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A special rotation procedure is proposed for the exploratory dynamic factor model for stationary 
multivariate time series. The rotation procedure applies separately to each univariate component series 
of a q-variate latent factor series and transforms such a component, initially represented as white noise, 
into a univaxiate moving-average. This is accomplished by minimizing a so-called state-space criterion 
that penalizes deviations of the rotated solution from a generalized state-space model with only instanta- 
neous factor loadings. Alternative criteria are discussed in the closing section. The results of an empirical 
application are presented in some detail. 
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Application of the common factor model to multivariate time series obtained from a single 
case (subject, system) has been established in the psychological literature for over half a century 
(e.g., P-technique factor analysis, Cattell, Cattell, & Rhymer, 1947). One also finds related ap- 
plications in the social science literature (Engle & Watson, 1981; Geweke & Singleton, 1981). It 
has also long been known that adaptations of the traditional common factor model are required 
in order to exploit the riches of time series data, for example, to explain the lagged covari- 
ance structure of manifest variables (Anderson, 1963; Cattell, 1963; Holtzman, 1963). Molenaar 
(1985) introduced a dynamic factor model that can handle stationary time series and can be fit- 
ted by means of standard structural equation modeling (SEM) software (see also Nesselroade & 
Molenaar, 1999; Wood & Brown, 1994). Although these more advanced modeling techniques 
have been in existence now for well over a decade, their ability to accommodate some of the 
more subtle features of factor analysis, especially exploratory factor analysis, has been greatly 
limited. In this article we will address one of the classical exploratory factor analysis problems 
rotation by presenting a special form of rotation for exploratory dynamic factor analysis. 

On the one hand, the rotation method we present is special in that it applies separately to 
each of the q univariate latent factor series in a dynamic q-factor model. In particular, the method 
applies to a dynamic 1-factor model and hence involves a kind of rotation for which there is 
no analog in traditional factor analysis. On the other hand, our rotation method accomplishes 
two results that are in keeping with those of rotation in traditional exploratory factor analysis. 
First, the rotation "simplifies" the factor loading pattern. Second, the accompanying implied 
transformation of the factor scores induces properties into the latter that render them compatible 
with the new loading pattern. To denote the fact that the transformation we develop and apply 
is, strictly speaking, not a rotation of axes in the usual factor analytic sense, we will consistently 
refer to it as a special rotation. A merit of our proposal is that the properties induced into the 
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implicit factor scores obviates some criticisms of the way they are specified in Molenaar's (1985) 
dynamic factor model. 

1. Statement of  the Problem 

Let y(t) be a p-variate stationary time series with mean function E[y(t)]  = Cy and lagged 
covariance function cov[y(t), y(t + u)] = Cy(u), u = 0, ±1 . . . .  (bold lowercase letters denote 
column vectors and bold uppercase letters denote matrices and operators). Consider the following 
dynamic q-factor model for y(t), following the notation in (Molenaar, 1985): 

s 

y(t) = ~ A(u)rl( t  - u) + e(t), 
u = 0  

(1) 

s where ~ = o  denotes summation over the index u = 0, 1 . . . . .  s, A(u) is a sequence of s -}- 1 
lagged (p, q)-dimensional matrices of factor loadings, ~(t)  is a q-variate, zero-mean latent 
factor series with covariance function covDl(t), rl(t + u)] = tI~(u), u = 0, +1 . . . . .  and 
e(t) is a p-variate, zero-mean measurement error series with covariance function cov[e(t),  
e(t + u)] = diag O(u),  u = 0, ±1 . . . . .  That O(u)  is defined as a diagonal matrix implies that 
the p univariate component series in e(t) have arbitrary lagged autocovariances, but lack any 
cross-covariances. 

Molenaar (1985) proved that the latent factor covariance function R~(u) is not identified if 
the sequence of lagged factor loadings A(u) is unconstrained. In contrast, it was also proved that 
if s, the maximum lag in (1), is 0, then (1) reduces to a generalized state-space model in which 
q~(u) is identifiable (see also Molenaar, de Gooijer, & Schmitz, 1992). Given these conclusions, 
in order to arrive at an identifiable dynamic lhctor model with s > 0 and unconstrained A(u),  
u = 0, 1 . . . .  , s (denoted as an exploratory model), the lagged covariances R~(u) have to be fixed. 
One convenient way to fix ~ ( u )  is to conceive of ~(t)  as a q-variate, zero-mean white noise 
series with covariance function ~ ( u )  = 3 (u)Iq, where Iq denotes the (q, q)-dimensional unity 
matrix and where Kronecker's delta, 3(u), is equal to 1 if u = 0 and 3(u) = 0 otherwise (see, 
e.g., Molenaar, 1994b, for alternative ways to arrive at an identifiable dynamic factor model). 

