;O~0k = o~0ak = C/0k = C/0ak = 6 for a l lk ;  HOmk = I and 

HOfmk = I, AOmk = fkOmk, AOfmk = fkOfmk for all m and k, where ]~Omk and ]~O~mk are 
obtained by some initial runs of the Gibbs sampler with the prior hyper-parameters fixed at the 
LISREL solution as discussed above. Based on different starting values of the parameters, three 
parallel sequences of observations were generated and the EPSR values were calculated. Figure 1 
presents the plots of the EPSR values against the iteration numbers. We observed that the EPSR 
values of the parameters at the starting points were quite large, this indicates that the starting 
values are far away from the solution. The Gibbs sampler algorithm converged after about 1000 
iterations. After the convergence of the Gibbs sampler, a total of M = 1000 observations with 
c = 10 were collected for analysis. The Bayesian estimates of the structural parameters and 
their standard errors estimates with the following starting values are reported in Table 3: rq = 
rr2 = 0.5, Ali j  = A2ij = 0.0 for all unknown parameters in A1 and A2, #1 = 0.0 x Js, #2 = 

10.0 x ./6, 0eli = 0e2i = 1.0 for i = 1 . . . . .  8, F1 = F2 = (1.0, 1.0), qbl = qb2 = 12 and 
Ola = O2a = 1.0. The posterior predictive p-value was equal to 0.41, indicating the proposed 
model fits the data well. From Table 3, it can be seen that there are clearly two components which 
have quite different Bayesian estimates for some of the parameters. 

Following the suggestion of a reviewer to give a comparison between the Bayesian estimates 
and the ML estimates, we implemented the EM algorithm proposed in Yung (1997) to reanalyze 
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FIGURE 1. 
EPSR values of all parameters from three parallel runs in the ICPSR example. 
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TABLE 3. 
Estimales and standard errors estimates of the ICPSR example 

Bayesian estimate ML estimate 

Component 1 C o m p o n e n t  2 C o m p o n e n t  1 C o m p o n e n t  2 

Parameter EST SE EST SE EST SE EST SE 

rc 0.56 0.03 0.44 0.03 0.57 0.04 0.43 0.04 

]z 1 6.91 0.12 8.09 0.09 6.91 0.19 8.10 0.12 
#2 6.30 0.15 7.90 0.14 6.32 0.21 7.89 0.15 
#3 5.87 0.14 7.83 0.11 5.89 0.19 7.81 0.09 
#4 7.83 0.10 8.70 0.(i)7 7.85 0.15 8.69 0.06 
1~5 7.10 0.11 8.08 0.08 7.11 0.17 8.08 0.06 
#6 5.42 0.14 4.01 0.16 5.43 0.15 3.98 0.13 
#7 4.06 0.13 3.61 0.14 4.06 0.14 3.59 0.13 
#8 5.59 0.14 4.61 0.14 5.59 0.15 4.60 0.14 

L l l  1'  - 1" - 1 '  - 1 '  - 

,k21 0.49 0.11 0.86 0.13 0.38 0.07 0.73 0.19 
,L32 1 '  - 1 '  - 1" - 1'  - 
,L42 1.30 0.17 0.94 0.10 1.21 0.17 0.99 0.12 
,L52 1.58 0.20 1.02 0.11 1.53 0.15 1.07 0.15 
,L63 1 '  - 1 '  - 1 '  - 1 '  - 
,L73 2.05 0.44 0.98 0.07 2.02 0.35 0.95 0.09 
,L83 1.08 0.27 0,74 0.08 1.05 0.14 0.72 0.08 

Vll 0.68 0.14 0.77 0.11 0.65 0.13 0.83 0.11 
v12 -0 .02  0.15 -0 .09  0.04 -0 .02  0.16 -0 .10  0.04 

~bll 1.18 0.26 0.90 0.18 1.25 0.24 0.86 0.21 
q}21 -0 .12  0.08 -0 .28  0.15 -0 .13  0.08 -0 .27  0.15 
q522 0.92 0.30 4.30 0.52 0.87 0.31 4.49 0.71 