Although the restriction Rf(u) = 3(u)lq should be regarded only as a minimal identifiabil- 
ity constraint (see Molenaar, 1985), similar in nature to constraints that fix the scales of common 
latent factors in standard factor analysis (see J0reskog & S0rbom, 1993), it has given rise to 
questions about the plausibility of  specifications that latent factor series underlying psychologi- 
cal time series constitute white noise. We therefore introduce a special rotation procedure for the 
exploratory model (1) that yields an equivalent solution (in the goodness-of-fit sense) in which 
the latent factor covariance function no longer is associated with a white noise series, but with 
a q-variate moving-average model (to be defined below). The substantive implications of  this 
alternative are important for several psychological and behavioral concepts, including the repre- 
sentation of  processes and other kinds of  changes. 

2. A Special Rotation Procedure 

We now introduce a rotation procedure with the unusual feature that it applies separately to 
each of the q univariate latent factor series in (1). Hence even if q = 1, this rotation procedure 
applies. Consequently, to simplify the presentation, we can without loss of generality restrict 
attention to the case in which the dimension of the latent factor series in (1) is q = 1. 

Let B denote the backward shift operator defined by B~(t)  = ~(t - 1). Then (1) can be 
rewritten as: 

s 

y(t) = Z { A ( u ) B ~ ] ~ ( t )  + e(t) = A(B)~(I )  + e(t), 
u=O 

(2) 



P E T E R  C . M .  M O L E N A A R  A N D  J O H N  R. N E S S E L R O A D E  101 

where A(B)  = ~S=o[A(u)BU]  is a p-variate,  vector-valued polynomial  of finite order s in B. 1 
Restricting attention to the relevant part of (2), we seek a rotated solution A r (B) that is implicit ly 
defined as: 

A(B)  = A(B)~b -~ (B)~  (B) = A r (B)~  (B) (3) 

where A r (B) = A(B)qS-1 (B) and ~b (B) is some scalar polynomial  of finite order v in B. 
Under the identifiability constraint 0 (u) = a (u), the communal part of the covariance func- 

tion associated with the dynamic factor model  (1) equals A ( B ) A ( B )  ~, where ~ denotes transposi- 
tion. The transformation defined by  (3) is a special rotation in that it leaves this communal part 
invariant: A (B)A (B) ~ = A r (B)~b (B)~b (B)~A r (B) ~. This point will be further elaborated below. 

As in all factor rotation procedures, a suitable criterion has to be defined. In the present 
context a natural criterion is that the rotated loadings in A r (B) at lags u > 0 are vanishing. 
Heuristically speaking, this criterion implies that the rotated dynamic factor model resembles as 
closely as possible (in some metric) a generalized state-space model in which s = 0 in (1). Hence 
we will refer to this criterion as a state-space criterion. 

More specifically, if s = 0 in the dynamic 1-factor model (2), implying that there are no 
lagged factor loadings, then the autocovariance function 0 (u), u = 0 , . . . ,  of  the univariate latent 
factor series rj (t) is identifiable (Molenaar, 1985). It then follows from the Wald decomposit ion 
theorem (Hannan, 1970, p. 137) that rj(t) can be represented as an identifiable moving average 
model: rl (t) = ~b (B)~ (t), where ~b (B) is defined as in (3) and cov[~ (t),  ~ (t + u)] = ~ (u)~ 2. This 
implies that for s = 0, (2) can be rewritten as a linear state-space model: y(t) = Ax( t )  + ¢(t);  
x(t + 1) = Hx( t )  + w(t)  where x ( t /  = [~(t), g(t  - 1) . . . .  ], w(t)  ~ = [g(t),  0 . . . .  ], and A and 
H are matrices of appropriate dimensions with entries depending upon, respectively, A(0) and 
~b (B) (see appendix in Molenaar, 1985, for a complete exposition of rewriting dynamic factor 
models as state-space models). 

The implications of a state-space rotation criterion can be understood in the following way. 
Let )vi (B) denote the scalar polynomial  of order s associated with the i-th manifest univariate 
series in y(t) .  Then each )vi (B) can be factored into the form: 

L i ( B )  = (vii  -[- f l i lB ) (v i2  q- f l i 2 B ) .  • • (via, + i l isB) ,  i = 1 . . . . .  p .  (4 )  

Suppose that the p forms in (4) share a common factor, %r example, (Vij -}- f i i jB)  for some fixed 
j .  Then taking q5 (B) = vij -}- flij B in (3) yields a rotated solution A r (B) of maximum lag s - 1 
(the maximum lag of A(B)  is s). 

In general, a state-space rotation procedure %r (3) can be implemented by division of  A(B)  
by a scalar polynomial  ~b (B) of order v, ~b (B) = 1 + ~blB + . . .  + ~vB v, in which the coefficients 
~bk, k = 1, . . . ,  v are chosen so as to minimize (see next section for details of  the minimization 
procedure) 

~ ,.f (u) 2, (5:, 
i=1  u = l  

where w is the order of  A r (B) associated with the number of  lags that in practical applications 
still contribute nonnegligibly. 

The rotated latent factor series ~qr (t) is no longer white noise, but a moving-average of  order 
v (MA[v]):  

~qr (t) = ~b(B)rt(t) = rt(t) + ~bl~q(t - 1) + . . .  + qS,,~q(t - v), (6) 

where covDq(t), rl(t + u)] = 3(u). For instance, if  v = 1 then the covariance function of  the 
rotated latent factor series is: 0 r ( 0 )  = 1 + ~b~, '~r(1) = ( / ' ( - 1 )  = ~bl, and 0 r ( u )  = 0 if 

1in what follows, an expression such as a (B) always refers to the polynomial  in the backward shift operator B which 
is associated with the sequence a(u), indexed by lag u = 0, 1 , . . . .  
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lul > 1. It follows from (6) that positive-definiteness inheres in the covariance function of the 
rotated latent factor series from the covariance function of the unrotated latent factor series. 
Consequently, the block-Toeplitz matrix associated with a rotated q-variate latent factor series 
obtained from (1) will be block-diagonal  and has no eigenvalues < 0. 

In conclusion of this section, it is noted that the special rotation (3) is defined at the level of 
(p, 1)-dimensional vector-valued polynomials  A(B)  representing the lagged factor loadings in 
the dynamic 1-factor model  (2). That is, the (p, 1)-dimensional polynomial  A(B)  is rotated by a 
(1,1)-dimensional scalar polynomial  q5 (B). In the general dynamic q-factor model (1) this special 
rotation is applied to each of the q columns of the (p, q)-dimensional  matrix-valued polynomial  
A(B) .  Hence, special rotation in the dynamic q-factor model involves rotation by a diagonal 
(q, q)-dimensional  matrix-valued polynomial  qb (B). 

3. Implementation and Validation of the Rotation Algori thm 

First, a straightfoward implementation of the rotation procedure (3) is outlined and accom- 
panied by a discussion of some details related to applying the procedure. Then the results of an 
application to simulated data are presented in order to show the performance of the algorithm. 
The Fortran source code of our implementation can be obtained via ftp. 2 

The basic ingredients to implement the rotation procedure (3) are an algorithm to carry out 
polynomial  division and a general optimization algorithm. It is convenient to use an optimization 
algorithm that uses numerical derivatives such as that employed for IMSL subroutine ZXMIN 
(IMSL Library Reference Manual, 1980). A suitable polynomial  division algorithm is given by 
R o b i n s o n  (1967,  p. 31) wi th  w h i c h  each  row L i ( B )  = Li(0)  + L i ( 1 ) B  + . . .  + L i ( s ) B  s, i = 
1, 2 . . . . .  p,  of A(B) in (3) can be divided by the same polynomial  ~b (B) = 1 + ~blB + . .  • + ~vB v. 
The coefficients of q5 (B) then are determined by means of the quasi-Newton method in such a 
way that the criterion (5) is minimized. Notice that the zero-th order coefficient in ~b (B) is fixed at 
1.0. This implies that the zero-th order coefficient )~i (0) in each )~i (B), i = 1, 2 . . . . .  p,  remains 
invariant after division by q5 (B). If the zero-th order coefficient in q5 (B) would be defined as an 
additional free parameter qSo, that is, qS(B) = qSo + q51B + . . .  + qS~B ~, then minimization of 
(5) would lead to the nonsensical result that the value of ~bo becomes arbitrarily large while each 
rotated )~ (B) becomes arbitrarily small. 