~ 3.38 0.72 0.70 0.12 4.61 0.58 0.83 0.27 

~e 11 1.56 0.65 0.56 0.11 0.43 0.24 0.26 0.24 
~e22 6.92 0.50 2.80 0.34 7.22 0.53 2.21 0.40 
~E33 4.87 0.37 1.35 0.18 4.91 0.36 1.43 0.28 
~e44 2.51 0.27 0.45 0.06 2.63 0.29 0.37 0.10 
~e55 1.29 0.27 0.55 0.08 1.16 0.44 0.48 0.11 
~ 6 6  6.31 0.50 1.25 0.35 6.42 0.51 1.07 0.55 
~E77 2.43 0.76 1.07 0.23 2.52 1.26 1.05 0.47 
~'e88 6.39 0.57 3.15 0.41 6.56 0.61 3.17 0.43 

the data set. The  standard error est imates of  the M L  est imates were  computed  via the "miss ing  

informat ion  pr incip le"  (Louis,  1982), with the expectat ions  evaluated using 10000 s imulated 

observat ions f rom the appropriate poster ior  distributions. For  the present  model ,  c losed form 

solution for the M-s tep  can be  obtained. The  E M  algor i thm converged in about  599 iterations to 

the M L  solution given in Table 3. Except  the es t imate  of  ~ 1 1 ,  the M L  est imates are quite c lose 

to the Bayesian estimates.  The  standard errors est imates obtained by these two approaches are 

also quite  similar in most  cases. 

For  the residual and outlier analysis, all the posterior  outlier statistics were  calculated with 

K = 3.0. A few selected observat ions with large POSE (i, j ;  3.0) values are presented in Table 

4. F r o m  this table, it can be  seen that the observat ion with i = 271 is a possible  outlier, because  

POS~ (i, j ;  3.0) is larger than 0.50 and its corresponding POS~ (i; K1) is also very  large, where  

K1 is the 99 percent i le  of  X 2. Further  interpretation and discussion are not  reported to save space. 
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TABLE 4. 
The posterior outlier statistics for the ICPSR example 
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Observation POSe (i, j ;  3) 
numberi j =  1 j = 2  j = 3  j = 4  j = 5  j = 6  j = 7  j = 8  POSe(i; 20.09) 

26 0.07 0 0 0.02 0.01 0 0.04 0 0.66 
130 0 0 0 0.42 0.06 0 0 0 0.14 
199 0 0.20 0 0 0 0 0 0 0.10 
219 0 0 0 0 0 0 0 0.02 0.21 
262 0 0 0 0.14 0 0 0 0 0.69 
271 0.01 0 0 0.17 0.70 0 0 0 0.94 
400 0 0 0 0 0 0 0 0.50 0.14 
424 0 0 0 0.03 0.47 0 0 0 0.35 
428 0 0 0 0 0.02 0 0 0 0.61 
433 0.01 0.01 0 0.04 0.07 0 0 0 0.39 
693 0.01 0 0 0 0 0 0 0.22 0.12 
724 0.15 0 0 0 0 0 0 0 0.11 

6. Discussion 

Bayesian analysis of structural equation models has received a lot of attention recently. For 
example, Scheines, Hoijtink, and Boomsma (1999) discussed a Bayesian statistical inference 
about a covariance structure via posterior analysis on the basis of the sample covariance matrix. 
They also used the Gibbs sampler to get the estimates and the posterior predictive p-value to test 
the goodness-of-fit  of the posited model. Since their basic model  is not a finite mixtures, the un- 
derlying development is less complicated. In addition to Scheines et al. (1999), see Arminger  and 
Muthdn (1998), and Zhu and Lee (1999) for more sophisticated Bayesian analysis of nonlinear 
models, and Shi and Lee (1998) for models with continuous and polytomous variables. 