Two of the details associated with the implementation and application of the given rotation 
algorithm require special attention. The first one concerns the determination of the optimal order 
v of the polynomial  ~b (B). In principle, the minimum value of the criterion (5) is a nonincreasing 
function of this order, yet taking v too large can create numerical problems (division by zero) 
due to finite precision computation. Hence in our implementation the order v is increased from 
v = 2 by steps of 1 until the decrease in the minimum value of (5) becomes too small (due 
to a vanishing coefficient of maximum order v) to warrant further increases in v. Second, the 
maximum order w in criterion (5) should be taken as large as possible without creating numerical 
problems. Again, a stepwise procedure is followed in our implementation in which the value of 
w is increased until the rotated loadings at maximum lag w become vanishingly small. 

To illustrate the rotation procedure, let i denote the imaginary unit, i = ~ and consider 
the following instance of (4) for p = 4: 

)~l(g) = (1 + [.8 - .7i]g)(1 + [.8 + . 7 i ] g ) ( 1  + .6B) = 1 + 2.2B + 2.09B 2 + .678B 3 

)~2(B) = (1 + [.8 - .7i]B)(1 + [.8 + . 7 i ] B ) ( 1  + .5B) = 1 + 2.1B + 1.93B 2 + .565B 3 

)~3(g) = (1 + [.8 - .7i]g)(1 + [.8 + . 7 i ] g ) ( 1  + .4B) = 1 + 1.2B + .49B 2 - .452B 3 

L4(B) = (1 + [.8 - .7i]B)(1 + [.8 + . 7 i ] B ) ( 1  + .3B) = 1 + 1.3B + .65B 2 - .339B 3. (7) 

2The implementation can be found at ftp.kiptron.psyc.virginia.edu 
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In (7) the coefficients of the )~i (B), i = 1, 2, 3, 4, are the lagged factor loadings associated with 
the i-th manifest series in y(t) which share a pair of complex conjugated factors (1 + [.8 - 
.7i]B)(1 + [.8 + .7i]B) = 1 + 1.6B + 1.13B 2. Hence we expect that the rotation procedure will 
yield q~ (B) = 1 + 1.6B + 1.13B 2 in combination with the following rotated loadings: 

) ~ ( B )  = 1 + .6B 

; ~ ( B )  = 1 + .5B 

~.~ (B)  = 1 + .4B 

~.~(B) = 1 + .3~3. (8) 

This result is indeed obtained. 
To show the performance of  the rotation algorithm with estimated lagged factor loadings, a 

small-scale simulation study was carried out. Using the lagged factor loadings as specified by (7), 
10 independent realizations of a 4-variate time series of  length T = 200 were generated accord- 
ing to (2). In each realization ~q(t) was a univariate Gaussian white noise series, while the com- 
ponent series in e(t) were autocorrelated Gaussian series. Each realization was subjected to an 
exploratory dynamic factor analysis as specified in (Molenaar, 1985). The (24,24)-dimensional 
input block-Toeplitz matrices consisted of blocks of lagged (4,4)-dimensional covariance matri- 
ces up to lag 5. The mean estimated lagged factor loadings and the associated standard deviations 
(in parentheses) across 10 realizations are: 

1.163 +2.290B +1.953B 2 +.625B 3 
L~(B) = 

(.125) (.112) (.254) (.177) 

1.141 +2.176B +1.792B 2 +.511B 3 
)~(B) = (.149) (.103) (.228) (.146) 

1.132 +1.148B - + . 3 4 5 B  2 - . 376B  3 
L~(B) = 

(.120) (.097) (.191) (.091) 

1.144 +1.270B +.518B 2 - . 291B  3 
)~(B) = (.125) (.076) (.206) (.077) 

The mean rotated factor loadings (up to lag 3) and the associated standard deviations (in 
parentheses) across the 10 realizations are: 

1.163 +.638B +.003B 2 - . 0 1 1 B  3 
)~(B) = (.125) (.093) (.131) (.075) 

1.141 +.558B - . 0 2 6 B  2 - . 0 1 0 B  3 
~.~(B) = (.149) (.097) (.094) (.090) 

1.132 - . 4 6 0 B  - . 015B  2 - . 005B  3 
)~(B) = (.120) (.134) (.076) (.033) 

1.144 - . 355B  - . 002B  2 - . 034B  3 
)~](B) = (.125) (.107) (.057) (.091) 

It appears that the rotation procedure yields satisfactory results, both with ideal loading 
patterns and with lagged loadings estimated from realizations of finite length. In an application 
of the rotation procedure, the dimension p of the manifest series is of course given, as is the 
maximum s in (1) of the estimated lagged loadings obtained in the exploratory dynamic factor 
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analysis of this manifest series. The optimal order v of ¢ (B) in (3) and (6) as well as the max- 
imum order w in criterion (5) can be determined according to the stepwise procedures outlined 
above. 

4. Alternative Implementation 

The implicit definition (3) of special rotation in the dynamic 1-factor model can be replaced 
by the following equivalent definition: 

A(B)  = A(B)  g (B) y -  ~ (B) = A r (B) y -  ~ (B). (9) 

It is seen that (3) and (9) are related by 

qS-l(B) = y(B) (10) 

State-space rotation according to (9) implies that the coefficients of the scalar polynomial 
?/(B) of order v are chosen in such a way that the product of A(B) and ?'(B) minimizes (5). In 
addition, the rotated latent factor series r] r (t) is an autoregression of order v: 

y(B)r/r(t) = ~(t) (11) 

where cov[rl(t), r~(t + u)] = 3(u).  
Whereas the special rotation according to (3) is obtained by division of A(B) by ¢ (B) of 

order v, yielding a moving-average of order v lor the rotated latent factor series, the same special 
rotation defined by (9) is obtained by multiplication of A(B) by g (B) of order v, yielding an 
autoregression of order v for the rotated latent factor series. In view of (10) these solutions are 
equivalent in that they yield the same value for (5) and the same values for the rotated loadings. 
The source code of this alternative implementation also can be obtained via ftp. 

5. :Empirical Example 

The use of dynamic factor rotation in empirical research will be illustrated with a dynamic 
factor analysis of multilead electroencephalographic (EEG) registrations obtained with a single 
subject. The EEG registrations were obtained in a large-scale quantitative genetical study of MZ 
and DZ twins (Beijsterveldt, Molenaar, de Geus, & Boomsma, 1996). For a randomly selected 
subject we analyze the EEG (eyes closed) during 6 seconds, sampling rate 50 Hz (Herz or cycles 
per second), at four locations on the head. The four locations (F3, C3, P3, O1 in the 10-20 
system; (see Regan, 1989, p. 12) are linearly arranged at equal distances on a small circle of the 
left hemisphere running from the front (F3) to the back (O1) of the head parallel to the midline. 
This yields a 4-variate manifest series of length T = 300: y l ( t )  is EEG at the frontal pole F3, 
y2(t)  is EEG at the central pole C3, y3(t)  is I~!~G at the parietal pole P3 and y4(t) is EEG at the 
occipital pole O1. 

This 4-variate EEG series was standardized and subjected to a dynamic factor analysis as 
described in (Molenaar, 1985). The (32, 32)-dimensional input block-Toeplitz matrix consists of 
blocks of lagged (4, 4)-dimensional correlation matrices up to lag 7. The selected model is an 
exploratory dynamic 1-factor model in which the univariate latent factor series r](t) is a white 
noise series with loadings on y(t) up to lag 6. The lagged loadings are presented in Table 1. 