This paper develops a Bayesian approach to analyze a finite mixtures in a LISREL model. It 
is shown that the algorithm on the basis of the Gibbs sampler is feasible in obtaining the Bayesian 
solution. In addition to the point estimate of 0, the Gibbs sampler provides useful information 
to conduct conveniently other statistical inferences; such as the direct estimation of the latent 
variables, the goodness-of-fit  assessment of the posited model, Bayesian classification, residuals 
and outlier analyses. However, it is not our intention to conclude that the Bayesian approach 
with the Gibbs sampler is better than the maximum likelihood approach with the EM algorithm 
or other optimization procedures. To draw such a conclusion, it requires more theoretical and 
empirical comparisons on various aspects of the approaches which are beyond the scope of this 
paper. For this complicated model, there remains many open problems for future research. For 
example, for various algorithms, it is worthwhile to study the robustness to starting values and 
their performances under poor separation of components.  Another important but difficult problem 
is on analyzing models with an unknown number of components.  

Appendix A: Derivation of the Conditional Distributions 

From (2) and (4), it is easily seen that 

-- 2~ A m~m (Yi I~m) p (~ i ly i , z i=m, l~ ,Oy)  c~exp - ~  ~ i r ( E ~ l + A m  - , 

which is a normal distribution, N [~m 1A T ~m 1 (Yi - I~m), ~2m 1 ]. 
Using the l ikelihood function of Ym, we obtain 

{ 1 [(l~m - I~o)rEol(l~m - I~o) p(l~ml') c~ exp - 2  
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{ - /  -- 2/~m(]~ 0 /~0 q-nmBm)]  , = exp - ~ [ l ~ m ( ~ o  1 + nm~ml ) t zm  T -1 

which is a normal distribution as described in (12). Moreover, the exponential term in 
P(Ym II~m, Am,  ~m,  Xm) can be written as 

(Yi -- tZm -- Am~i )T  ~ m l ( y i  -- tZm -- Am~ i) 
Zi =t1~t 

P 
= y ~  y ~  - 1  A T ~ i , 2  

Omk (Yki -- I~mk -- *'ink', J 
k = l  Zi = m  

P 

* ~ y m k b k  ~' 

k = l  Zi = m  

= ~_, ~b~z 1 Y[~? - 2AyTk  ~ Y k i k  q-tr AymkAymk ~ k k 
k = l  I Z i  = m  Zi = m  Zi = m  / I 

P 

= Om~ Y m k y T k  -- 2AymkXmkYmk q- AymkXmkXmkAymk • 
k=l 

Therefore, it follows that 

P 
- 1  

p ( A y m ,  ~ m  1lYre, Xm,/~m) = I - I  p(Aymk,  ~mk lYre, Xm,/~m) 
k= l  

l [  / 1 }1 oc r-I  gmk exp{--fikgmk} gr~k/2exp • -- Vmk) ~2mk(Aymk -- Vmk) • -- "~ Ymk ( A ymk T -1 
k = l  

Thus, the full distributions for (Aymk, gmk) are the Normal -Gamma distribution (Broemeling, 
1985). 

From the prior distribution of (I)~ 1 and the distribution of Xm,2, it can be shown that 

1 -1 T Rol)]]  p (qb m INto,2) o( I qbm I -(nmq-pOq-q2q-1)/2 exp {-- ~tr[qb m (Xm,2Xm, 2 q- . 

T Hence, p (qbm IXm,2) is distributed as IW[(Xm,2Xm,  2 q- Rol ) ,  nm q- Po, q2]. It can be shown from 
exactly the same reasoning as before that the full conditional distributions for (O~mk, A;mk)  are 
distributed as given in (15)• 

Appendix B: Manifest Variables in the ICPSR Example 

The number of the variable corresponding to the original data set is given in parenthesis at 
the end of each statement• 

yl:  Overall, how satisfied or dissatisfied are you with your job? (V116) 
y2: How free are you to make decisions in your job? (V117) 
y3: Overall, how satisfied are you with your home life? (V 180) 
y4: How satisfied are you with the financial situation of your household? (V132) 
yS: All things considered, how satisfied are you with your life as a whole in these days? 

(V96) 
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y6: In the long run, hard work usually bring a better life. (V255) 
y7: Competition is good. It simulates people to work hard and develop new ideas. (V254) 
y8: Individual should take more responsibility for providing for themselves. (V252) 
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