State-space rotation of this solution yields the pattern of lagged loadings shown in Table 2. 
A comparison of Tables 1 and 2 shows that the special state-space rotation yields a substan- 

tial reduction of loadings at nonzero lags. 'Ihe value of criterion (5) is 2.13 for the initial solution 
presented in Table 1, whereas the value of (5) for the rotated solution in Table 2 is .28. In con- 
trast to the initial solution, the largest rotated loadings occur at lag zero and quickly decay to 
small absolute values at increasing lags. This general pattern of rotated loadings has one notable 
exception, however. At lags 5 and 6 the loadings on F3 ( - . 20  at lag 5; .22 at lag 6), C3 ( - .15  
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TABLE 1. 
Lagged factor loadings of 4-variate EEG series 
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Lagged Loading 

Time Series ,k(0) ,k(1) ,k(2) ,k(3) ,k(4) ,k(5) ,k(6) 

F3 .20 .39 .50 .37 .12 - . 22  - .06  
C3 .35 .55 .58 .45 .22 - .08  - .05  
P3 .27 .35 .27 .15 .08 .00 .03 
O1 .46 .46 .26 .13 .14 .26 .12 

TABLE 2. 
State-space rotated factor loadings of 4-variate EEG series 

Time Lagged Loading 

Series )~(0) )~(1) ),(2) ),(3) ),(4) ),(5) ),(6) ),(7) ),(8) ),(9) )~(10) 

F3 .20 .15 .14 - . 02  - .07  - .20  .22 - .07  - .03  .03 .00 
C3 .35 .12 .11 .05 - . 04  - .15  .11 .01 - . 04  .02 .00 
P3 .27 .02 .00 .01 .02 - . 04  .04 - . 02  .00 .00 .00 
O1 .46 - .10  - . 04  .06 .07 .12 - .15  .04 .02 - 0 2  .00 

at lag 5; .11 at lag 6) and O1 (.13 at lag 5; - . 1 5  at lag 6) show a substantial transient increase 
in absolute value. This transient increase does not occur for the loadings on P3 at lag 5 ( - . 0 4 )  
and lag 6 (.04). Because the sampling rate of the EEG series is 50 Hz, loadings at lags 5 and 
6 correspond to 10 and 12 Hz in real time. The dominant frequency of oscillation of EEG in 
an eyes closed condition also is 10-12 Hz (so-called alpha band; (see Regan, 1989). Hence the 
state-space rotated loadings show a transient increase at the lag corresponding to the dominant 
alpha band of frequencies of the EEG. No such transient pattern is visible in the initial solution. 

The transient increase in absolute value of the specially rotated loadings at lags 5 and 6 on 
F3, C3, and O1, on the one hand, and the lack of such a transient increase of the rotated loading 
on P3 at lags 5 and 6, on the other hand, induces a lead-lag pattern in the cross-covariances be- 
tween EEG at P3 and at the remaining locations. That is, this transient pattern of lagged loadings 
will give rise to covariance between EEG activity at P3 (lead) and EEG activity at the remaining 
locations 0.08~).10 second later (lag), but not in reverse. Such a directional lead-lag relation- 
ship is suggestive of the presence of an EEG source or generator in the neighborhood of P3. 
In a previous analysis of multi lead EEG obtained with a single subject, using dynamic factor 
analysis in the frequency domain (i.e., after discrete Fourier transformation of the data), similar 
evidence was found for the presence of an EEG source located at about the same brain region 
(see Molenaar, 1994b), for an extensive description of the method and results). 

A possible further interpretation of the remarkable pattern of state-space rotated loadings 
in Table 2 can be given in terms of Nunez 's  (1981, 1995) influential EEG wave model for the 
spatiotemporal structure of electrocortical potential fields. Under simplifying assumptions (e.g., 
a spherical homogeneous head model; see Nunez, 1995, for detailed discussion) an empirical 
application of the EEG wave model  boils down to a dynamic factor analysis in the frequency 
domain (i.e., after discrete Fourier transformation of the data) of multi lead EEG registrations 
(see Molenaar, 1987; Molenaar, 1994b, for derivations and methodological  improvements).  In 
this dynamic factor model in the frequency domain the loadings on leads at various locations 
on the head represent a spatial filter associated with the normal modes (spherical harmonics) of 
potential fields. Because the dynamic factor model in the frequency domain constitutes a one-to- 
one transformation of the dynamic factor model in the time domain, the lagged loadings in the 
latter model also can be interpreted in terms of a spatial filter. Accordingly,  the transient increase 
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in absolute value of loadings at the lag corresponding to the dominant alpha band of EEG could 
be interpreted as a resonant frequency of the neocortex conceived of as a spherical biophysical 
surface. In fact, (Nunez, 1981) has put forward theoretical biophysical arguments implying a 
similar interpretation of the spatiotemporal coherence of EEG registrations. 

Whereas the latent factor series r/(t) in the initial solution is defined as white noise lacking 
any sequential covariance, the specially rotated latent factor series associated with the solution 
presented in Table 2 is a fourth-order moving average MA[4]: r f ( t )  = t/(t) -k 1.22rl(t - 1) + 
.92r~(t - 2) + .45rl(t - 3) + .14rj(t - 4) where rt(t) is white noise with mean zero and variance 
equal to 1. 

6. Discussion and Conclusion 

The option of  rotating initial solutions to mathematically equivalent solutions that can be 
more meaningfully characterized from a substantive point of  view has long been considered a 
desirable feature of  exploratory factor analysis (Cattell, 1952). Although the same holds tree for 
exploratory dynamic factor analysis, until now rotation has not been a viable option for investi- 
gators using the method. The proposed special rotation procedure for the exploratory dynamic 
factor model introduced in (Molenaar, 1985) yields equivalent solutions in which the latent factor 
series is no longer a white noise series, but a moving-average. The rotation is defined for each 
univariate component of a q-variate latent factor series and hence also applies if q = 1. 

Defining a mathematical criterion to maximize or minimize is perhaps the most critical step 
of specifying a rotation procedure. Traditional exploratory factor analysis has not lacked either 
orthogonal or oblique criteria. For dynamic exploratory factor analysis, the state-space criterion 
presented above would seem to be a natural criterion in order to obtain rotated solutions which, 
according to the measure defined in (5), resemble as closely as possible a generalized state-space 
model which only has nonzero factor loadings at lag zero. The analogy of this criterion to a 
traditional conception of "simple structure" is in the sense that the descriptions of the manifest 
time series in terms of the latent time series are made as simple as possible in terms of lagged 
relationships. Yet, the criterion in (5) can be modified in arbitrary ways. For instance, an alter- 
native criterion could be defined in which deviations of lagged factor loadings from zero at lags 
u > 0 are weighted by the lag u. This would induce larger penalties for deviations from zero of 
factor loadings occurring at larger lags. Hence rotated solutions thus obtained would have their 
factor loadings concentrated at small lags. This alternative criterion could be called a maximum 
cumulative energy criterion, that is, the cumulative sum of squared factor loadings as function 
of  lag u is maximum among all possible equivalent solutions. The maximum cumulative energy 
criterion is well-known in engineering applications (see Robinson & De Silva, 1978), for further 
discussion of  this criterion). An analogous criterion is used by (Molenaar, 1987) for rotation in 
the dynamic factor model in the frequency domain, that is, the Fourier transform of (1). Another 
possibly suitable modification of (5) would be to penalize deviations from zero of  factor load- 
ings at a lag larger than, say, u = 2. More generally, one could define an arbitrary fixed pattern 
matrix for the rotated lagged loadings, thus creating a Procrustes version of the special rotation 
procedure. 

Further possible extensions at a different level can be made by referring to our earlier defi- 
nition of  the special rotation procedure for dynamic q-factor models in terms of transformation 
by ~ (B) ,  that is, a diagonal (q, q)-dimensional matrix-valued polynomial in the lag operator B. 
If  it is allowed that ~ ( B )  also has oft=diagonal elements for q > 1 then the special rotation pro- 
cedure can be combined with ordinary (e.g., varimax) rotation for the dynamic q-factor model. 
This extension involves the product of special rotation by means of a diagonal (q, q)-dimensional 
matrix-valued polynomial and ordinary rotation by means of a full (q, q)-dimensional matrix- 
valued polynomial. This possibility remains to be elaborated, in particular with respect to the 
conditions which should be met by the full (q, @-dimensional matrix-valued polynomial defin- 
ing ordinary rotation. 
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Extensions such as outlined above as well as other possible rotational criteria for the special 
rotation procedure will no doubt appeal to readers interested in modeling process and change 
via time series data. The method we have presented lays the ground work for specifying, im- 
plementing, and evaluating a number of different approaches to dealing with this difficult but 
critical aspect of  exploratory dynamic factor analysis. We strongly encourage investigators who 
seek more powerful ways to model process to develop and test alternative specifications that can 
be evaluated against empirical data by means of the general modeling approach presented here. 
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